Araştırma Makalesi
BibTex RIS Kaynak Göster

Baklagil Bitkilerinde qRT-PCR İçin Stres Belirteci Olarak Potansiyel Ortak Bir Pirolin-5-Karboksilat Sentetaz (P5CS) Geni

Yıl 2025, Cilt: 8 Sayı: 2, 739 - 753, 12.03.2025
https://doi.org/10.47495/okufbed.1569244

Öz

Genellikle baklagiller olarak bilinen ve büyük tarımsal ve ekolojik öneme sahip bitkileri içeren Leguminosae (veya Fabaceae), dünya çapında çok geniş bir dağılıma sahip önemli tarım bitkisi familyasıdır. Stres, tarımı yapılan bitkilerin büyümesini ve verimliliğini etkileyen ana çevresel faktörlerden biridir. Bitkiler, stresin etkisini en aza indirmek ve hücrenin çeşitli bileşenlerini korumak adına prolin gibi osmolitler üreterek biyokimyasal düzeyde strese direnç göstermektedir. Pyrroline-5-carboxylate synthetase (P5CS) bitkilerde prolin biyosentezi yolunda kilit enzimdir ve prolin üretiminin başlangıç aşamasında yer alır. Bu çalışmada prolin miktarındaki artışın belirlenmesinde biyokimyasal olarak kullanılan yöntemlere alternatif qRT-PCR temelli çalışmalara olanak sağlayacak ortak bir primer belirlenmiştir. Bu hedefle önemli tarım bitkileri (Phaseolus vulgaris, Lens culinaris, Cicer arietinum, Glycine max, Pisum sativum, Medicago sativa) üç farklı strese (kuraklık, sıcaklık, tuz) maruz bırakılmıştır. Örneklerin biyokimyasal olarak prolin miktarları belirlenmiş ve sonrasında ortak primer kullanılarak gen ekpresyon seviyeleri hesaplanmıştır. Sonuçlarımızda tüm bitki örneklerinde prolin miktarları önemli ölçüde artmıştır. Gen ekspresyon analizleri ise bu sonuçlarla korelasyon göstermektedir. Bu çalışmada, stres koşullarında, bazı tarımsal öneme sahip baklagil bitkilerinin stres altında olduğunu gösteren, önemli bir belirteç olan prolin seviyelerini, gen ekspresyonu düzeyinde belirlemek adına kullanılabilecek ortak bir marker belirlenmiştir. Bulgularımız, prolin biyosentezinde görev alan genlerin ifadesini araştırılmasının, bitkilerin stres tepkilerini moleküler düzeyde anlamaya yardımcı olabildiğini göstermektedir. Ayrıca özellikle moleküler yöntemlerle yapılan analizler daha hızlı ve hassas sonuçlar verir. Bu, prolin biyosentezinde aktif olan genlerin dinamik değişimlerini daha kısa sürede gözlemlemeye ve gen düzeyindeki değişiklikleri, bitkinin strese karşı hazırlık aşamasını ya da erken yanıtlarını gözlemlemeye olanak sağlar.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.

