In this study, for electrochemical determination of hydrogen peroxide and investigation of its sensor performance, polythiophene doped AG@RGO was synthesized in a two-step. To characterize synthesized catalysts field emission microscopy (FESEM), energy-dispersive X-ray spectrometer (EDX), X-ray Powder Diffraction (XRD), and Uv-vis spectroscopy measurements were performed. On the other hand, electrochemical properties of catalysts were investigated by cyclic voltammetry (CV) and amperometric methods. It was noticed that Ag@rGO catalyst modified with polythiophene is higher sensitivity compared with unmodified Ag@rGO catalyst. . Limit detection value (LOD) was obtained as 0,15mM and 0,033mM (S/N=3) for Ag@rGO and Ptyf-Ag@rGO, respectively. Additionally, polythiophene not only reduced the LOD value, but also contributed to the observation of a more stable current by reducing the noise signals in the electrochemical measurements for Ag@rGO.
Referans1
Bouabdallaoui, M. Aouzal, Z. Ben Jadi, S. El Jaouhari, A. Bazzaoui, M. Lévi, G. Aubard, J. Bazzaoui, E.A. X-ray photoelectron and in situ and ex situ resonance Raman spectroscopic investigations of polythiophene overoxidation, J. Solid State Electrochem. 2017 ;21; 3519–3532.
Referans3
Khan, M. Brunklaus, G. Ahmad, S. Probing the molecular orientation of chemically polymerized polythiophene-polyrotaxane via solid state NMR, Arab. J. Chem. 2017; 10; 708–714.
Referans4
Kumar, V. Gupta, R.K. Gundampati, R.K. Singh, D.KMohan, . S. Hasan, S.H. Malviya, M. Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle-reduced graphene oxide-polyaniline fabricated electrochemical sensor, RSC Adv. 2018;8; 619–631.
Referans6
Li, S. Xiong, J. Shen, J. Qin, Y. Li, J. Chu, F. Kong, YDeng, . L. A novel hydrogen peroxide sensor based on Ag nanoparticles decorated polyaniline/graphene composites, J. Appl. Polym. Sci. 2015; 132
Referans7
Li, X.-G. Li, J. Meng, Q.-K. Huang, M.-R. Interfacial Synthesis and Widely Controllable Conductivity of Polythiophene Microparticles, 2009; 113; 9718-97
Referans8
Liu, L. Zhou, Y. Liu, SXu, . M. The Applications of Metal−Organic Frameworks in Electrochemical Sensors, ChemElectroChem. 2018; 5.
Referans9
Mao, Y. Bao, Y. Gan, S. Li, F. Niu, L. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element, Biosens. Bioelectron. 2011; 28; 291–297.
Referans10
Patel, V. Kruse, P. Selvaganapathy, P.R. Solid State Sensors for Hydrogen Peroxide Detection, Biosensors. 2020; 11;9.
Referans11
Rahmani, F. Nouranian, S. Chiew, Y.C. 3D Graphene as an Unconventional Support Material for Ionic Liquid Membranes: Computational Insights into Gas Separations, Cite This Ind. Eng. Chem. Res. 2020; 59.
Referans12
Senthilkumar B., Thenamirtham, P. Kalai Selvan, R. Structural and electrochemical properties of polythiophene, Appl. Surf. Sci. 2011; 257;9063–9067.
Referans13
Shaban, M. Kholidy, I. Ahmed, G.M. Negem, M. Abd El-Salam, H.M. Cyclic voltammetry growth and characterization of Sn-Ag alloys of different nanomorphologies and compositions for efficient hydrogen evolution in alkaline solutions, RSC Adv. 2019; 9 ;22389–22400.
Referans14
Stanković, V. Đurđić, S. Ognjanović, M. Mutić, J. Kalcher, K Stanković, D.M. A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode Journal of Electroanal. Chem. 2020; 876
Referans15
Suna Karatekin, R. Kaplan, S, Ildan Ozmen, S. Dudukcu, M.K. N-doped reduced graphene oxide/ZnO/nano-Pt composites for hydrogen peroxide sensing, Mater. Chem. Phys. 280 (2022) 125792. https://doi.org/10.1016/J.MATCHEMPHYS.2022.125792.
Referans16
Tuichai, W. Karaphun, A. Ruttanapun, C. Ag nanomaterials deposited reduced graphene oxide nanocomposite as an advanced hybrid electrode material for Asymmetric Supercapacitor device, J. Alloys Compd. 2020; 849;156-516.
Referans17
Turunc, E. Binzet, R. Gumus, I. Binzet, G. Arslan, H. Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide, Mater. Chem. Phys. 2017;202; 310–319.
