Araştırma Makalesi
BibTex RIS Kaynak Göster

Fourier Transform by Distribution Function in Statistics

Yıl 2024, Cilt: 7 Sayı: 2, 581 - 591, 11.03.2024
https://doi.org/10.47495/okufbed.1242108

Öz

The Fourier transform is one of the most important methods, which has the ability to transform complex integral equations into simple algebraic equations and is frequently used in both mathematics and statistics. Although the Fourier transform is valid for every function in mathematics under certain conditions, this situation can become more complicated in statistics because of the fact that statistics are very different from mathematics. While in statistics, different observation values, that is, different x values, are considered for each situation, in mathematics for each x a function is defined. Because in statistics, random variables are concerned rather than functions, and the density functions of the observed values of interest should also be known. In statistics, it is seen that the Fourier transform is used in non-parametric models in which asymptotic properties are examined. In the Fourier transform, which can be performed using both distribution and density functions, it is not possible to use the density function when there are unknown or non-integrable density functions or very slow convergence rate (considering asymptotic properties). In such cases, it would be more appropriate to perform the Fourier transform with the distribution function. In this study, suggestions are presented on under which conditions it would be more appropriate to perform the Fourier transform with the distribution function.

Kaynakça

  • Akdeniz F. Olasılık ve istatistik. Adana, Baki Kitabevi, 2002.
  • Fan J. On the optimal rates of convergence for nonparametric deconvolution problems. Annals of Statistics 1991; 19: 1257-1272.
  • Fan J., Truong YK. Nonparametric regression with errors in variables. Annals of Statistics 1993; 21: 1900-1925. Matematik Dünyası, URL 1: http://www.matematikdunya si.org/arsiv/PDF_eskisayilar/92_4_22_25_FONKSIYONEL.pdf (Erişim zamanı; Eylül, 15, 2022).
  • Carroll RJ., Ruppert D., Stefanski LA. Measurement error in nonlinear models. Chapman and Hall, 1995.
  • Bochner S., Chandrasekharan K. Fourier transform. New Jersey, Princeton University Press, 1949.
  • Schennach SM. Estimation of nonlinear models with measurement error. Econometrica, 2004; 72: 33-75.
  • Toprak S. Semiparametric regression models with errors in variables. Dicle University Institute of Science, PHd Thesis, Diyarbakır, Turkey, 2015.
  • Yalaz S. Multivariate partially linear regression in the presence of measurement error. AStA Advances in Statistical Analysis, 2019; 103(1): 123–135.
  • Yalaz S., Tez M. Semiparametric EIV regression model with unknown errors in all variables. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2019; 8(4): 1177–1183.
  • Wikipedia, URL 2: https://en.m.wikipedia.org/wiki/ Riemann–Lebesgue_lemma (Erişim zamanı; Eylül, 15, 2022).
  • Wikipedia, URL 3: https://en.m.wikipedia.org/wiki /Maximum_likelihood_estimation (Erişim zamanı; Eylül, 15, 2022).

İstatistikte dağılım fonksiyonu ile Fourier dönüşümü

Yıl 2024, Cilt: 7 Sayı: 2, 581 - 591, 11.03.2024
https://doi.org/10.47495/okufbed.1242108

Öz

Karmaşık integral denklemlerini basit cebirsel denklemlere dönüştürme yeteneğine sahip olan ve hem matematikte hem de istatistikte sıkça kullanılan en önemli yöntemlerden biri Fourier dönüşümüdür. Fourier dönüşümü, matematikte belli koşullar altında her fonksiyon için geçerli olmasına rağmen istatistiğin matematikten çok farklı olması nedeniyle bu durum iatatistikte daha karmaşık hale gelebilmektedir. İstatistikte her durum için farklı gözlem değerleri yani farklı xler söz konusu iken matematikte her x için bir fonksiyon tanımlanır. Çünkü istatistikte fonksiyonlardan ziyade rasgele değişkenlerle ilgilenilmektedir ve ilgilenilen gözlem değerlerinin yoğunluk fonksiyonları da bilinmelidir. İstatistikte asimptotik özelliklerin incelendiği parametrik olmayan modellerde Fourier dönüşümü kullanıldığı görülmektedir. Hem dağılım hem de yoğunluk fonksiyonu kullanılarak gerçekleştirilebilen Fourier dönüşümünde bilinmeyen veya integrallenebilir olmayan yoğunluk fonksiyonları ya da çok yavaş yakınsama oranı söz konusu olduğunda (asimptotik özellikler düşünüldüğünde) yoğunluk fonksiyonunun kullanılması mümkün olamamaktadır. Böyle durumlarda Fourier dönüşümünün dağılım fonksiyonu ile gerçekleştirilmesi daha uygun olacaktır. Bu çalışmada, Fourier dönüşümünün hangi koşullarda dağılım fonksiyonu ile gerçekleştirilmesinin daha uygun olacağı üzerine öneriler sunulmaktadır.