Kaynakça

  • Abdelrahman M., Jogaiah S., Burritt DJ., Tran LSP. Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant, Cell & Environment 2018; 41(9): 1972-1983.
  • Alagoz SM., Lajayer BA., Ghorbanpour M. Proline and soluble carbohydrates biosynthesis and their roles in plants under abiotic stresses. In Plant stress mitigators, Academic Press 2023; 169-185.
  • Banerjee A., Roychoudhury A. Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. Reactive Oxygen Species in Plants: Boon or Bane‐Revisiting the Role of ROS 2017; 23-50.
  • Dai W., Wang M., Gong X., Liu JH. The transcription factor Fc WRKY 40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS 2 and P5CS 1 homologs. New Phytologist 2018; 219(3): 972-989.
  • De Ronde JA., Spreeth MH., Cress WA. Effect of antisense L-Δ1-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regulation 2000; 32, 13-26.
  • Duvnjak J., Sarcevic H., Vukovic R., Spanic V. Effects of drought at anthesis on flag leaf physiology and gene expression in diverse wheat (Triticum aestivum L.) genotypes. Agronomy 2024; 14(7): 1522.
  • Farooq M., Gogoi N., Hussain M., Barthakur S., Paul S., Bharadwaj N., Siddique KH. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry 2017; 118, 199-217.
  • Feng XJ., Li JR., Qi SL., Lin QF., Jin JB., Hua XJ. Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proceedings of the National Academy of Sciences 2017; 113(51): E8335-E8343.
  • Georgieva M., Vassileva V. Stress management in plants: examining provisional and unique dose-dependent responses. International Journal of Molecular Sciences 2023; 24(6): 5105.
  • Giraud E., Fleischman D. Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynthesis Research 2004; 82, 115-130.
  • Hosseinifard M., Stefaniak S., Ghorbani Javid M., Soltani E., Wojtyla Ł., Garnczarska M. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences 2022; 23(9): 5186.
  • Jamshidi Goharrizi K., Baghizadeh A., Karami S., Nazari M., Afroushteh M. Expression of the W36, P5CS, P5CR, MAPK3, and MAPK6 genes and proline content in bread wheat genotypes under drought stress. Cereal Research Communications 2023; 51(3): 545-556.
  • Javed SA., Jaffar MT., Shahzad SM., Ashraf M., Piracha MA., Mukhtar A., Zhang J. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environmental and Experimental Botany, 2024; 226, 105836.
  • Kakar K., Wandrey M., Czechowski T., Gaertner T., Scheible WR., Stitt M., Udvardi MK. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 2008; 4, 1-12.
  • Kesari R., Lasky JR., Villamor JG., Des Marais DL., Chen YJC., Liu TW., Verslues PE. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proceedings of the National Academy of Sciences 2012;109(23): 9197-9202
  • Kijowska-Oberc J., Wawrzyniak MK., Ciszewska L., Ratajczak E. Evaluation of P5CS and ProDH activity in Paulownia tomentosa (Steud.) as an indicator of oxidative changes induced by drought stress. PeerJ 2024; 12, e16697.
  • Kijowska-Oberc J., Dylewski Ł., Ratajczak E. Proline concentrations in seedlings of woody plants change with drought stress duration and are mediated by seed characteristics: A meta-analysis. Scientific Reports 2023; 13(1): 15157.
  • Koc YE., Aycan M, Mitsui T. Exogenous proline suppresses endogenous proline and proline-production genes but improves the salinity tolerance capacity of salt-sensitive rice by stimulating antioxidant mechanisms and photosynthesis. Plant Physiology and Biochemistry 2024; 214, 108914.
  • Kumar RR., Goswami S., Sharma SK., Singh K., Gadpayle KA., Kumar N., Rai RD. Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. Int J Plant Physiol Biochem 2012; 4(4): 83-91.
  • Lewis G., Schrire B., Mackinder B. Lock M. Legumes of the world. Richmond, U.K.: Royal Botanic Gardens, Kew 2005.
  • Liang X., Zhang L., Natarajan SK., Becker DF. Proline mechanisms of stress survival. Antioxidants & Redox Signaling 2013; 19(9): 998-1011.
  • Liu Y., Li J., Zhu Y., Jones A., Rose R J., Song Y. Heat stress in legume seed setting: Effects, causes, and future prospects. Frontiers in Plant Science, 2019; 10, 938.
  • Ma C., Wang M., Zhao M., Yu M., Zheng X., Tian Y., Wang C. The Δ1-pyrroline-5-carboxylate synthetase family performs diverse physiological functions in stress responses in pear (Pyrus betulifolia). Frontiers in Plant Science, 2022; 13, 1066765.
  • Mehta D., Vyas S. Comparative bio-accumulation of osmoprotectants in saline stress tolerating plants: A review. Plant Stress 2023; 9, 100177.
  • Morgil H., Tardu M., Cevahir G., Kavakli İ. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short-and long-term water deficits. Functional & Integrative Genomics 2019;715-727.
  • Oshunsanyan SO., Nwosu NJ., Li Y. Abiotic stress in agricultural crops under climatic conditions. Sustainable Agriculture, Forest and Environmental Management 2019; 71-100.
  • Sabbioni G., Funck D., Forlani G. Enzymology and regulation of δ1-pyrroline-5-carboxylate synthetase 2 from rice. Frontiers in Plant Science, 2021; 12, 672702.
  • Schmidt A., Su YH., Kunze R., Warner S., Hewitt M., Slocum RD., Desimone M. UPS1 and UPS2 from Arabidopsis mediate high affinity transport of uracil and 5-fluorouracil. Journal of Biological Chemistry 2004; 279(43): 44817-44824.
  • Schrire BD., Lavin MATT., Lewis GP. Global distribution patterns of the Leguminosae: Insights from Recent Phylogenies 2005.
  • Seferoglu AB., Baris I., Morgil H., Tulum I., Ozdas S., Cevahir G., Kavakli IH. Transcriptional regulation of the ADP-glucose pyrophosphorylase isoforms in the leaf and the stem under long and short photoperiod in lentil. Plant Science 2013; 205, 29-37.
  • Smýkal P., Coyne CJ., Ambrose MJ., Maxted N., Schaefer H., Blair MW., Varshney RK. Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences 2015; 34(1-3): 43-104.
  • Sripinyowanich S., Klomsakul P., Boonburapong B., Bangyeekhun T., Asami T., Gu H., Chadchawan S. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany 2013; 86, 94-105.
  • Turchetto-Zolet AC., Margis-Pinheiro M., Margis R. The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Molecular Genetics and Genomics 2009; 281, 87-97.
  • Wang H., Tang X., Wang H., Shao HB. Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Frontiers in Plant Science 2015; 6, 792.
  • Wei TL., Wang ZX., He YF., Xue S., Zhang SQ., Pei MS., Guo DL. Proline synthesis and catabolism-related genes synergistically regulate proline accumulation in response to abiotic stresses in grapevines. Scientia Horticulturae 2022; 305, 111373.
  • Zhang M., Huang H., Dai S. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Gene 2014; 537(2): 203-213. Zulfiqar F., Ashraf M. Proline alleviates abiotic stress induced oxidative stress in plants. Journal of Plant Growth Regulation 2023; 42(8): 4629-4651.

