Derleme
BibTex RIS Kaynak Göster

Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi

Yıl 2024, Cilt: 7 Sayı: 4, 1860 - 1881, 16.09.2024
https://doi.org/10.47495/okufbed.1386984

Öz

Elektromanyetik ekranlama, günümüz teknolojik dünyasında büyük öneme sahip bir konudur. Bu makale, elektromanyetik ekranlama malzemelerinin özelliklerine odaklanarak, elektromanyetik alanların kontrol altına alınmasının neden önemli olduğunu vurgulamaktadır. Elektromanyetik kirlilik, elektronik cihazlardan ve dış kaynaklardan yayılan elektromanyetik alanların istenmeyen etkilerine işaret eder. Bu tür etkiler, sağlık sorunlarından elektronik cihazların çalışma performansını etkileyen sorunlara kadar uzanabilir. Elektromanyetik ekranlama, bu olumsuz etkileri en aza indirmek için kullanılan yöntemler bütünüdür. Bu nedenle elektromanyetik ekranlayıcı malzemelerin özelliklerinin araştırılması, modern teknolojinin sürdürülebilirliği açısından da hayati öneme sahiptir. Bu derleme çalışması, farklı malzemelerin elektromanyetik ekranlama kapasitelerini incelemekte ve endüstri, tıp, savunma ve iletişim gibi birçok alanda uygulama potansiyeli taşıyan bu teknolojinin gelişimini ilerletmeyi amaçlamaktadır.

