Araştırma Makalesi
BibTex RIS Kaynak Göster

In Vitro Callus Culture of Salvia Officinalis L. and the Effect of Some Amino Acids on Rosmarinic Acid Accumulation

Yıl 2024, Cilt: 7 Sayı: 5, 1970 - 1981, 10.12.2024

Öz

This study investigated the in vitro callus formation ability of various explants obtained from the Salvia officinalis (common sage) and the production of rosmarinic acid in the resulting calli. Four types of explants, including young leaves (<1-1.5 cm), older leaves (>1-1.5 cm), nodes, and stem pieces, were cultured on MS medium containing 0.8 mg/l 2.4-D, 0.5 mg/l NAA, and 2.0 mg/l BAP to induce callus formation. The highest callus formation (100%) was achieved from young leaf explants. After 4 weeks, the formed calli were transferred to an MS medium containing 0.1 mg/l NAA+1.0 mg/l BAP, and in vitro rosmarinic acid production was enhanced by adding L-tyrosine (10 mg/l) and L-phenylalanine (10 mg/l) to the nutrient medium. The calli were cultured in these media for 1 and 2 months, and the production of rosmarinic acid in sage calli was analyzed using HPLC. The addition of amino acids to the medium significantly increased rosmarinic acid production in the calli. Furthermore, the results varied significantly with different amino acids and callus culture durations. Tyrosine was observed to be more effective in increasing rosmarinic acid production in sage calli. Moreover, calli cultured for 2 months in both tyrosine- and phenylalanine-supplemented media exhibited higher rosmarinic acid production compared to the control group cultured for only 1 month.