A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For qRT-PCR In Legume Plants

Yıl 2025, Cilt: 8 Sayı: 2, 739 - 753, 12.03.2025
https://doi.org/10.47495/okufbed.1569244

Öz

Leguminosae (or Fabaceae), commonly known as legumes and including plants of great agricultural and ecological importance, are important agricultural plant families with a very wide distribution worldwide. Stress is one of the main environmental factors affecting the growth and productivity of cultivated plants. Plants are designed to minimize the impact of stress and to stress resistance at the biochemical level by producing osmolytes such as proline to protect its components. Pyrroline-5-carboxylate synthetase (P5CS) is a key enzyme in the proline biosynthesis pathway in plants and is involved in the initial step of proline production. In this study, a common primer was identified to enable qRT-PCR-based studies as an alternative to biochemical methods for determining the increase in proline content. With this aim, important agricultural plants, Phaseolus vulgaris, Lens culinaris, Cicer arietinum, Glycine max, Pisum sativum, Medicago sativa, were exposed to three different stresses (drought, heat, salt). Proline amounts of the samples were determined biochemically and then gene expression levels were calculated using the common primer. In our results, proline levels were significantly increased in all plant samples. Relative gene expression analysis results also correlated with the biochemical results. In conclusion, this study revealed the existence of a common marker that can be used to determine proline levels at the gene expression level, which is an important marker indicating that some agricultural legume plants are under stress. Our findings show that investigating the expression of genes involved in proline biosynthesis can help to understand the stress responses of plants at the molecular level. In addition, analysis, especially by molecular methods, provides faster and more precise results. This allows to observe the dynamic changes of genes active in proline biosynthesis in a shorter time and changes at the gene level allow us to observe the plant's readiness or early responses to stress.