Kaynakça

  • Amaro A., Suarez A., Torres J., Martinez P.A., Herraiz R., Alcarria A., Benedito A., Ruiz R., Galvez P., Penades A. Shielding effectiveness measurement method for planar nanomaterial samples based on CNT materials up to 18 GHz. Magnetochemistry 2023; 9(5): 114.
  • Bachir G., Abdechafik H., Mecheri K. Comparison electromagnetic shielding effectiveness between single layer and multilayer shields. 2016 51st International Universities Power Engineering Conference (UPEC) 2016; 1-5.
  • Balan I., Morari C., Patroi A.E. Composite materials for electromagnetic shielding. UPB Scientific Bulletin, Series B 2016; 78(2): 233-238.
  • Barsukov V., Senyk I., Kryukova O., Butenko O. Composite carbon-polymer materials for electromagnetic radiation shielding. Materials Today: Proceedings 2018; 5(8): 15909-15914.
  • Bibikov S., Prokof’Ev M. Composite materials for some radiophysics applications. In Metal, Ceramic and Polymeric Composites for Various Uses 2011; IntechOpen.
  • Bozkurt M., Şahin N., Karabul Y., Kılıç M., Özdemir, Z.G. Radiation shielding performances of Na2SiO3 based low-cost micro and nano composites for diagnostic imaging. Progress in Nuclear Energy 2022; 143: 104058.
  • Budumuru S., Anuradha M.S. Electromagnetic shielding and mechanical properties of al6061 metal matrix composite at x-band for oblique incidence. Advanced Composites and Hybrid Materials 2021; 4: 1113-1121.
  • Bulut F., Efendoğlu H.S., Solak V., Yabuloğlu M., Özer H. Electromagnetic shielding behavior of different metallic wire-meshes and thin metal plate. 2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye) 2017; 1-3.
  • Chang J., Zhai H., Hu Z., Li J. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering 2022; 110269.
  • Chen X., Liu L., Liu J., Pan F. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg–Zn–Y–Zr alloys. Materials ve Design (1980-2015); 65: 360-369.
  • Chung D.D.L. Materials for electromagnetic interference shielding. Journal of Materials Engineering and performance 2000; 9: 350-354.
  • Çelik ME. Karbon kompozit çarpışma kutularında metal takviyesinin çarpışma performansına etkisinin deneysel olarak incelenmesi. Bursa Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Bursa, Türkiye, 2020.
  • Dağ N. İletken tekstil yüzeylerinde elektromanyetik kalkanlama özelliğinin araştırılması. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Denizli, Türkiye, 2010.
  • Dassan EGB., Anjang Ab Rahman A., Abidin MSZ., Akil HM. Carbon nanotube–reinforced polymer composite for electromagnetic interference application: A review. Nanotechnology Reviews 2020; 9(1): 768-788.
  • Chang J., Zhai H., Hu Z., Li J. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering 2022; 110269.
  • Doğan AK., Celep M., Sefa O. Sar ölçümlerinde kullanılmak üzere dipol anten yapımı ve karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 2014; 20(8): 310-313.
  • Dökmetaş B. S-bant Mikroşerit Wilkonson Güç Bölücü Tasarımı. Journal of Scientific Reports-B 2021; 004: 8-18.
  • Egbo MK. A fundamental review on composite materials and some of their applications in biomedical engineering. Journal of King Saud University-Engineering Sciences 2021; 33(8): 557-568.
  • Geesala S., Pukkala SK., Gottapu AN. Modeling & Simulation Analysis for evaluation of Electromagnetic Sheilding Effectiveness of Conductive Fabrics using Flanged Co-axial Transmission Line Holder as per ASTM D4935-10 standard.15th International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC) 2018; 1-4.
  • Hamouni M., Ansri A., Khaldi S. Reflection and absorption contribution to the multilayers electromagnetic shielding effectiveness. Plast. Polym. Technol 2014; 3: 19-25.
  • Hariyawan MY., Darwis RS., Posma SN. Pengaruh Ketebalan Material Terhadap Shielding effectiveness pada Frekuensi Rendah. Jurnal Elektro dan Mesin Terapan 2021; 7(2): 18-24.
  • He Q., Yuan T., Yan X., Luo Z., Haldolaarachchige N., Young DP., Wei S., Guo Z. One-pot synthesis of size-and morphology-controlled 1-D iron oxide nanochains with manipulated magnetic properties. Chemical Communications 2014; 50(2): 201-203.
  • Inudo S., Miyake M., Hirato T. Electrical properties of Cu I films prepared by spin coating. Physica status solidi (a) 2013; 210(11): 2395-2398.
  • Jagatheesan K., Ramasamy A., Das A., Basu A. Fabrics and their composites for electromagnetic shielding applications. Textile progress 2015; 47(2): 87-161.
  • Jagatheesan K., Ramasamy A., Das A., Basu A. Electromagnetic shielding effectiveness of carbon/stainless steel/polypropylene hybrid yarn-based knitted fabrics and their composites. The journal of the Textile Institute 2018; 109(11): 1445-1457.
  • Jang J.M., Lee H.S., Singh J.K. Electromagnetic shielding performance of different metallic coatings deposited by arc thermal spray process. Materials 2020; 13(24): 5776.