Kaynakça

  • Akdeniz F. Olasılık ve istatistik. Adana, Baki Kitabevi, 2002.
  • Fan J. On the optimal rates of convergence for nonparametric deconvolution problems. Annals of Statistics 1991; 19: 1257-1272.
  • Fan J., Truong YK. Nonparametric regression with errors in variables. Annals of Statistics 1993; 21: 1900-1925. Matematik Dünyası, URL 1: http://www.matematikdunya si.org/arsiv/PDF_eskisayilar/92_4_22_25_FONKSIYONEL.pdf (Erişim zamanı; Eylül, 15, 2022).
  • Carroll RJ., Ruppert D., Stefanski LA. Measurement error in nonlinear models. Chapman and Hall, 1995.
  • Bochner S., Chandrasekharan K. Fourier transform. New Jersey, Princeton University Press, 1949.
  • Schennach SM. Estimation of nonlinear models with measurement error. Econometrica, 2004; 72: 33-75.
  • Toprak S. Semiparametric regression models with errors in variables. Dicle University Institute of Science, PHd Thesis, Diyarbakır, Turkey, 2015.
  • Yalaz S. Multivariate partially linear regression in the presence of measurement error. AStA Advances in Statistical Analysis, 2019; 103(1): 123–135.
  • Yalaz S., Tez M. Semiparametric EIV regression model with unknown errors in all variables. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2019; 8(4): 1177–1183.
  • Wikipedia, URL 2: https://en.m.wikipedia.org/wiki/ Riemann–Lebesgue_lemma (Erişim zamanı; Eylül, 15, 2022).
  • Wikipedia, URL 3: https://en.m.wikipedia.org/wiki /Maximum_likelihood_estimation (Erişim zamanı; Eylül, 15, 2022).
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Seçil Yalaz 0000-0001-7283-9225

Yayımlanma Tarihi 11 Mart 2024
Gönderilme Tarihi 25 Ocak 2023
Kabul Tarihi 27 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Yalaz, S. (2024). Fourier Transform by Distribution Function in Statistics. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 581-591. https://doi.org/10.47495/okufbed.1242108
AMA Yalaz S. Fourier Transform by Distribution Function in Statistics. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Mart 2024;7(2):581-591. doi:10.47495/okufbed.1242108
Chicago Yalaz, Seçil. “Fourier Transform by Distribution Function in Statistics”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, sy. 2 (Mart 2024): 581-91. https://doi.org/10.47495/okufbed.1242108.
EndNote Yalaz S (01 Mart 2024) Fourier Transform by Distribution Function in Statistics. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 2 581–591.
IEEE S. Yalaz, “Fourier Transform by Distribution Function in Statistics”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 7, sy. 2, ss. 581–591, 2024, doi: 10.47495/okufbed.1242108.
ISNAD Yalaz, Seçil. “Fourier Transform by Distribution Function in Statistics”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/2 (Mart 2024), 581-591. https://doi.org/10.47495/okufbed.1242108.
JAMA Yalaz S. Fourier Transform by Distribution Function in Statistics. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7:581–591.
MLA Yalaz, Seçil. “Fourier Transform by Distribution Function in Statistics”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 7, sy. 2, 2024, ss. 581-9, doi:10.47495/okufbed.1242108.
Vancouver Yalaz S. Fourier Transform by Distribution Function in Statistics. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7(2):581-9.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.