Araştırma Makalesi
BibTex RIS Kaynak Göster

Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes

Yıl 2024, Cilt: 7 Sayı: 1, 33 - 45, 22.01.2024
https://doi.org/10.47495/okufbed.1288066

Öz

Graph invariants (topological indices) are numerical values of graphs obtained from 2-dimensional (2-D) images of chemical structures. These invariants are used in the structure-property/activity studies to predict certain properties such as the enthalpy of vaporization, and stability of molecular structures. In this paper, reformulated Zagreb indices, which are edge-degree-based indices, are considered. First, the reformulated Zagreb indices for cycle-related graphs which are wheel, helm, gear, friendship, closed helm, flower, sun, and sunflower are computed. The values of the first and second reformulated Zagreb indices of cycle-related these graphs and also the values of reformulated Zagreb indices of graphs with the same edge cardinality among studied graphs are compared numerically with the MATLAB software program. Finally, reformulated first Zagreb index and reformulated second Zagreb index of linear [n]-phenylenes are calculated and these values are computed numerically.

Kaynakça

  • Asok A., Kureethara JV. The QSPR study of butane derivatives: A mathematical approach. Oriental Journal of Chemistry 2018; 34(4): 1842-1846.
  • Basavanagoud B., Barangi AP., Jakkannavar P. M-polynomial of some graph operations and cycle related graphs. Iranian Journal of Mathematical Chemistry 2019; 10(2): 127-150.
  • Das KC., Akgunes N., Togan M., Yurttas A., Cangul IN., Cevik AS. On the first Zagreb index and multiplicative Zagreb coindices of graphs. Analele Stiintifice ale Universitatii Ovidius Constanta 2016;24(1): 153–176.
  • De N. Some bounds of reformulated Zagreb indices. Applied Mathematical Sciences 2012; 6(101): 5005-5012.
  • Ediz S., Çiftçi İ., Taş Z., Cancan M., Farahani MR., Aldemir MŞ. A note on QSPR analysis of total Zagreb and total Randić indices of octanes. Eurasian Chemial Communications 2021; 3: 139-45.
  • Estrada E., Bonchev, D. Chemical graph theory. Chapman and Hall/CRC, New York 2013. Gallian JA. A dynamic survey of graph labeling. Electronic Journal of Combinatorics 2007; DS6: 1-58.
  • Gutman I., Trinajstić, N. Graph theory and molecular orbitals. total π-electron energy of alternant hydrocarbons. Chemical Physics Letters 1972; 17(4): 535–538.
  • Havare OC., Havare AK. Computation of the forgotten topological index and co-index for carbon base nanomaterial. Polycyclic Aromatic Compounds 2022; 42(6): 3488-3500.
  • Javaid M., Ali U., Siddiqui K. Novel connection-based Zagreb indices of several wheel-related graphs. Computational Journal of Combinatorial Mathematics 2020; 2(2020):31-58.
  • Ji S., Li X., Huo, B. On reformulated Zagreb indices with respect to acyclic, unicyclic and bicyclic graphs. MATCH Communications in Mathematical and in Computer Chemistry 2014; 72(3): 723-732.
  • Kaya Gök G. On the reformulated zagreb coindex. Journal of New Theory 2019; 28: 28-32.
  • Liu JB., Ali B., Malik MA., Siddiqui HMA., Imran M. Reformulated Zagreb indices of some derived graphs. Mathematics 2019; 7(4): 366.
  • Nacaroğlu Y., Maden AD. The multiplicative Zagreb coindices of graph operations. Utilitas Mathematica 2017; 102: 19-38.

Devir İçeren Bazı Grafların ve Lineer [n]-phenylenlerin Yeniden Formüle Edilmiş Zagreb İndeksleri

Yıl 2024, Cilt: 7 Sayı: 1, 33 - 45, 22.01.2024
https://doi.org/10.47495/okufbed.1288066

Öz

Graf değişmezleri (topolojik indeksler), kimyasal yapıların 2 boyutlu görüntülerinden elde edilen grafların sayısal değerleridir. Bu değişmezler, moleküler yapıların buharlaşma entalpisi ve kararlılığı gibi belirli özellikleri tahmin etmek için yapı-özellik/aktivite çalışmalarında kullanılır. Bu çalışmada kenar derece tabanlı indekslerden yeniden formüle edilmiş Zagreb indeksleri ele alınmıştır. İlk olarak, tekerlek, dümen, dişli, arkadaşlık, kapalı dümen, çiçek, güneş ve ayçiçeği gibi devir içeren graflar için yeniden formüle edilmiş Zagreb indeksleri hesaplanır. Son olarak, devir içeren bu grafların birinci ve ikinci yeniden formüle edilmiş Zagreb indekslerinin değerleri ve ayrıca çalışılan graflar arasında aynı kenar kardinalitesine sahip grafların yeniden formüle edilmiş Zagreb indekslerinin değerleri MATLAB yazılım programı ile sayısal olarak karşılaştırılmıştır. Son olarak, doğrusal [n]-fenilenlerin yeniden formüle edilmiş birinci Zagreb indeksi ve yeniden formüle edilmiş ikinci Zagreb indeksi hesaplanmış ve bu değerler sayısal olarak hesaplanmıştır.