  • Jha BK. Effects of electromagnetic fields on human beings and electronic devices. Himalayan Physics 2012; 3: 38-39.
  • Jia L.C., Ding K.Q., Ma R.J., Wang H.L., Sun W.J., Yan D.X., Li B., Li Z.M. Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Advanced Materials Technologies 2019; 4(2):1800503.
  • Jia Z., Zhang M., Liu B., Wang F., Wei G., Su Z. Graphene foams for electromagnetic interference shielding: a review. ACS Applied Nano Materials 2020; 3(7): 6140-6155.
  • Karadakov P.B., VanVeller B. Magnetic shielding paints an accurate and easy-to-visualize portrait of aromaticity. Chemical communications 2021; 57(75): 9504-9513.
  • Karaman ÖF., Çeven EK., Dırık AE. Metal İplikli Dokuma Kumaşlarının Elektromanyetik Kalkanlama Etkinliğinin Mobil Cihazlar ile Tespiti. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 2016; 21(2): 85-94.
  • Kaya Aİ., Çifci A. Bakır Folyo Kaplı Yönlendirilmiş Yonga Levhanın Elektromanyetik Girişimi Soğurma Etkinliği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2018; 9 (1): 279-284.
  • Khalid T., Albasha L., Qaddoumi N., Yehia S. Feasibility study of using electrically conductive concrete for electromagnetic shielding applications as a substitute for carbon-laced polyurethane absorbers in anechoic chambers. IEEE Transactions on Antennas and Propagation 2017; 65(5): 2428-2435.
  • Kittur J., Desai B., Chaudhari R., Loharkar P.K. A comparative study of EMI shielding effectiveness of metals, metal coatings and carbon-based materials. IOP Conference Series: Materials Science and Engineering 2020; 810(1): 12019.
  • Kruželák J., Kvasničáková A., Hložeková K., Hudec I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advances 2021; 3(1): 123-172.
  • Li L., Dong S., Dong X., Yu X., Han B. Electromagnetic wave shielding/absorption performances of cementitious composites incorporating carbon nanotube metamaterial with helical chirality. Journal of Composite Materials 2020; 54(25): 3857-3870.
  • Li P., Shan Y., Deng J., Xijiang Y. Electromagnetic interference shielding effectiveness of carbon-nanotubes based coatings. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility 2010; 969-972.
  • Los P., Lukomska A., Jeziorska R. Metal-polymer composites for electromagnetic interference shielding applications. Polimery 2016; 61(10): 663-669.
  • Luo J., Huo L., Wang L., Huang X., Li J., Guo Z., Gao Q., Hu M., Xue H., Gao J. Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance. Chemical Engineering Journal 2020; 391: 123537.
  • Lyu L., Liu J., Liu H., Liu C., Lu Y., Sun K., Fan R., Wang N., Lu N., Guo Z., Wujcik EK. An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Engineered Science 2018; 2(59): 26-42.
  • Markus I., Ohayon E., Constantini K., Geva-Kleinberger K., Ibrahim R., Ruban A., Gene Y. The Effect of Extremely Low-Frequency Electromagnetic Fields on Inflammation and Performance-Related Indices in Trained Athletes: A Double-Blinded Crossover Study. International Journal of Molecular Sciences 2023; 24(17): 13463.
  • Mei H., Han D., Xiao S., Ji T., Tang J., Cheng L. Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 2016; 109: 149-153.
  • Mishra R.K., Gupta R.D., Datar S. Metamaterial microwave absorber (MMA) for electromagnetic interference (EMI) shielding in X-band. Plasmonics 2021; 16(6): 2061-2071.
  • Ozturk M., Chung DDL. Enhancing the electromagnetic interference shielding effectiveness of carbon-fiber reinforced cement paste by coating the carbon fiber with nickel. Journal of Building Engineering 2021a; 41: 102757. Ozturk M., Chung DDL. Radio-wave shielding behavior of steel structures. Journal of Electromagnetic Waves and Applications 2021b; 35(11): 1407-1419.
  • Parmar S., Ray B., Date K., Datar S. Modified graphene as a conducting ink for electromagnetic interference shielding. Journal of Physics D: Applied Physics 2019; 52(37): 375302.
  • Paul CR., Scully RC., Steffka MA. Introduction to electromagnetic compatibility. John Wiley ve Sons 2022.
  • Pavlik M., Kolcunova I., Lukáš L. Measuring the shielding effectiveness and reflection of electromagnetic field of building material. 16th International Scientific Conference on Electric Power Engineering (EPE) 2015; 56-59.
  • Pavlik M., Medved D. (2021). Measuring shielding effectiveness of electromagnetic field for degradation shielding paint. Przeglad Elektrotechniczny 2021; 97(12).
  • Poothanari MA., Pottathara YB., Thomas S. Carbon nanostructures for electromagnetic shielding applications. Industrial applications of nanomaterials 2019; 205-223.
  • Schuermann D., Mevissen M. Manmade electromagnetic fields and oxidative stres-biological effects and consequences for health. International journal of molecular sciences 2021; 22(7): 3772.