Kaynakça

  • Abdelrahman M., Jogaiah S., Burritt DJ., Tran LSP. Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant, Cell & Environment 2018; 41(9): 1972-1983.
  • Alagoz SM., Lajayer BA., Ghorbanpour M. Proline and soluble carbohydrates biosynthesis and their roles in plants under abiotic stresses. In Plant stress mitigators, Academic Press 2023; 169-185.
  • Banerjee A., Roychoudhury A. Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. Reactive Oxygen Species in Plants: Boon or Bane‐Revisiting the Role of ROS 2017; 23-50.
  • Dai W., Wang M., Gong X., Liu JH. The transcription factor Fc WRKY 40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS 2 and P5CS 1 homologs. New Phytologist 2018; 219(3): 972-989.
  • De Ronde JA., Spreeth MH., Cress WA. Effect of antisense L-Δ1-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regulation 2000; 32, 13-26.
  • Duvnjak J., Sarcevic H., Vukovic R., Spanic V. Effects of drought at anthesis on flag leaf physiology and gene expression in diverse wheat (Triticum aestivum L.) genotypes. Agronomy 2024; 14(7): 1522.
  • Farooq M., Gogoi N., Hussain M., Barthakur S., Paul S., Bharadwaj N., Siddique KH. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry 2017; 118, 199-217.
  • Feng XJ., Li JR., Qi SL., Lin QF., Jin JB., Hua XJ. Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proceedings of the National Academy of Sciences 2017; 113(51): E8335-E8343.
  • Georgieva M., Vassileva V. Stress management in plants: examining provisional and unique dose-dependent responses. International Journal of Molecular Sciences 2023; 24(6): 5105.
  • Giraud E., Fleischman D. Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynthesis Research 2004; 82, 115-130.
  • Hosseinifard M., Stefaniak S., Ghorbani Javid M., Soltani E., Wojtyla Ł., Garnczarska M. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences 2022; 23(9): 5186.
  • Jamshidi Goharrizi K., Baghizadeh A., Karami S., Nazari M., Afroushteh M. Expression of the W36, P5CS, P5CR, MAPK3, and MAPK6 genes and proline content in bread wheat genotypes under drought stress. Cereal Research Communications 2023; 51(3): 545-556.
  • Javed SA., Jaffar MT., Shahzad SM., Ashraf M., Piracha MA., Mukhtar A., Zhang J. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environmental and Experimental Botany, 2024; 226, 105836.
  • Kakar K., Wandrey M., Czechowski T., Gaertner T., Scheible WR., Stitt M., Udvardi MK. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 2008; 4, 1-12.
  • Kesari R., Lasky JR., Villamor JG., Des Marais DL., Chen YJC., Liu TW., Verslues PE. Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proceedings of the National Academy of Sciences 2012;109(23): 9197-9202
  • Kijowska-Oberc J., Wawrzyniak MK., Ciszewska L., Ratajczak E. Evaluation of P5CS and ProDH activity in Paulownia tomentosa (Steud.) as an indicator of oxidative changes induced by drought stress. PeerJ 2024; 12, e16697.
  • Kijowska-Oberc J., Dylewski Ł., Ratajczak E. Proline concentrations in seedlings of woody plants change with drought stress duration and are mediated by seed characteristics: A meta-analysis. Scientific Reports 2023; 13(1): 15157.
  • Koc YE., Aycan M, Mitsui T. Exogenous proline suppresses endogenous proline and proline-production genes but improves the salinity tolerance capacity of salt-sensitive rice by stimulating antioxidant mechanisms and photosynthesis. Plant Physiology and Biochemistry 2024; 214, 108914.
  • Kumar RR., Goswami S., Sharma SK., Singh K., Gadpayle KA., Kumar N., Rai RD. Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. Int J Plant Physiol Biochem 2012; 4(4): 83-91.
  • Lewis G., Schrire B., Mackinder B. Lock M. Legumes of the world. Richmond, U.K.: Royal Botanic Gardens, Kew 2005.
  • Liang X., Zhang L., Natarajan SK., Becker DF. Proline mechanisms of stress survival. Antioxidants & Redox Signaling 2013; 19(9): 998-1011.
  • Liu Y., Li J., Zhu Y., Jones A., Rose R J., Song Y. Heat stress in legume seed setting: Effects, causes, and future prospects. Frontiers in Plant Science, 2019; 10, 938.
  • Ma C., Wang M., Zhao M., Yu M., Zheng X., Tian Y., Wang C. The Δ1-pyrroline-5-carboxylate synthetase family performs diverse physiological functions in stress responses in pear (Pyrus betulifolia). Frontiers in Plant Science, 2022; 13, 1066765.
  • Mehta D., Vyas S. Comparative bio-accumulation of osmoprotectants in saline stress tolerating plants: A review. Plant Stress 2023; 9, 100177.
  • Morgil H., Tardu M., Cevahir G., Kavakli İ. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short-and long-term water deficits. Functional & Integrative Genomics 2019;715-727.
  • Oshunsanyan SO., Nwosu NJ., Li Y. Abiotic stress in agricultural crops under climatic conditions. Sustainable Agriculture, Forest and Environmental Management 2019; 71-100.
  • Sabbioni G., Funck D., Forlani G. Enzymology and regulation of δ1-pyrroline-5-carboxylate synthetase 2 from rice. Frontiers in Plant Science, 2021; 12, 672702.
  • Schmidt A., Su YH., Kunze R., Warner S., Hewitt M., Slocum RD., Desimone M. UPS1 and UPS2 from Arabidopsis mediate high affinity transport of uracil and 5-fluorouracil. Journal of Biological Chemistry 2004; 279(43): 44817-44824.
  • Schrire BD., Lavin MATT., Lewis GP. Global distribution patterns of the Leguminosae: Insights from Recent Phylogenies 2005.
  • Seferoglu AB., Baris I., Morgil H., Tulum I., Ozdas S., Cevahir G., Kavakli IH. Transcriptional regulation of the ADP-glucose pyrophosphorylase isoforms in the leaf and the stem under long and short photoperiod in lentil. Plant Science 2013; 205, 29-37.
  • Smýkal P., Coyne CJ., Ambrose MJ., Maxted N., Schaefer H., Blair MW., Varshney RK. Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences 2015; 34(1-3): 43-104.
  • Sripinyowanich S., Klomsakul P., Boonburapong B., Bangyeekhun T., Asami T., Gu H., Chadchawan S. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany 2013; 86, 94-105.
  • Turchetto-Zolet AC., Margis-Pinheiro M., Margis R. The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Molecular Genetics and Genomics 2009; 281, 87-97.
  • Wang H., Tang X., Wang H., Shao HB. Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Frontiers in Plant Science 2015; 6, 792.
  • Wei TL., Wang ZX., He YF., Xue S., Zhang SQ., Pei MS., Guo DL. Proline synthesis and catabolism-related genes synergistically regulate proline accumulation in response to abiotic stresses in grapevines. Scientia Horticulturae 2022; 305, 111373.
  • Zhang M., Huang H., Dai S. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Gene 2014; 537(2): 203-213. Zulfiqar F., Ashraf M. Proline alleviates abiotic stress induced oxidative stress in plants. Journal of Plant Growth Regulation 2023; 42(8): 4629-4651.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi (Diğer)
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Hande Morgil 0000-0002-7565-5795

