Araştırma Makalesi
BibTex RIS Kaynak Göster

Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive

Yıl 2025, Cilt: 8 Sayı: 2, 794 - 806, 12.03.2025
https://doi.org/10.47495/okufbed.1596388

Öz

The demand for effective electromagnetic interference (EMI) shielding has driven the development of advanced materials combining magnetic and dielectric properties. This study presents a composite paint with cobalt ferrite (CoFe₂O₄) nanoparticles (5 wt%) and wood shavings (10 wt%) for enhanced EMI shielding in the 3.2–5.0 GHz range. Wood shavings improved electromagnetic wave absorption through their porous structure and dielectric properties, complementing CoFe₂O₄’s magnetic loss characteristics. The paint achieved a peak absorption shielding effectiveness (SE) of 12 dB, surpassing the 10 dB of the CoFe₂O₄-only system. Reflection SE values were reduced to -1 to +1 dB. This eco-friendly and cost-effective material offers significant potential for industrial and defense applications.

Proje Numarası

FBA-2023-6377

Kaynakça

  • Ates K., Kocaer TZ., Ozen S., Kockal NU. Electromagnetic interference shielding effectiveness and microwave absorption performance of plaster mortars containing metal waste chips in X-band frequency range. Journal of Microwave Power and Electromagnetic Energy 2023; 57(3): 230–244.
  • Cheng M., Ying M., Zhao R., Ji L., Li H., Liu X., Zhang J., Li Y., Dong X., Zhang X. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 2022; 16(10): 16996–17007.
  • Cheraghali S. Synthesis and characterization of polyethylene glycol-coated hierarchical ferrite nanoparticles as contrast agents for magnetic resonance imaging applications. Università Ca’ Foscari Venezia 2022.
  • Fu SY. , Liu XM. Progress in solid state chemistry research. Google Books 2007.
  • Gan W., Chen C., Giroux M., Zhong G., Goyal MM., Wang Y., Ping W., Song J., Xu S., He S., Jiao M., Wang C., Hu L. Conductive wood for high-performance structural electromagnetic interference shielding. Chemistry of Materials 2020; 32(12): 5280–5289.
  • Ghaffarkhah A., Hashemi SA., Ahmadijokani F., Goodarzi M., Riazi H., Mhatre SE., Zaremba O., Rojas OJ., Soroush M., Russell TP., Wuttke S., Kamkar M., Arjmand M. Functional Janus structured liquids and aerogels. Nature Communications 2023; 14(1): 1–9.
  • Guan QF., Han ZM., Yang KP., Yang HB., Ling ZC., Yin CH., Yu SH. Sustainable double-network structural materials for electromagnetic shielding. Nano Letters 2021; 21(6): 2532–2537.
  • Gupta S., Tai NH. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019; 152: 159–187.
  • Hong J., Kwon J., Im D., Ko J., Nam CY., Yang HG., Shin SH., Hong SM., Hwang SS., Yoon HG., Lee AS. Best practices for correlating electrical conductivity with broadband EMI shielding in binary filler-based conducting polymer composites. Chemical Engineering Journal 2023; 455: 140528.
  • Kakati S., Rendale MK., Mathad SN. Synthesis, characterization, and applications of CoFe2O4 and M-CoFe2O4 (M = Ni, Zn, Mg, Cd, Cu, RE) ferrites: A review. International Journal of Self-Propagating High-Temperature Synthesis 2021; 30(4): 189–219.
  • Keskin HI., Ozen S., Ates K., Polat LN. Analysis and measurement of the electromagnetic shielding efficiency of the multi-layered carbon fiber composite fabrics. Progress in Electromagnetics Research Symposium 2019; 4354-4360.
  • Liu R., Wang D., Xie Y., Li J., Wang L. Flexible cellulose-based material with a higher conductivity and electromagnetic shielding performance from electroless nickel plating. Wood Science and Technology 2021; 55(6): 1693-1710.
  • Ozturk M., Chung DDL. Radio-wave shielding behavior of steel structures. Journal of Electromagnetic Waves and Applications 2021; 35(11): 1407–1419.
  • Paul LC., Shaki GA., Rani T., Lee WS. A compact UWB array antenna for microwave imaging/WiMAX/Wi-Fi/Sub-6 GHz applications. Lecture Notes in Electrical Engineering 2023; 980: 349-360.
  • Rajender T., Naidu KCB., Basha DB., Samanta S., Reddy LSS. Magnetic, dielectric and thermal study of CoNiFe₂O₄ nanoparticles. Nano-Structures & Nano-Objects 2024; 38: 101167.
  • Ren F., Zhu G., Ren P., Wang K., Cui X., Yan X. Cyanate ester resin filled with graphene nanosheets and CoFe₂O₄-reduced graphene oxide nanohybrids as a microwave absorber. Applied Surface Science 2015; 351: 40–47.
  • Sahoo SR. Synthesis of mesoporous magnetic MFe₂O₄ (M=Co, Mn, Ni) nanoparticles for the photodegradation of pesticides. Department of Chemistry, National Institute of Technology MSc Thesis, Rourkela, Odisha, India, 2015.
  • Shi X., Luo J., Luo J., Li X., Han K., Li D., Cao X., Wang ZL. Flexible wood-based triboelectric self-powered smart home system. ACS Nano 2022; 16(2): 3341–3350.
  • Shi Y., Nie C., Jiang S., Wang H., Feng Y., Gao J., Tang L., Song P. Tunable construction of fire safe and mechanically strong hierarchical composites towards electromagnetic interference shielding. Journal of Colloid and Interface Science 2023; 652: 1554–1567.
  • Hazra S. Development of a novel "one-pot" ethylenediaminetetraacetic acid (EDTA) precursor-based method for preparation of hard-soft ferrite nanocomposites and study of their properties. Birla Institute of Technology and Science Pilani MSc Thesis, Pilani, India, 2015.
  • Tudose IV., Mouratis K., Ionescu ON., Romanitan C., Pachiu C., Popescu M., Khomenko V., Butenko O., Chernysh O., Kenanakis G., Barsukov VZ., Suchea MP., Koudoumas E. Novel water-based paints for composite materials used in electromagnetic shielding applications. Nanomaterials 2022; 12(3): 487.
  • Wang G., Ong SJH., Zhao Y., Xu ZJ., Ji G. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. Journal of Materials Chemistry A 2020; 8(46): 24368–24387.
  • Wu N., Hu Q., Wei R., Mai X., Naik N., Pan D., Guo Z., Shi Z. Review on the electromagnetic interference shielding properties of carbon-based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021; 176: 88–105.