  • Singh R., Singh S., Singh G., Thind KS. Gamma radiation shielding properties of steel and iron slags. New Journal of Glass and Ceramics 2017; 7(01): 1.
  • Smith DR., Pendry JB. Homogenization of metamaterials by field averaging. JOSA B 2006; 23(3): 391-403.
  • Testov OA., Komlev AE., Gareev KG., Khmelnitskiy IK., Luchinin VV., Sevost’yanov EN., Testov IO. Providing a specified level of electromagnetic shielding with nickel thin films formed by DC magnetron sputtering. Coatings 2021; 11(12): 1455.
  • Tian K., Hu D., Wei Q., Fu Q., Deng H. Recent progress on multifunctional electromagnetic interference shielding polymer composites. Journal of Materials Science & Technology 2023; 134: 106-131.
  • Van Deventer TE., Katehi PB., Cangellaris AC. High frequency conductor and dielectric losses in shielded microstrip. IEEE MTT-S International Microwave Symposium Digest 1989; 919-922.
  • Wan YJ., Wang XY., Li XM., Liao SY., Lin ZQ., Hu YG., Zhao T., Zeng XL., Li CH., Yu SH., Zhu PL., Sun R., Wong CP. Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS nano 2020; 14(10): 14134-14145.
  • Wanasinghe D., Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Composites Part B: Engineering 2019; 176: 107207.
  • Wanasinghe D., Aslani F., Ma G. Electromagnetic shielding properties of carbon fibre reinforced cementitious composites. Construction and Building Materials 2020; 260: 120439.
  • Wang Y., Zhao W., Tan L., Li Y., Qin L., Li, S. Review of Polymer-Based Composites for Electromagnetic Shielding Application. Molecules 2023; 28(15): 5628.
  • Waremra RS., Betaubun P. Analysis of electrical properties using the four point probe method. E3S Web of Conferences 2018; 73: 13019.
  • Wu F., Xu Z., Wang Y., Wang M. Electromagnetic interference shielding properties of solid-state polymerization conducting polymer. Rsc Advances 2014; 4(73): 38797-38803.
  • Xu Z., Hao H. Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. Journal of Alloys and Compounds 2014; 617: 207-213.
  • Yang QQ., Qian WX., Liu JY., Chen M., Li H., Zhang Y. Electromagnetic Shielding Effect of Aluminum Foam in 10~ 500 kV Electrical Substations. Materials Science Forum 2017; 898: 2378-2383.
  • Yetik AK., Mehmetcan A. Toprak Nem İçeriğinin İzlenmesi ve Tayininde Kullanılan Yöntemler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 2021; 8(1): 484-496.
  • Yılmaz R. Elektromanyetik kalkanlama özelliği olan malzemeler. Ejovoc (Electronic Journal of Vocational Colleges) 2014; 4(1): 136-150.
  • Yin J., Ma W., Gao Z., Lei X., Jia C. A review of electromagnetic shielding fabric, wave-absorbing fabric and wave-transparent fabric. Polymers 2022; 14(3): 377.
  • Yu F., Jia P., Song L., Hu Y., Wang B., Wu R. Multifunctional fabrics based on copper sulfide with excellent electromagnetic interference shielding performance for medical electronics and physical therapy. Chemical Engineering Journal 2023; 472: 145091.
  • Yudistira HT. Tailoring multiple reflections by using graphene as background for tunable terahertz metamaterial absorber. Materials Research Express 2019; 6(7): 75804.
  • Zachariah S. M., Grohens Y., Kalarikkal N., Thomas S. (2022). Hybrid materials for electromagnetic shielding: A review. Polymer Composites 2022; 43(5): 2507-2544.
  • Zhang L., Wang LB., See KY., Ma J. Effect of carbon nanofiber reinforcement on electromagnetic interference shielding effectiveness of syntactic foam. Journal of Materials Science 2013; 48: 7757-7763.
  • Zhang S., Nguyen N., Park JG., Hao A., Liang R. Carbon Nanotubes and Their Assemblies: Applications in Electromagnetic Interference Shielding. Nanotube Superfiber Materials 2019; 335-357.
  • Zhang X., Zhao N., He, C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–a review. Progress in Materials Science 2020a; 113: 100672.
  • Zhang Y., Dong H., Mou N., Chen L., Li R., Zhang L. High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Optics Express 2020b; 28(18): 26836-26849.
  • Zhao J., Zhang J., Wang L., Li J., Feng T., Fan J., Chen L., Gu J. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@ MWCNT absorbent with encapsulation structure. Composites Communications 2020; 22: 100486.
  • Zhao Y., Hao L., Zhang X., Tan S., Li H., Zheng J., ve Ji, G. A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Science 2022; 2(2): 2100077.
  • Zhao Z., Zhou Y., Zhang C., Wang Z. Thermoset composites functionalized with carbon nanofiber sheets for EMI shielding. Journal of Applied Polymer Science 2015; 132(17).
  • Zhou J., Zeng Q., Xiong Y., Xu J., Zhang F., Wang D., Zheng J. Research on the shielding performance and optimization of new type foam metal matrix composite shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2022; 516: 31-37.