Referans18
Wang, L. Wang, E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode, Electrochem. Commun. 2004; 6225–229.
Referans19
Yu, Y. Peng, J. Pan, M. Ming, Y.. Li, Y Yuan, L. Liu, Q. Han, R. Hao, Y. Yang Y., Hu, D. Li, H. Qian, Z. A Nonenzymatic Hydrogen Peroxide Electrochemical Sensing and Application in Cancer Diagnosis, Small Methods. 2021; 5 ;1–11.
Referans20
Yuvashree S., Balavijayalakshmi J., Graphene based nanocomposites for electrochemical detection of H2o2, Mater. Today Proceeding 2019; 18; 1740–1745.
Referans21
Zhang, T. Yuan, R. Chai, Y. Li, W. Ling, S. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-Copper Nanocomposite Modified Gold Electrode, Sensors. 2008; 8; 5141–5152.
Referans22
Zhang, Y. Wang, J. Qiu, JJin, . X. Umair, M.MLu, . R. Zhang, S. Tang, B. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity, Appl. Energy. 2019; 237; 83–90.
Referans23
Ziashahabi, A. Prato, M. Dang, Z. Poursalehi, R. Naseri, N. The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark, Sci. Rep. 2019; 9; 1–13.
Referans24
Zong C., Wang, M. Li,B., Liu X., Zhao W., Zhang Q., Liang A., Yu Y., Sensing of hydrogen peroxide and glucose in human serum: Via quenching fluorescence of biomolecule-stabilized Au nanoclusters assisted by the Fenton reaction, RSC Advance 2017; 7; 26559–26565.
Bu çalışmada hidrojen peroksitin elektrokimyasal tayini için politiyofen katkılı Ag@rGO iki aşamada sentezlenerek sensör performansı incelenmiştir. Hazırlanan katalizörlerin karakterizasyonu alan emisyonlu taramalı elektron mikroskobu (FESEM) , enerji dağılım X-ışını spektroskopisi (EDX) , X-ışını kırınım spektroskopisi (XRD) ve görünür bölge (UV-vis) spektroskopisi ile gerçekleştirilmiştir. Diğer taraftan katalizörlerin elektrokimyasal özellikleri, dönüşümlü voltametri (CV) ve amperometrik yöntem ile incelenmiştir. Politiyofen (ptyf) katkılı Ag@rGO’nun katkısız Ag@rGO’ ya kıyasla hidrojen peroksite karşı daha hassas olduğu elektrokimyasal ölçümler sonrası anlaşılmıştır. Limit dedeksiyon değeri (LOD) Ag@rGO ve Ptyf-Ag@rGO için sırasıyla 0,15mM ve 0,033 mM (S/N=3) olarak elde edilmiştir. Bununla birlikte politiyofen sadece LOD değerini düşürmekle kalmamış, Ag@rGO için yapılan ölçümlerdeki gürültü sinyallerini azaltarak daha kararlı bir akım gözlenmesine de katkı sağlamıştır
Referans1
Bouabdallaoui, M. Aouzal, Z. Ben Jadi, S. El Jaouhari, A. Bazzaoui, M. Lévi, G. Aubard, J. Bazzaoui, E.A. X-ray photoelectron and in situ and ex situ resonance Raman spectroscopic investigations of polythiophene overoxidation, J. Solid State Electrochem. 2017 ;21; 3519–3532.
Referans3
Khan, M. Brunklaus, G. Ahmad, S. Probing the molecular orientation of chemically polymerized polythiophene-polyrotaxane via solid state NMR, Arab. J. Chem. 2017; 10; 708–714.
Referans4
Kumar, V. Gupta, R.K. Gundampati, R.K. Singh, D.KMohan, . S. Hasan, S.H. Malviya, M. Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle-reduced graphene oxide-polyaniline fabricated electrochemical sensor, RSC Adv. 2018;8; 619–631.
Referans6
Li, S. Xiong, J. Shen, J. Qin, Y. Li, J. Chu, F. Kong, YDeng, . L. A novel hydrogen peroxide sensor based on Ag nanoparticles decorated polyaniline/graphene composites, J. Appl. Polym. Sci. 2015; 132
Referans7
Li, X.-G. Li, J. Meng, Q.-K. Huang, M.-R. Interfacial Synthesis and Widely Controllable Conductivity of Polythiophene Microparticles, 2009; 113; 9718-97
Referans8
Liu, L. Zhou, Y. Liu, SXu, . M. The Applications of Metal−Organic Frameworks in Electrochemical Sensors, ChemElectroChem. 2018; 5.