CoFe₂O₄ Nanopartikülleri ve Odun Talaş Katkısı İçeren Boyanın Mikrodalga Soğurma Özellikleri

Yıl 2025, Cilt: 8 Sayı: 2, 794 - 806, 12.03.2025
https://doi.org/10.47495/okufbed.1596388

Öz

Elektromanyetik girişim (EMI) koruma ihtiyacı, manyetik ve dielektrik özellikleri birleştiren ileri düzey malzemelerin geliştirilmesine öncülük etmiştir. Bu çalışma, 3.2–5.0 GHz aralığında EMI korumasını artırmak için kobalt ferrit (CoFe₂O₄) nanopartikülleri (%5) ve odun talaşı (%10) içeren bir kompozit boya sunmaktadır. Odun talaşı, gözenekli yapısı ve dielektrik özellikleri sayesinde CoFe₂O₄'ün manyetik kayıp özelliklerini tamamlayarak elektromanyetik dalga soğurumunu artırmıştır. Bu boya, CoFe₂O₄ içeren sistemin 10 dB'lik performansını aşarak maksimum 12 dB soğurma koruma etkinliği (SE) elde etmiştir. Yansıma SE değerleri ise -1 ile +1 dB arasında azalmıştır. Bu çevre dostu ve maliyet etkin malzeme, endüstriyel ve savunma uygulamaları için önemli bir potansiyel sunmaktadır.