Evaluation of Various Materials Used in Electromagnetic Shielding Processes

Yıl 2024, Cilt: 7 Sayı: 4, 1860 - 1881, 16.09.2024
https://doi.org/10.47495/okufbed.1386984

Öz

Electromagnetic shielding is a topic of major importance in today's technological world. This paper emphasizes the importance of controlling electromagnetic fields by focusing on the properties of electromagnetic shielding materials. Electromagnetic pollution refers to the undesirable effects of electromagnetic fields emitted from electronic devices and external sources. Such effects can range from health problems to problems affecting the operating performance of electronic devices. Electromagnetic shielding is a set of methods used to minimize these negative effects. For this reason, investigating the properties of electromagnetic shielding materials is of critical importance for the sustainable development of modern technology. This review study examines the electromagnetic shielding capacities of different materials and aims to advance the development of this technology, which has the potential for applications in many fields such as industry, medicine, defense, and communication. In conclusion, this article, which reviews the electromagnetic shielding properties of materials, provides a scientific basis on how these materials can be used to control electromagnetic fields. It is thought that this study will be useful for those working in the related field to develop the Turkish literature and to expand the domestic resources.

Kaynakça

  • Amaro A., Suarez A., Torres J., Martinez P.A., Herraiz R., Alcarria A., Benedito A., Ruiz R., Galvez P., Penades A. Shielding effectiveness measurement method for planar nanomaterial samples based on CNT materials up to 18 GHz. Magnetochemistry 2023; 9(5): 114.
  • Bachir G., Abdechafik H., Mecheri K. Comparison electromagnetic shielding effectiveness between single layer and multilayer shields. 2016 51st International Universities Power Engineering Conference (UPEC) 2016; 1-5.
  • Balan I., Morari C., Patroi A.E. Composite materials for electromagnetic shielding. UPB Scientific Bulletin, Series B 2016; 78(2): 233-238.
  • Barsukov V., Senyk I., Kryukova O., Butenko O. Composite carbon-polymer materials for electromagnetic radiation shielding. Materials Today: Proceedings 2018; 5(8): 15909-15914.
  • Bibikov S., Prokof’Ev M. Composite materials for some radiophysics applications. In Metal, Ceramic and Polymeric Composites for Various Uses 2011; IntechOpen.
  • Bozkurt M., Şahin N., Karabul Y., Kılıç M., Özdemir, Z.G. Radiation shielding performances of Na2SiO3 based low-cost micro and nano composites for diagnostic imaging. Progress in Nuclear Energy 2022; 143: 104058.
  • Budumuru S., Anuradha M.S. Electromagnetic shielding and mechanical properties of al6061 metal matrix composite at x-band for oblique incidence. Advanced Composites and Hybrid Materials 2021; 4: 1113-1121.
  • Bulut F., Efendoğlu H.S., Solak V., Yabuloğlu M., Özer H. Electromagnetic shielding behavior of different metallic wire-meshes and thin metal plate. 2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye) 2017; 1-3.
  • Chang J., Zhai H., Hu Z., Li J. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering 2022; 110269.
  • Chen X., Liu L., Liu J., Pan F. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg–Zn–Y–Zr alloys. Materials ve Design (1980-2015); 65: 360-369.
  • Chung D.D.L. Materials for electromagnetic interference shielding. Journal of Materials Engineering and performance 2000; 9: 350-354.
  • Çelik ME. Karbon kompozit çarpışma kutularında metal takviyesinin çarpışma performansına etkisinin deneysel olarak incelenmesi. Bursa Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Bursa, Türkiye, 2020.
  • Dağ N. İletken tekstil yüzeylerinde elektromanyetik kalkanlama özelliğinin araştırılması. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Denizli, Türkiye, 2010.
  • Dassan EGB., Anjang Ab Rahman A., Abidin MSZ., Akil HM. Carbon nanotube–reinforced polymer composite for electromagnetic interference application: A review. Nanotechnology Reviews 2020; 9(1): 768-788.
  • Chang J., Zhai H., Hu Z., Li J. Ultra-thin metal composites for electromagnetic interference shielding. Composites Part B: Engineering 2022; 110269.
  • Doğan AK., Celep M., Sefa O. Sar ölçümlerinde kullanılmak üzere dipol anten yapımı ve karakterizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 2014; 20(8): 310-313.
  • Dökmetaş B. S-bant Mikroşerit Wilkonson Güç Bölücü Tasarımı. Journal of Scientific Reports-B 2021; 004: 8-18.
  • Egbo MK. A fundamental review on composite materials and some of their applications in biomedical engineering. Journal of King Saud University-Engineering Sciences 2021; 33(8): 557-568.
  • Geesala S., Pukkala SK., Gottapu AN. Modeling & Simulation Analysis for evaluation of Electromagnetic Sheilding Effectiveness of Conductive Fabrics using Flanged Co-axial Transmission Line Holder as per ASTM D4935-10 standard.15th International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC) 2018; 1-4.
  • Hamouni M., Ansri A., Khaldi S. Reflection and absorption contribution to the multilayers electromagnetic shielding effectiveness. Plast. Polym. Technol 2014; 3: 19-25.