Yayımlanma Tarihi 12 Mart 2025
Gönderilme Tarihi 17 Ekim 2024
Kabul Tarihi 1 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Morgil, H. (2025). A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For qRT-PCR In Legume Plants. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(2), 739-753. https://doi.org/10.47495/okufbed.1569244
AMA Morgil H. A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For qRT-PCR In Legume Plants. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Mart 2025;8(2):739-753. doi:10.47495/okufbed.1569244
Chicago Morgil, Hande. “A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For QRT-PCR In Legume Plants”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 2 (Mart 2025): 739-53. https://doi.org/10.47495/okufbed.1569244.
EndNote Morgil H (01 Mart 2025) A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For qRT-PCR In Legume Plants. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 2 739–753.
IEEE H. Morgil, “A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For qRT-PCR In Legume Plants”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 8, sy. 2, ss. 739–753, 2025, doi: 10.47495/okufbed.1569244.
ISNAD Morgil, Hande. “A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For QRT-PCR In Legume Plants”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/2 (Mart 2025), 739-753. https://doi.org/10.47495/okufbed.1569244.
JAMA Morgil H. A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For qRT-PCR In Legume Plants. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:739–753.
MLA Morgil, Hande. “A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For QRT-PCR In Legume Plants”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 2, 2025, ss. 739-53, doi:10.47495/okufbed.1569244.
Vancouver Morgil H. A Potential Common Pyrroline-5-Carboxylate Synthetase (P5CS) Gene As A Stress Marker For qRT-PCR In Legume Plants. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(2):739-53.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.