Kaynakça

  • Ahmed FA., Abdel-Fateh OM., Kobeasy MT., Ahmed OK. Factors affecting growth and indole alkaloid content of catharanthus calli (Catharanthus roseus L.) amino acids, casein hydrolysate and irradiation. Arab Journal of Biotechnology 2000; 3: 61-70.
  • Al-Jibouri AMJ., Abd AS., Majeed DM., Ismail EN. Influence of abiotic elicitors on accumulation of thymol in callus cultures of Origanum vulgare L. Journal of Life Sciences 2012a; 6(10): 1094-1099.
  • Al-jibouri AMJ., Al-Samarraei KW., Abd AS., Mageed DM., Ali AA. Alkaloids production from callus of Hyoscyamus niger L. in vitro. Journal of Life Sciences 2012b; 6, 874-882.
  • Arya D., Patni V. Comparative analysis of total flavonoids and quercetin content in vivo and in vitro and enhancement of quercetin via precursor feeding Inpluchea lanceolata Oliver & Hiern. International Journal of Pharmaceutical Sciences and Research 2013; 5(3): 617-621.
  • Avato P., Fortunato I., Ruta CD., Elia R. Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L. Plant Science 2005; 169(1): 29-36.
  • Bano AS., Khattak AM., Basit A., Alam M., Shah ST., Ahmad N., Gilani SAQ., Ullah I., Anwar S., Mohamed HI. Callus induction, proliferation, enhanced secondary metabolites production and antioxidants activity of Salvia moorcroftiana L. as influenced by combinations of auxin, cytokinin and melatonin. Brazilian Archives of Biology and Technology 2022; 65: e22210200.
  • Bauer N., Leljak-Levanic D., Jelaska S. Rosmarinic acid synthesis in transformed callus culture of Coleus blumei Benth. Zeitschrift für Naturforschung C 2004; 59(c): 554-560.
  • Castro AHF., Braga GQ., Sousa FM., Coimbra MC., Chagas RCS. Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). Revista Ciencia Agronomica 2016; 47(1): 143-151.
  • Chakraborty N., Banerjee D., Ghosh M., Pradhan P., Gupta NS., Acharya K., Banerjee M. Influence of plant growth regulators on callus mediated regeneration and secondary metabolites synthesis in Withania somnifera (L.) Dunal. Physiology and Molecular Biology of Plants 2013; 19(1): 117-125.
  • Chaturvedi P., Chowdhary A. Enhancement of antioxidant compound in Tylophora indica (Asclepeadaceae) callus. Advances in Applied Science Research 2013; 4(2) 325-330.
  • Duran RE., Kilic S., Coskun Y. Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). In Vitro Cellular & Developmental Biology 2019; 55(4): 468-475.
  • Ejtahed RS., Radjabian T., Hoseini Tafreshi SA. Expression analysis of phenylalanine ammonia lyase gene and rosmarinic acid production in Salvia officinalis and Salvia virgata shoots under salicylic acid elicitation. Applied Biochemistry and Biotechnology 2015; 176(7): 1846-1858.
  • Espinosa-Leal CA., Puente-Garza CA., García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta 2018; 248(1): 1-18.
  • Gökdoğan EY., Bürün B. The studies on seed germination and in vitro cultures of Salvia L. species from Turkish flora. Nat. Pro. Biotech. 2022; 2(1): 60-73.
  • Grzegorczyk I., Bilichowski I., Mikiciuk-Olasik E., Wysokinska H. In vitro cultures of Salvia officinalis L. as a source of antioxidant compounds. Acta Societatis Botanicorum Poloniae 2005; 74(1): 17-21.
  • Hakkim FL., Kalyani S., Essa M., Girija S., Song H. Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. International Journal of Medical Biochemistry 2011; 2(4) :1070-1074
  • Hamidpour M., Hamidpour R., Hamidpour S., Shahlari M. Chemistry, pharmacology and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease and cancer. Journal of Traditional and Complementary Medicine 2014; 4(2): 82-88.
  • Hemmati N., Cheniany M., Ganjeali A. Effect of plant growth regulators and explants on callus induction and study of antioxidant potentials and phenolic metabolites in Salvia tebesana Bunge. Botanica Serbica 2020; 44(2): 163-173.
  • Ibrahim RK. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plants. Academic, New York, 1987; 77-96.
  • Indu S.,Vijaya L., Meeta B., Jossy V., Naresh C. Production of flavonoids in callus culture of Anthocephalus indicus A. Rich. Asian Journal of Plant Sciences 2013; 12(1): 40-45.
  • Jafari S., Daneshvar MH., Salmi MS., Abdi LJ. Indirect organogenesis and plant regeneration in common sage (Salvia officinalis L.): An important medicinal plant of Iran. Modern Applied Science 2017; 11(5): 22-29.
  • Kahraman A., Doğan M., Celep F. Salvia siirtica sp. nov. (Lamiaceae) from Turkey. Nordic Journal of Botany 2011; 29(4): 397-401.
  • Karam NS., Jawad FM., Arikat NA., Shibli RA. Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue and Organ Culture 2003; 73:117-121.
  • Khojasteh A., Mirjalili MH., Alcalde MA., Cusido RM., Eibl R., Palazon J. Powerful plant antioxidants: A new biosustainable approach to the production of rosmarinic acid. Antioxidants 2020; 9(12): 1273.
  • Khoshsokhan F., Babalar M., Salami SA., Sheikhakbari-Mehr R., Mirjalili MH. An efficient protocol for production of rosmarinic acid in Salvia nemorosa L. In Vitro Cellular & Developmental Biology-Plant 2023; 59: 298-314.
  • Kintzios S., Nikolaou A., Skoula M. Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S. fruticosa leaf callus cultures. Plant Cell Reports 1999; 18(6): 462-466.
  • Masoumian M., Arbakariya A., Syahida A., Maziah M. Effect of precursors on flavonoid production by Hydrocotyle bonariensis callus tissues. African Journal of Biotechnology 2011; 10(32): 6021-6029.
  • Mederos-Molina S. In vitro callus induction and plants from stem and petiole explants of Salvia canariensis L. Plant Tissue Culture 2004; 14(2): 167-172.
  • Modarres M., Esmaeilzadeh Bahabadi S., Taghavizadeh Yazdi ME. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose. Cytotechnology 2018; 70(2): 741-750.
  • Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 1962; 15(3): 473-497.
  • Noor S., Mohammad T., Rub MA., Raza A., Azum N., Yadav DK., Hassan MI., Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Archives of Pharmacal Research 2022; 45(4): 205-228.
  • Petersen M., Abdullah Y., Benner J., Eberle D., Gehlen K., Hucherig S., Janiak V., Kim KH., Sander M., Weitzel C., Wolters S. Evolution of rosmarinic acid biosynthesis. Phytochemistry 2009; 70(15-16): 1663-1679.
  • Pirooz P., Amooaghaie R., Ahadi A., Sharififar F., Torkzadeh-Mahani M. Silicon and nitric oxide synergistically modulate the production of essential oil and rosmarinic acid in Salvia officinalis under Cu stress. Protoplasma 2022; 259(5): 905-916.
  • Revutskaya AZ., Holubenko A., Nuzhyna N., Rudik HO., Taran N. (2019). Introduction to in vitro culture and callus initiation in Salvia hispanica L. (chia). The Bulletin of Ukrainian Society of Geneticists and Breeders 2019; 17(1): 33-37.
  • Roy D., Mukhopadhyay S. Enhanced rosmarinic acid production in cultured plants of two species of Mentha. Indian Journal of Experimental Biology 2012; 50(11): 817-825.
  • Sahraroo A., Mirjalili MH., Corchete P., Babalar M., Moghadam MRF. Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: A new in vitro source of rosmarinic acid. Cytotechnology 2018; 68(4): 1415-1424.
  • Samani MR., Pirbalouti AG., Moattar F., Golparvar ARL. Phenylalanine and bio-fertilizers interaction effects on growth, yield and chemical compositions and content of essential oil from the sage (Salvia officinalis L.) leaves. Industrial Crops and Products 2019; 137(2): 1-8.
  • Santos-Gomes PC., Seabra RM., Andrade PB., Fernandes-Ferreira M. Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.). Plant Science 2002; 162(6): 981-987.
  • Su C., Pham TTT., Cheng HH. Aqueous enzymatic extraction of rosmarinic acid from Salvia officinalis: Optimisation using response surface methodology. Phytochemical Analysis 2020; 31(5): 575-582.
  • Taha HS., El-Bahr MK., Seif-El-Nasr MM. In vitro studies on Egyptian Catharanthus roseus (L.) G. Don. IV: manipulation of some amino acids as precursors for enhanced of indole alkaloids production in suspension cultures. Australian Journal of Basic and Applied Sciences 2009; 3(4): 3137-3144.
  • Tursun AÖ. The effects of different applications on breaking dormancy of Salvia verticillata L. (Lilac Sage). KSU Journal of Agriculture and Nature 2019; 22(1): 30-37.
  • Yeshi K., Crayn D., Ritmejerytė E., Wangchuk P. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 2022; 27(1): 313.