  • Hariyawan MY., Darwis RS., Posma SN. Pengaruh Ketebalan Material Terhadap Shielding effectiveness pada Frekuensi Rendah. Jurnal Elektro dan Mesin Terapan 2021; 7(2): 18-24.
  • He Q., Yuan T., Yan X., Luo Z., Haldolaarachchige N., Young DP., Wei S., Guo Z. One-pot synthesis of size-and morphology-controlled 1-D iron oxide nanochains with manipulated magnetic properties. Chemical Communications 2014; 50(2): 201-203.
  • Inudo S., Miyake M., Hirato T. Electrical properties of Cu I films prepared by spin coating. Physica status solidi (a) 2013; 210(11): 2395-2398.
  • Jagatheesan K., Ramasamy A., Das A., Basu A. Fabrics and their composites for electromagnetic shielding applications. Textile progress 2015; 47(2): 87-161.
  • Jagatheesan K., Ramasamy A., Das A., Basu A. Electromagnetic shielding effectiveness of carbon/stainless steel/polypropylene hybrid yarn-based knitted fabrics and their composites. The journal of the Textile Institute 2018; 109(11): 1445-1457.
  • Jang J.M., Lee H.S., Singh J.K. Electromagnetic shielding performance of different metallic coatings deposited by arc thermal spray process. Materials 2020; 13(24): 5776.
  • Jha BK. Effects of electromagnetic fields on human beings and electronic devices. Himalayan Physics 2012; 3: 38-39.
  • Jia L.C., Ding K.Q., Ma R.J., Wang H.L., Sun W.J., Yan D.X., Li B., Li Z.M. Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Advanced Materials Technologies 2019; 4(2):1800503.
  • Jia Z., Zhang M., Liu B., Wang F., Wei G., Su Z. Graphene foams for electromagnetic interference shielding: a review. ACS Applied Nano Materials 2020; 3(7): 6140-6155.
  • Karadakov P.B., VanVeller B. Magnetic shielding paints an accurate and easy-to-visualize portrait of aromaticity. Chemical communications 2021; 57(75): 9504-9513.
  • Karaman ÖF., Çeven EK., Dırık AE. Metal İplikli Dokuma Kumaşlarının Elektromanyetik Kalkanlama Etkinliğinin Mobil Cihazlar ile Tespiti. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 2016; 21(2): 85-94.
  • Kaya Aİ., Çifci A. Bakır Folyo Kaplı Yönlendirilmiş Yonga Levhanın Elektromanyetik Girişimi Soğurma Etkinliği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2018; 9 (1): 279-284.
  • Khalid T., Albasha L., Qaddoumi N., Yehia S. Feasibility study of using electrically conductive concrete for electromagnetic shielding applications as a substitute for carbon-laced polyurethane absorbers in anechoic chambers. IEEE Transactions on Antennas and Propagation 2017; 65(5): 2428-2435.
  • Kittur J., Desai B., Chaudhari R., Loharkar P.K. A comparative study of EMI shielding effectiveness of metals, metal coatings and carbon-based materials. IOP Conference Series: Materials Science and Engineering 2020; 810(1): 12019.
  • Kruželák J., Kvasničáková A., Hložeková K., Hudec I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advances 2021; 3(1): 123-172.
  • Li L., Dong S., Dong X., Yu X., Han B. Electromagnetic wave shielding/absorption performances of cementitious composites incorporating carbon nanotube metamaterial with helical chirality. Journal of Composite Materials 2020; 54(25): 3857-3870.
  • Li P., Shan Y., Deng J., Xijiang Y. Electromagnetic interference shielding effectiveness of carbon-nanotubes based coatings. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility 2010; 969-972.
  • Los P., Lukomska A., Jeziorska R. Metal-polymer composites for electromagnetic interference shielding applications. Polimery 2016; 61(10): 663-669.
  • Luo J., Huo L., Wang L., Huang X., Li J., Guo Z., Gao Q., Hu M., Xue H., Gao J. Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance. Chemical Engineering Journal 2020; 391: 123537.
  • Lyu L., Liu J., Liu H., Liu C., Lu Y., Sun K., Fan R., Wang N., Lu N., Guo Z., Wujcik EK. An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Engineered Science 2018; 2(59): 26-42.
  • Markus I., Ohayon E., Constantini K., Geva-Kleinberger K., Ibrahim R., Ruban A., Gene Y. The Effect of Extremely Low-Frequency Electromagnetic Fields on Inflammation and Performance-Related Indices in Trained Athletes: A Double-Blinded Crossover Study. International Journal of Molecular Sciences 2023; 24(17): 13463.
  • Mei H., Han D., Xiao S., Ji T., Tang J., Cheng L. Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 2016; 109: 149-153.
  • Mishra R.K., Gupta R.D., Datar S. Metamaterial microwave absorber (MMA) for electromagnetic interference (EMI) shielding in X-band. Plasmonics 2021; 16(6): 2061-2071.
  • Ozturk M., Chung DDL. Enhancing the electromagnetic interference shielding effectiveness of carbon-fiber reinforced cement paste by coating the carbon fiber with nickel. Journal of Building Engineering 2021a; 41: 102757. Ozturk M., Chung DDL. Radio-wave shielding behavior of steel structures. Journal of Electromagnetic Waves and Applications 2021b; 35(11): 1407-1419.
  • Parmar S., Ray B., Date K., Datar S. Modified graphene as a conducting ink for electromagnetic interference shielding. Journal of Physics D: Applied Physics 2019; 52(37): 375302.
  • Paul CR., Scully RC., Steffka MA. Introduction to electromagnetic compatibility. John Wiley ve Sons 2022.
  • Pavlik M., Kolcunova I., Lukáš L. Measuring the shielding effectiveness and reflection of electromagnetic field of building material. 16th International Scientific Conference on Electric Power Engineering (EPE) 2015; 56-59.