Proje Numarası

FBA-2023-6377

Kaynakça

  • Ates K., Kocaer TZ., Ozen S., Kockal NU. Electromagnetic interference shielding effectiveness and microwave absorption performance of plaster mortars containing metal waste chips in X-band frequency range. Journal of Microwave Power and Electromagnetic Energy 2023; 57(3): 230–244.
  • Cheng M., Ying M., Zhao R., Ji L., Li H., Liu X., Zhang J., Li Y., Dong X., Zhang X. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 2022; 16(10): 16996–17007.
  • Cheraghali S. Synthesis and characterization of polyethylene glycol-coated hierarchical ferrite nanoparticles as contrast agents for magnetic resonance imaging applications. Università Ca’ Foscari Venezia 2022.
  • Fu SY. , Liu XM. Progress in solid state chemistry research. Google Books 2007.
  • Gan W., Chen C., Giroux M., Zhong G., Goyal MM., Wang Y., Ping W., Song J., Xu S., He S., Jiao M., Wang C., Hu L. Conductive wood for high-performance structural electromagnetic interference shielding. Chemistry of Materials 2020; 32(12): 5280–5289.
  • Ghaffarkhah A., Hashemi SA., Ahmadijokani F., Goodarzi M., Riazi H., Mhatre SE., Zaremba O., Rojas OJ., Soroush M., Russell TP., Wuttke S., Kamkar M., Arjmand M. Functional Janus structured liquids and aerogels. Nature Communications 2023; 14(1): 1–9.
  • Guan QF., Han ZM., Yang KP., Yang HB., Ling ZC., Yin CH., Yu SH. Sustainable double-network structural materials for electromagnetic shielding. Nano Letters 2021; 21(6): 2532–2537.
  • Gupta S., Tai NH. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019; 152: 159–187.
  • Hong J., Kwon J., Im D., Ko J., Nam CY., Yang HG., Shin SH., Hong SM., Hwang SS., Yoon HG., Lee AS. Best practices for correlating electrical conductivity with broadband EMI shielding in binary filler-based conducting polymer composites. Chemical Engineering Journal 2023; 455: 140528.
  • Kakati S., Rendale MK., Mathad SN. Synthesis, characterization, and applications of CoFe2O4 and M-CoFe2O4 (M = Ni, Zn, Mg, Cd, Cu, RE) ferrites: A review. International Journal of Self-Propagating High-Temperature Synthesis 2021; 30(4): 189–219.
  • Keskin HI., Ozen S., Ates K., Polat LN. Analysis and measurement of the electromagnetic shielding efficiency of the multi-layered carbon fiber composite fabrics. Progress in Electromagnetics Research Symposium 2019; 4354-4360.
  • Liu R., Wang D., Xie Y., Li J., Wang L. Flexible cellulose-based material with a higher conductivity and electromagnetic shielding performance from electroless nickel plating. Wood Science and Technology 2021; 55(6): 1693-1710.
  • Ozturk M., Chung DDL. Radio-wave shielding behavior of steel structures. Journal of Electromagnetic Waves and Applications 2021; 35(11): 1407–1419.
  • Paul LC., Shaki GA., Rani T., Lee WS. A compact UWB array antenna for microwave imaging/WiMAX/Wi-Fi/Sub-6 GHz applications. Lecture Notes in Electrical Engineering 2023; 980: 349-360.
  • Rajender T., Naidu KCB., Basha DB., Samanta S., Reddy LSS. Magnetic, dielectric and thermal study of CoNiFe₂O₄ nanoparticles. Nano-Structures & Nano-Objects 2024; 38: 101167.
  • Ren F., Zhu G., Ren P., Wang K., Cui X., Yan X. Cyanate ester resin filled with graphene nanosheets and CoFe₂O₄-reduced graphene oxide nanohybrids as a microwave absorber. Applied Surface Science 2015; 351: 40–47.
  • Sahoo SR. Synthesis of mesoporous magnetic MFe₂O₄ (M=Co, Mn, Ni) nanoparticles for the photodegradation of pesticides. Department of Chemistry, National Institute of Technology MSc Thesis, Rourkela, Odisha, India, 2015.
  • Shi X., Luo J., Luo J., Li X., Han K., Li D., Cao X., Wang ZL. Flexible wood-based triboelectric self-powered smart home system. ACS Nano 2022; 16(2): 3341–3350.
  • Shi Y., Nie C., Jiang S., Wang H., Feng Y., Gao J., Tang L., Song P. Tunable construction of fire safe and mechanically strong hierarchical composites towards electromagnetic interference shielding. Journal of Colloid and Interface Science 2023; 652: 1554–1567.
  • Hazra S. Development of a novel "one-pot" ethylenediaminetetraacetic acid (EDTA) precursor-based method for preparation of hard-soft ferrite nanocomposites and study of their properties. Birla Institute of Technology and Science Pilani MSc Thesis, Pilani, India, 2015.
  • Tudose IV., Mouratis K., Ionescu ON., Romanitan C., Pachiu C., Popescu M., Khomenko V., Butenko O., Chernysh O., Kenanakis G., Barsukov VZ., Suchea MP., Koudoumas E. Novel water-based paints for composite materials used in electromagnetic shielding applications. Nanomaterials 2022; 12(3): 487.
  • Wang G., Ong SJH., Zhao Y., Xu ZJ., Ji G. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. Journal of Materials Chemistry A 2020; 8(46): 24368–24387.
  • Wu N., Hu Q., Wei R., Mai X., Naik N., Pan D., Guo Z., Shi Z. Review on the electromagnetic interference shielding properties of carbon-based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021; 176: 88–105.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Fiziği, Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Ali Onur Kaya 0000-0003-4220-1866

Mert Can Emre 0000-0002-1445-0358

İbrahim Halil Mutlu 0000-0003-1643-4332

Proje Numarası FBA-2023-6377
Yayımlanma Tarihi 12 Mart 2025
Gönderilme Tarihi 4 Aralık 2024
Kabul Tarihi 22 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Kaya, A. O., Emre, M. C., & Mutlu, İ. H. (2025). Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(2), 794-806. https://doi.org/10.47495/okufbed.1596388
AMA Kaya AO, Emre MC, Mutlu İH. Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Mart 2025;8(2):794-806. doi:10.47495/okufbed.1596388
Chicago Kaya, Ali Onur, Mert Can Emre, ve İbrahim Halil Mutlu. “Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 2 (Mart 2025): 794-806. https://doi.org/10.47495/okufbed.1596388.
EndNote Kaya AO, Emre MC, Mutlu İH (01 Mart 2025) Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 2 794–806.
IEEE A. O. Kaya, M. C. Emre, ve İ. H. Mutlu, “Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 8, sy. 2, ss. 794–806, 2025, doi: 10.47495/okufbed.1596388.
ISNAD Kaya, Ali Onur vd. “Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/2 (Mart 2025), 794-806. https://doi.org/10.47495/okufbed.1596388.
JAMA Kaya AO, Emre MC, Mutlu İH. Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:794–806.
MLA Kaya, Ali Onur vd. “Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 2, 2025, ss. 794-06, doi:10.47495/okufbed.1596388.
Vancouver Kaya AO, Emre MC, Mutlu İH. Microwave Absorption Properties of Paint Containing CoFe₂O₄ Nanoparticles and Wood Shaving Additive. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(2):794-806.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.