Salvia officinalis L.'nin İn Vitro Kallus Kültürü ve Bazı Amino Asitlerin Rosmarinik Asit Birikimi Üzerine Etkisi

Yıl 2024, Cilt: 7 Sayı: 5, 1970 - 1981, 10.12.2024

Öz

Bu çalışmada Salvia officinalis (adaçayı) bitkisinin çeşitli eksplantlarının in vitro kallus oluşturma yeteneği ve oluşan kalluslardaki rosmarinik asit üretimi araştırılmıştır. Kallus oluşumu için genç yapraklar (<1-1.5 cm), yapraklar (>1-1.5 cm), nodlar ve gövde parçaları olmak üzere 4 çeşit eksplant 0.8 mg/L 2.4-D, 0.5 mg/L NAA ve 2.0 mg/L BAP içeren MS ortamında kültüre alınmıştır. En yüksek kallus oluşum oranı (%100) genç yaprak eksplantlarından elde edilmiştir. 4 hafta sonra oluşan kalluslar 0.1 mg/L NAA+1.0 mg/L BAP içeren MS ortamına aktarılmış, ayrıca in vitro rosmarinik asit üretimini artırmak için besin ortamına L-tirozin (10 mg/L) ve L-fenilalanin (10 mg/L) eklenmiştir. Kalluslar bu ortamlarda 1 ve 2 ay boyunca kültüre alınmış ve adaçayı kalluslarındaki rosmarinik asit üretimi HPLC ile analiz edilmiştir. Amino asitlerin ortama eklenmesi kalluslarda rosmarinik asit üretimini önemli ölçüde arttırmıştır. Ayrıca sonuçlar amino asitler ve kallus kültür süreleri bakımından önemli ölçüde farklılıklar göstermiştir. Tirozinin adaçayı kalluslarında rosmarinik asit üretimini artırmada daha etkili olduğu gözlenmiştir. Hem tirozin hem de fenilalanin ile desteklenmiş ortamlarda 2 ay boyunca kültüre alınan kallusların, yalnızca 1 ay boyunca kültüre alınan gruba göre daha yüksek miktarda rosmarinik asit ürettiği belirlenmiştir.