  • Pavlik M., Medved D. (2021). Measuring shielding effectiveness of electromagnetic field for degradation shielding paint. Przeglad Elektrotechniczny 2021; 97(12).
  • Poothanari MA., Pottathara YB., Thomas S. Carbon nanostructures for electromagnetic shielding applications. Industrial applications of nanomaterials 2019; 205-223.
  • Schuermann D., Mevissen M. Manmade electromagnetic fields and oxidative stres-biological effects and consequences for health. International journal of molecular sciences 2021; 22(7): 3772.
  • Singh R., Singh S., Singh G., Thind KS. Gamma radiation shielding properties of steel and iron slags. New Journal of Glass and Ceramics 2017; 7(01): 1.
  • Smith DR., Pendry JB. Homogenization of metamaterials by field averaging. JOSA B 2006; 23(3): 391-403.
  • Testov OA., Komlev AE., Gareev KG., Khmelnitskiy IK., Luchinin VV., Sevost’yanov EN., Testov IO. Providing a specified level of electromagnetic shielding with nickel thin films formed by DC magnetron sputtering. Coatings 2021; 11(12): 1455.
  • Tian K., Hu D., Wei Q., Fu Q., Deng H. Recent progress on multifunctional electromagnetic interference shielding polymer composites. Journal of Materials Science & Technology 2023; 134: 106-131.
  • Van Deventer TE., Katehi PB., Cangellaris AC. High frequency conductor and dielectric losses in shielded microstrip. IEEE MTT-S International Microwave Symposium Digest 1989; 919-922.
  • Wan YJ., Wang XY., Li XM., Liao SY., Lin ZQ., Hu YG., Zhao T., Zeng XL., Li CH., Yu SH., Zhu PL., Sun R., Wong CP. Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS nano 2020; 14(10): 14134-14145.
  • Wanasinghe D., Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Composites Part B: Engineering 2019; 176: 107207.
  • Wanasinghe D., Aslani F., Ma G. Electromagnetic shielding properties of carbon fibre reinforced cementitious composites. Construction and Building Materials 2020; 260: 120439.
  • Wang Y., Zhao W., Tan L., Li Y., Qin L., Li, S. Review of Polymer-Based Composites for Electromagnetic Shielding Application. Molecules 2023; 28(15): 5628.
  • Waremra RS., Betaubun P. Analysis of electrical properties using the four point probe method. E3S Web of Conferences 2018; 73: 13019.
  • Wu F., Xu Z., Wang Y., Wang M. Electromagnetic interference shielding properties of solid-state polymerization conducting polymer. Rsc Advances 2014; 4(73): 38797-38803.
  • Xu Z., Hao H. Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. Journal of Alloys and Compounds 2014; 617: 207-213.
  • Yang QQ., Qian WX., Liu JY., Chen M., Li H., Zhang Y. Electromagnetic Shielding Effect of Aluminum Foam in 10~ 500 kV Electrical Substations. Materials Science Forum 2017; 898: 2378-2383.
  • Yetik AK., Mehmetcan A. Toprak Nem İçeriğinin İzlenmesi ve Tayininde Kullanılan Yöntemler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 2021; 8(1): 484-496.
  • Yılmaz R. Elektromanyetik kalkanlama özelliği olan malzemeler. Ejovoc (Electronic Journal of Vocational Colleges) 2014; 4(1): 136-150.
  • Yin J., Ma W., Gao Z., Lei X., Jia C. A review of electromagnetic shielding fabric, wave-absorbing fabric and wave-transparent fabric. Polymers 2022; 14(3): 377.
  • Yu F., Jia P., Song L., Hu Y., Wang B., Wu R. Multifunctional fabrics based on copper sulfide with excellent electromagnetic interference shielding performance for medical electronics and physical therapy. Chemical Engineering Journal 2023; 472: 145091.
  • Yudistira HT. Tailoring multiple reflections by using graphene as background for tunable terahertz metamaterial absorber. Materials Research Express 2019; 6(7): 75804.
  • Zachariah S. M., Grohens Y., Kalarikkal N., Thomas S. (2022). Hybrid materials for electromagnetic shielding: A review. Polymer Composites 2022; 43(5): 2507-2544.
  • Zhang L., Wang LB., See KY., Ma J. Effect of carbon nanofiber reinforcement on electromagnetic interference shielding effectiveness of syntactic foam. Journal of Materials Science 2013; 48: 7757-7763.
  • Zhang S., Nguyen N., Park JG., Hao A., Liang R. Carbon Nanotubes and Their Assemblies: Applications in Electromagnetic Interference Shielding. Nanotube Superfiber Materials 2019; 335-357.
  • Zhang X., Zhao N., He, C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–a review. Progress in Materials Science 2020a; 113: 100672.
  • Zhang Y., Dong H., Mou N., Chen L., Li R., Zhang L. High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Optics Express 2020b; 28(18): 26836-26849.
  • Zhao J., Zhang J., Wang L., Li J., Feng T., Fan J., Chen L., Gu J. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@ MWCNT absorbent with encapsulation structure. Composites Communications 2020; 22: 100486.
  • Zhao Y., Hao L., Zhang X., Tan S., Li H., Zheng J., ve Ji, G. A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Science 2022; 2(2): 2100077.
  • Zhao Z., Zhou Y., Zhang C., Wang Z. Thermoset composites functionalized with carbon nanofiber sheets for EMI shielding. Journal of Applied Polymer Science 2015; 132(17).
  • Zhou J., Zeng Q., Xiong Y., Xu J., Zhang F., Wang D., Zheng J. Research on the shielding performance and optimization of new type foam metal matrix composite shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2022; 516: 31-37.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrokimyasal Teknolojiler
Bölüm Derlemeler (REVIEWS)
Yazarlar