Kaynakça

  • Asok A., Kureethara JV. The QSPR study of butane derivatives: A mathematical approach. Oriental Journal of Chemistry 2018; 34(4): 1842-1846.
  • Basavanagoud B., Barangi AP., Jakkannavar P. M-polynomial of some graph operations and cycle related graphs. Iranian Journal of Mathematical Chemistry 2019; 10(2): 127-150.
  • Das KC., Akgunes N., Togan M., Yurttas A., Cangul IN., Cevik AS. On the first Zagreb index and multiplicative Zagreb coindices of graphs. Analele Stiintifice ale Universitatii Ovidius Constanta 2016;24(1): 153–176.
  • De N. Some bounds of reformulated Zagreb indices. Applied Mathematical Sciences 2012; 6(101): 5005-5012.
  • Ediz S., Çiftçi İ., Taş Z., Cancan M., Farahani MR., Aldemir MŞ. A note on QSPR analysis of total Zagreb and total Randić indices of octanes. Eurasian Chemial Communications 2021; 3: 139-45.
  • Estrada E., Bonchev, D. Chemical graph theory. Chapman and Hall/CRC, New York 2013. Gallian JA. A dynamic survey of graph labeling. Electronic Journal of Combinatorics 2007; DS6: 1-58.
  • Gutman I., Trinajstić, N. Graph theory and molecular orbitals. total π-electron energy of alternant hydrocarbons. Chemical Physics Letters 1972; 17(4): 535–538.
  • Havare OC., Havare AK. Computation of the forgotten topological index and co-index for carbon base nanomaterial. Polycyclic Aromatic Compounds 2022; 42(6): 3488-3500.
  • Javaid M., Ali U., Siddiqui K. Novel connection-based Zagreb indices of several wheel-related graphs. Computational Journal of Combinatorial Mathematics 2020; 2(2020):31-58.
  • Ji S., Li X., Huo, B. On reformulated Zagreb indices with respect to acyclic, unicyclic and bicyclic graphs. MATCH Communications in Mathematical and in Computer Chemistry 2014; 72(3): 723-732.
  • Kaya Gök G. On the reformulated zagreb coindex. Journal of New Theory 2019; 28: 28-32.
  • Liu JB., Ali B., Malik MA., Siddiqui HMA., Imran M. Reformulated Zagreb indices of some derived graphs. Mathematics 2019; 7(4): 366.
  • Nacaroğlu Y., Maden AD. The multiplicative Zagreb coindices of graph operations. Utilitas Mathematica 2017; 102: 19-38.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Özge Çolakoğlu Havare

Yayımlanma Tarihi 22 Ocak 2024
Gönderilme Tarihi 26 Nisan 2023
Kabul Tarihi 21 Temmuz 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 1

Kaynak Göster

APA Çolakoğlu Havare, Ö. (2024). Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(1), 33-45. https://doi.org/10.47495/okufbed.1288066
AMA Çolakoğlu Havare Ö. Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). Ocak 2024;7(1):33-45. doi:10.47495/okufbed.1288066
Chicago Çolakoğlu Havare, Özge. “Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, sy. 1 (Ocak 2024): 33-45. https://doi.org/10.47495/okufbed.1288066.
EndNote Çolakoğlu Havare Ö (01 Ocak 2024) Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 1 33–45.
IEEE Ö. Çolakoğlu Havare, “Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), c. 7, sy. 1, ss. 33–45, 2024, doi: 10.47495/okufbed.1288066.
ISNAD Çolakoğlu Havare, Özge. “Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/1 (Ocak 2024), 33-45. https://doi.org/10.47495/okufbed.1288066.
JAMA Çolakoğlu Havare Ö. Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2024;7:33–45.
MLA Çolakoğlu Havare, Özge. “Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 7, sy. 1, 2024, ss. 33-45, doi:10.47495/okufbed.1288066.
Vancouver Çolakoğlu Havare Ö. Reformulated Zagreb Indices of Some Cycle-Related Graphs and Linear [n]-Phenylenes. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2024;7(1):33-45.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.