Kaynakça

  • Ahmed FA., Abdel-Fateh OM., Kobeasy MT., Ahmed OK. Factors affecting growth and indole alkaloid content of catharanthus calli (Catharanthus roseus L.) amino acids, casein hydrolysate and irradiation. Arab Journal of Biotechnology 2000; 3: 61-70.
  • Al-Jibouri AMJ., Abd AS., Majeed DM., Ismail EN. Influence of abiotic elicitors on accumulation of thymol in callus cultures of Origanum vulgare L. Journal of Life Sciences 2012a; 6(10): 1094-1099.
  • Al-jibouri AMJ., Al-Samarraei KW., Abd AS., Mageed DM., Ali AA. Alkaloids production from callus of Hyoscyamus niger L. in vitro. Journal of Life Sciences 2012b; 6, 874-882.
  • Arya D., Patni V. Comparative analysis of total flavonoids and quercetin content in vivo and in vitro and enhancement of quercetin via precursor feeding Inpluchea lanceolata Oliver & Hiern. International Journal of Pharmaceutical Sciences and Research 2013; 5(3): 617-621.
  • Avato P., Fortunato I., Ruta CD., Elia R. Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L. Plant Science 2005; 169(1): 29-36.
  • Bano AS., Khattak AM., Basit A., Alam M., Shah ST., Ahmad N., Gilani SAQ., Ullah I., Anwar S., Mohamed HI. Callus induction, proliferation, enhanced secondary metabolites production and antioxidants activity of Salvia moorcroftiana L. as influenced by combinations of auxin, cytokinin and melatonin. Brazilian Archives of Biology and Technology 2022; 65: e22210200.
  • Bauer N., Leljak-Levanic D., Jelaska S. Rosmarinic acid synthesis in transformed callus culture of Coleus blumei Benth. Zeitschrift für Naturforschung C 2004; 59(c): 554-560.
  • Castro AHF., Braga GQ., Sousa FM., Coimbra MC., Chagas RCS. Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). Revista Ciencia Agronomica 2016; 47(1): 143-151.
  • Chakraborty N., Banerjee D., Ghosh M., Pradhan P., Gupta NS., Acharya K., Banerjee M. Influence of plant growth regulators on callus mediated regeneration and secondary metabolites synthesis in Withania somnifera (L.) Dunal. Physiology and Molecular Biology of Plants 2013; 19(1): 117-125.
  • Chaturvedi P., Chowdhary A. Enhancement of antioxidant compound in Tylophora indica (Asclepeadaceae) callus. Advances in Applied Science Research 2013; 4(2) 325-330.
  • Duran RE., Kilic S., Coskun Y. Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). In Vitro Cellular & Developmental Biology 2019; 55(4): 468-475.
  • Ejtahed RS., Radjabian T., Hoseini Tafreshi SA. Expression analysis of phenylalanine ammonia lyase gene and rosmarinic acid production in Salvia officinalis and Salvia virgata shoots under salicylic acid elicitation. Applied Biochemistry and Biotechnology 2015; 176(7): 1846-1858.
  • Espinosa-Leal CA., Puente-Garza CA., García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta 2018; 248(1): 1-18.
  • Gökdoğan EY., Bürün B. The studies on seed germination and in vitro cultures of Salvia L. species from Turkish flora. Nat. Pro. Biotech. 2022; 2(1): 60-73.
  • Grzegorczyk I., Bilichowski I., Mikiciuk-Olasik E., Wysokinska H. In vitro cultures of Salvia officinalis L. as a source of antioxidant compounds. Acta Societatis Botanicorum Poloniae 2005; 74(1): 17-21.
  • Hakkim FL., Kalyani S., Essa M., Girija S., Song H. Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. International Journal of Medical Biochemistry 2011; 2(4) :1070-1074
  • Hamidpour M., Hamidpour R., Hamidpour S., Shahlari M. Chemistry, pharmacology and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease and cancer. Journal of Traditional and Complementary Medicine 2014; 4(2): 82-88.
  • Hemmati N., Cheniany M., Ganjeali A. Effect of plant growth regulators and explants on callus induction and study of antioxidant potentials and phenolic metabolites in Salvia tebesana Bunge. Botanica Serbica 2020; 44(2): 163-173.
  • Ibrahim RK. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plants. Academic, New York, 1987; 77-96.
  • Indu S.,Vijaya L., Meeta B., Jossy V., Naresh C. Production of flavonoids in callus culture of Anthocephalus indicus A. Rich. Asian Journal of Plant Sciences 2013; 12(1): 40-45.
  • Jafari S., Daneshvar MH., Salmi MS., Abdi LJ. Indirect organogenesis and plant regeneration in common sage (Salvia officinalis L.): An important medicinal plant of Iran. Modern Applied Science 2017; 11(5): 22-29.