Uğur Sorgucu 0000-0001-9227-1526

Sema Atasever 0000-0002-2295-7917

Yayımlanma Tarihi 16 Eylül 2024
Gönderilme Tarihi 6 Kasım 2023
Kabul Tarihi 4 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 4

Kaynak Göster

APA Sorgucu, U., & Atasever, S. (2024). Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(4), 1860-1881. https://doi.org/10.47495/okufbed.1386984
AMA Sorgucu U, Atasever S. Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Eylül 2024;7(4):1860-1881. doi:10.47495/okufbed.1386984
Chicago Sorgucu, Uğur, ve Sema Atasever. “Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, sy. 4 (Eylül 2024): 1860-81. https://doi.org/10.47495/okufbed.1386984.
EndNote Sorgucu U, Atasever S (01 Eylül 2024) Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 4 1860–1881.
IEEE U. Sorgucu ve S. Atasever, “Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 7, sy. 4, ss. 1860–1881, 2024, doi: 10.47495/okufbed.1386984.
ISNAD Sorgucu, Uğur - Atasever, Sema. “Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/4 (Eylül 2024), 1860-1881. https://doi.org/10.47495/okufbed.1386984.
JAMA Sorgucu U, Atasever S. Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7:1860–1881.
MLA Sorgucu, Uğur ve Sema Atasever. “Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 7, sy. 4, 2024, ss. 1860-81, doi:10.47495/okufbed.1386984.
Vancouver Sorgucu U, Atasever S. Elektromanyetik Ekranlama İşlemlerinde Kullanılan Çeşitli Malzemelerin Değerlendirilmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7(4):1860-81.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.