Araştırma Makalesi
BibTex RIS Kaynak Göster

Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers

Yıl 2023, Cilt: 6 Sayı: 1, 594 - 604, 10.03.2023
https://doi.org/10.47495/okufbed.1117644

Öz

In this study, we define a type of bi-periodic Fibonacci and Lucas numbers which are called bi-periodic Fibonacci and Lucas Gaussian quaternions. We also give the relationship between negabi-periodic Fibonacci and Lucas Gaussian quaternions and bi-periodic Fibonacci and Lucas Gaussian quaternions. Moreover, we obtain the Binet’s formula, generating function, d’Ocagne’s identity, Catalan’s identity, Cassini’s identity, like-Tagiuri’s identity, Honberger’s identity and some formulas for these new type numbers. Some algebraic proporties of bi-periodic Fibonacci and Lucas Gaussian quaternions which are connected between Gaussian quaternions and bi-periodic Fibonacci and Lucas numbers are investigated.

Kaynakça

  • Adler SL., Quaternionic quantum mechanics and quantum fields. New York Oxford Univ. Press; 1994.
  • Baez J., The Octonians. Bull. Amer. Math. Soc. 2001; 145(39): 145-205.
  • Bilgici G., Two generalizations of Lucas sequence. Applied Mathematics and Computation 2014; 245: 526-538.
  • Çimen CB., İpek A., On Pell quaternions and Pell-Lucas quaternions. Adv. Appl. Clifford Algebras 2016; 26(1): 39–51.
  • Edson M., Yayenie O., A new generalization of Fibonacci sequences and the extended Binet’s formula. INTEGERS Electron. J. Comb. Number Theor 2009; 9: 639-654.
  • Falcon S., Plaza A., On the Fibonacci k-numbers. Chaos, Solitions &Fractals 2007; 32(5): 1615-1624.
  • George AH., Some formula for the Fibonacci sequence with generalization. Fibonacci Quart 1969; 7: 113-130.
  • Gökbaş H., A note BiGaussian Pell and Pell-Lucas numbers. Journal of Science and Arts 2021; 3(56): 669-680.
  • Harman CJ., Complex Fibonacci numbers. The Fibonacci Quart 1981; 19(1): 82-86.
  • Horadam AF., A generalized Fibonacci sequence. Math. Mag. 1961; 68: 455-459.
  • Horadam AF., Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math. Montly 1963; 70: 289-291.
  • Pethe SP., Phadte CN., A generalization of the Fibonacci sequence. Applications of Fibonacci numbers 1992; 5: 465-472.
  • Pond JC., Generalized Fibonacci summations. Fibonacci Quart 1968; 6: 97-108.
  • Ramirez J., Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions. An. Şt. Univ. Ovidius Constanta 2015; 23(2): 201-212.
  • Ward JP., Quaternions and Cayley numbers. Algebra and Applications. Kluwer Academic Publishers, London, 1997.

Biperiodic Fibonacci ve Lucas Sayılarını İçeren Gaussian Quaternionlar

Yıl 2023, Cilt: 6 Sayı: 1, 594 - 604, 10.03.2023
https://doi.org/10.47495/okufbed.1117644

Öz

Bu çalışmada, bi-periodic Fibonacci ve Lucas sayılarının, bi-periodic Fibonacci ve Lucas Gaussian quaternionlar olarak isimlendirilen yeni bir tipi tanımlanmıştır. Çalışma içerisinde, negabi-periodic Fibonacci ve Lucas Gaussian quaternionlarla bi-periodic Fibonacci ve Lucas Gaussian quaternionlar arasındaki ilişkiden de bahsedilmiştir. Ayrıca, bu sayılar için Binet’s formülü, dizinin genelleştirme fonksiyonu, d’Ocagne’s eşitliği, Catalan’s eşitliği, Cassini’s eşitliği, , like-Tagiuri’s eşitliği, Honberger’s eşitliği ve bazı toplam formülleri verilmiştir. Bi-periodic Fibonacci ve Lucas Gaussian quaternionların bazı cebirsel özellikleri ele alınmıştır.

Kaynakça

  • Adler SL., Quaternionic quantum mechanics and quantum fields. New York Oxford Univ. Press; 1994.
  • Baez J., The Octonians. Bull. Amer. Math. Soc. 2001; 145(39): 145-205.
  • Bilgici G., Two generalizations of Lucas sequence. Applied Mathematics and Computation 2014; 245: 526-538.
  • Çimen CB., İpek A., On Pell quaternions and Pell-Lucas quaternions. Adv. Appl. Clifford Algebras 2016; 26(1): 39–51.
  • Edson M., Yayenie O., A new generalization of Fibonacci sequences and the extended Binet’s formula. INTEGERS Electron. J. Comb. Number Theor 2009; 9: 639-654.
  • Falcon S., Plaza A., On the Fibonacci k-numbers. Chaos, Solitions &Fractals 2007; 32(5): 1615-1624.
  • George AH., Some formula for the Fibonacci sequence with generalization. Fibonacci Quart 1969; 7: 113-130.
  • Gökbaş H., A note BiGaussian Pell and Pell-Lucas numbers. Journal of Science and Arts 2021; 3(56): 669-680.
  • Harman CJ., Complex Fibonacci numbers. The Fibonacci Quart 1981; 19(1): 82-86.
  • Horadam AF., A generalized Fibonacci sequence. Math. Mag. 1961; 68: 455-459.
  • Horadam AF., Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math. Montly 1963; 70: 289-291.
  • Pethe SP., Phadte CN., A generalization of the Fibonacci sequence. Applications of Fibonacci numbers 1992; 5: 465-472.
  • Pond JC., Generalized Fibonacci summations. Fibonacci Quart 1968; 6: 97-108.
  • Ramirez J., Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions. An. Şt. Univ. Ovidius Constanta 2015; 23(2): 201-212.
  • Ward JP., Quaternions and Cayley numbers. Algebra and Applications. Kluwer Academic Publishers, London, 1997.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Hasan Gökbaş 0000-0002-3323-8205

Yayımlanma Tarihi 10 Mart 2023
Gönderilme Tarihi 17 Mayıs 2022
Kabul Tarihi 16 Eylül 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 1

Kaynak Göster

APA Gökbaş, H. (2023). Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 594-604. https://doi.org/10.47495/okufbed.1117644
AMA Gökbaş H. Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). Mart 2023;6(1):594-604. doi:10.47495/okufbed.1117644
Chicago Gökbaş, Hasan. “Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, sy. 1 (Mart 2023): 594-604. https://doi.org/10.47495/okufbed.1117644.
EndNote Gökbaş H (01 Mart 2023) Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 594–604.
IEEE H. Gökbaş, “Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), c. 6, sy. 1, ss. 594–604, 2023, doi: 10.47495/okufbed.1117644.
ISNAD Gökbaş, Hasan. “Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (Mart 2023), 594-604. https://doi.org/10.47495/okufbed.1117644.
JAMA Gökbaş H. Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2023;6:594–604.
MLA Gökbaş, Hasan. “Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 6, sy. 1, 2023, ss. 594-0, doi:10.47495/okufbed.1117644.
Vancouver Gökbaş H. Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2023;6(1):594-60.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.