  • Kahraman A., Doğan M., Celep F. Salvia siirtica sp. nov. (Lamiaceae) from Turkey. Nordic Journal of Botany 2011; 29(4): 397-401.
  • Karam NS., Jawad FM., Arikat NA., Shibli RA. Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue and Organ Culture 2003; 73:117-121.
  • Khojasteh A., Mirjalili MH., Alcalde MA., Cusido RM., Eibl R., Palazon J. Powerful plant antioxidants: A new biosustainable approach to the production of rosmarinic acid. Antioxidants 2020; 9(12): 1273.
  • Khoshsokhan F., Babalar M., Salami SA., Sheikhakbari-Mehr R., Mirjalili MH. An efficient protocol for production of rosmarinic acid in Salvia nemorosa L. In Vitro Cellular & Developmental Biology-Plant 2023; 59: 298-314.
  • Kintzios S., Nikolaou A., Skoula M. Somatic embryogenesis and in vitro rosmarinic acid accumulation in Salvia officinalis and S. fruticosa leaf callus cultures. Plant Cell Reports 1999; 18(6): 462-466.
  • Masoumian M., Arbakariya A., Syahida A., Maziah M. Effect of precursors on flavonoid production by Hydrocotyle bonariensis callus tissues. African Journal of Biotechnology 2011; 10(32): 6021-6029.
  • Mederos-Molina S. In vitro callus induction and plants from stem and petiole explants of Salvia canariensis L. Plant Tissue Culture 2004; 14(2): 167-172.
  • Modarres M., Esmaeilzadeh Bahabadi S., Taghavizadeh Yazdi ME. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose. Cytotechnology 2018; 70(2): 741-750.
  • Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 1962; 15(3): 473-497.
  • Noor S., Mohammad T., Rub MA., Raza A., Azum N., Yadav DK., Hassan MI., Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Archives of Pharmacal Research 2022; 45(4): 205-228.
  • Petersen M., Abdullah Y., Benner J., Eberle D., Gehlen K., Hucherig S., Janiak V., Kim KH., Sander M., Weitzel C., Wolters S. Evolution of rosmarinic acid biosynthesis. Phytochemistry 2009; 70(15-16): 1663-1679.
  • Pirooz P., Amooaghaie R., Ahadi A., Sharififar F., Torkzadeh-Mahani M. Silicon and nitric oxide synergistically modulate the production of essential oil and rosmarinic acid in Salvia officinalis under Cu stress. Protoplasma 2022; 259(5): 905-916.
  • Revutskaya AZ., Holubenko A., Nuzhyna N., Rudik HO., Taran N. (2019). Introduction to in vitro culture and callus initiation in Salvia hispanica L. (chia). The Bulletin of Ukrainian Society of Geneticists and Breeders 2019; 17(1): 33-37.
  • Roy D., Mukhopadhyay S. Enhanced rosmarinic acid production in cultured plants of two species of Mentha. Indian Journal of Experimental Biology 2012; 50(11): 817-825.
  • Sahraroo A., Mirjalili MH., Corchete P., Babalar M., Moghadam MRF. Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: A new in vitro source of rosmarinic acid. Cytotechnology 2018; 68(4): 1415-1424.
  • Samani MR., Pirbalouti AG., Moattar F., Golparvar ARL. Phenylalanine and bio-fertilizers interaction effects on growth, yield and chemical compositions and content of essential oil from the sage (Salvia officinalis L.) leaves. Industrial Crops and Products 2019; 137(2): 1-8.
  • Santos-Gomes PC., Seabra RM., Andrade PB., Fernandes-Ferreira M. Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.). Plant Science 2002; 162(6): 981-987.
  • Su C., Pham TTT., Cheng HH. Aqueous enzymatic extraction of rosmarinic acid from Salvia officinalis: Optimisation using response surface methodology. Phytochemical Analysis 2020; 31(5): 575-582.
  • Taha HS., El-Bahr MK., Seif-El-Nasr MM. In vitro studies on Egyptian Catharanthus roseus (L.) G. Don. IV: manipulation of some amino acids as precursors for enhanced of indole alkaloids production in suspension cultures. Australian Journal of Basic and Applied Sciences 2009; 3(4): 3137-3144.
  • Tursun AÖ. The effects of different applications on breaking dormancy of Salvia verticillata L. (Lilac Sage). KSU Journal of Agriculture and Nature 2019; 22(1): 30-37.
  • Yeshi K., Crayn D., Ritmejerytė E., Wangchuk P. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 2022; 27(1): 313.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi (Diğer)
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Rağbet Ezgi Duran