Referans9
Mao, Y. Bao, Y. Gan, S. Li, F. Niu, L. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element, Biosens. Bioelectron. 2011; 28; 291–297.
Referans10
Patel, V. Kruse, P. Selvaganapathy, P.R. Solid State Sensors for Hydrogen Peroxide Detection, Biosensors. 2020; 11;9.
Referans11
Rahmani, F. Nouranian, S. Chiew, Y.C. 3D Graphene as an Unconventional Support Material for Ionic Liquid Membranes: Computational Insights into Gas Separations, Cite This Ind. Eng. Chem. Res. 2020; 59.
Referans12
Senthilkumar B., Thenamirtham, P. Kalai Selvan, R. Structural and electrochemical properties of polythiophene, Appl. Surf. Sci. 2011; 257;9063–9067.
Referans13
Shaban, M. Kholidy, I. Ahmed, G.M. Negem, M. Abd El-Salam, H.M. Cyclic voltammetry growth and characterization of Sn-Ag alloys of different nanomorphologies and compositions for efficient hydrogen evolution in alkaline solutions, RSC Adv. 2019; 9 ;22389–22400.
Referans14
Stanković, V. Đurđić, S. Ognjanović, M. Mutić, J. Kalcher, K Stanković, D.M. A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode Journal of Electroanal. Chem. 2020; 876
Referans15
Suna Karatekin, R. Kaplan, S, Ildan Ozmen, S. Dudukcu, M.K. N-doped reduced graphene oxide/ZnO/nano-Pt composites for hydrogen peroxide sensing, Mater. Chem. Phys. 280 (2022) 125792. https://doi.org/10.1016/J.MATCHEMPHYS.2022.125792.
Referans16
Tuichai, W. Karaphun, A. Ruttanapun, C. Ag nanomaterials deposited reduced graphene oxide nanocomposite as an advanced hybrid electrode material for Asymmetric Supercapacitor device, J. Alloys Compd. 2020; 849;156-516.
Referans17
Turunc, E. Binzet, R. Gumus, I. Binzet, G. Arslan, H. Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide, Mater. Chem. Phys. 2017;202; 310–319.
Referans18
Wang, L. Wang, E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode, Electrochem. Commun. 2004; 6225–229.
Referans19
Yu, Y. Peng, J. Pan, M. Ming, Y.. Li, Y Yuan, L. Liu, Q. Han, R. Hao, Y. Yang Y., Hu, D. Li, H. Qian, Z. A Nonenzymatic Hydrogen Peroxide Electrochemical Sensing and Application in Cancer Diagnosis, Small Methods. 2021; 5 ;1–11.
Referans20
Yuvashree S., Balavijayalakshmi J., Graphene based nanocomposites for electrochemical detection of H2o2, Mater. Today Proceeding 2019; 18; 1740–1745.
Referans21
Zhang, T. Yuan, R. Chai, Y. Li, W. Ling, S. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-Copper Nanocomposite Modified Gold Electrode, Sensors. 2008; 8; 5141–5152.
Referans22
Zhang, Y. Wang, J. Qiu, JJin, . X. Umair, M.MLu, . R. Zhang, S. Tang, B. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity, Appl. Energy. 2019; 237; 83–90.
Referans23
Ziashahabi, A. Prato, M. Dang, Z. Poursalehi, R. Naseri, N. The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark, Sci. Rep. 2019; 9; 1–13.
Referans24
Zong C., Wang, M. Li,B., Liu X., Zhao W., Zhang Q., Liang A., Yu Y., Sensing of hydrogen peroxide and glucose in human serum: Via quenching fluorescence of biomolecule-stabilized Au nanoclusters assisted by the Fenton reaction, RSC Advance 2017; 7; 26559–26565.
Suna, R., & Kaya, D. (2023). Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 1122-1136.
AMA
Suna R, Kaya D. Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Temmuz 2023;6(2):1122-1136.
Chicago
Suna, Rukan, ve Derya Kaya. “Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, sy. 2 (Temmuz 2023): 1122-36.
EndNote
Suna R, Kaya D (01 Temmuz 2023) Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 2 1122–1136.
IEEE
R. Suna ve D. Kaya, “Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 6, sy. 2, ss. 1122–1136, 2023.
ISNAD
Suna, Rukan - Kaya, Derya. “Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/2 (Temmuz 2023), 1122-1136.
JAMA
Suna R, Kaya D. Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:1122–1136.
MLA
Suna, Rukan ve Derya Kaya. “Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 6, sy. 2, 2023, ss. 1122-36.
Vancouver
Suna R, Kaya D. Politiyofen Katkılı Ag@rGO-GC Elektrodunda H2O2’nin Elektrokimyasal Tayini. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(2):1122-36.