Yayımlanma Tarihi 10 Aralık 2024
Gönderilme Tarihi 3 Kasım 2023
Kabul Tarihi 8 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 5

Kaynak Göster

APA Duran, R. E. (2024). In Vitro Callus Culture of Salvia Officinalis L. and the Effect of Some Amino Acids on Rosmarinic Acid Accumulation. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(5), 1970-1981.
AMA Duran RE. In Vitro Callus Culture of Salvia Officinalis L. and the Effect of Some Amino Acids on Rosmarinic Acid Accumulation. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). Aralık 2024;7(5):1970-1981.
Chicago Duran, Rağbet Ezgi. “In Vitro Callus Culture of Salvia Officinalis L. And the Effect of Some Amino Acids on Rosmarinic Acid Accumulation”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, sy. 5 (Aralık 2024): 1970-81.
EndNote Duran RE (01 Aralık 2024) In Vitro Callus Culture of Salvia Officinalis L. and the Effect of Some Amino Acids on Rosmarinic Acid Accumulation. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 5 1970–1981.
IEEE R. E. Duran, “In Vitro Callus Culture of Salvia Officinalis L. and the Effect of Some Amino Acids on Rosmarinic Acid Accumulation”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), c. 7, sy. 5, ss. 1970–1981, 2024.
ISNAD Duran, Rağbet Ezgi. “In Vitro Callus Culture of Salvia Officinalis L. And the Effect of Some Amino Acids on Rosmarinic Acid Accumulation”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/5 (Aralık 2024), 1970-1981.
JAMA Duran RE. In Vitro Callus Culture of Salvia Officinalis L. and the Effect of Some Amino Acids on Rosmarinic Acid Accumulation. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2024;7:1970–1981.
MLA Duran, Rağbet Ezgi. “In Vitro Callus Culture of Salvia Officinalis L. And the Effect of Some Amino Acids on Rosmarinic Acid Accumulation”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 7, sy. 5, 2024, ss. 1970-81.
Vancouver Duran RE. In Vitro Callus Culture of Salvia Officinalis L. and the Effect of Some Amino Acids on Rosmarinic Acid Accumulation. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2024;7(5):1970-81.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.