Araştırma Makalesi
BibTex RIS Kaynak Göster

Desıgn of A Mechanıcal Spray Paternator, Prototype Manufacturıng and Flow Tests on Spray Nozzles

Yıl 2023, , 597 - 618, 26.10.2023
https://doi.org/10.7161/omuanajas.1351081

Öz

In this research, to determine the spray pattern of the sprayer nozzles and to control the flow uniformity, the prototype of a 60-channel, 120×100 cm, single-point, height-adjustable, low-cost spray pattern with 20 mm channel opening was designed and manufactured. The channels used in the measuring table of the patternator are made of stainless-steel sheet. The profiles made of structural steel were used in the main body of the test system. The liquid accumulated in each channel during spraying was collected in 25 ml volume measuring cylinders. An open-close mechanism was developed to evacuate the fluid accumulated in the measuring cylinders after each attempt. The spray pattern could be monitored thanks to the markers placed on each measuring cylinder. The imaging was performed to digitize the spray pattern and the evaluations were performed by image processing technique. The hollow cone nozzles with 5 different orifice diameters (Ø1.0 mm, Ø1.2 mm, Ø1.6 mm, Ø2.0 mm and Ø2.4 mm) were used for the spray tests. The spraying trials were carried out at a constant operating pressure of 8 bar and a spray height of 55 cm. Trials were conducted with 40 replicates for each orifice diameter. As a result of the experiment, skewness, kurtosis, coefficient of variation of the spray pattern (%CV), transverse distribution uniformity (%CV), nozzle spray angle at different nozzle intervals (25 cm, 30 cm, 35cm, 40 cm, 45 cm and 50 cm) and the coverage width variables were determined. According to the research results; all the spray pattern tests on the spray patternator prototype were done practically and the values were taken successfully. The spray angle means were determined between 78.1°-93.8°. As the nozzle orifice diameter increased, the distortion of the spray pattern decreased. The spray patterns are generally formed in a flattened form from above compared to normal. The lowest CV average of nozzles with office diameters of Ø1.0 mm and Ø1.2 mm obtained at 25 cm and 30 cm nozzle intervals. For the nozzles with large orifice diameters, the optimum boom height must be determined.

Kaynakça

  • Azimi, AH., Carpenter, TG., Reichard. DL., 1985. Nozzle spray distribution for pesticide application. Transactions of the ASAE, 28(5): 1410-1414. (doi: 10.13031/2013.32451)
  • Bock, CH., Cottrell, TE., Hotchkiss, MW., 2023. Spray coverage profiles from pecan air-blast sprayers, with a radial air-flow and a volüme-generated focused air-flow, as affected by forward speed and application volume. Crop Protection, 168: (doi: 10.1016/j.cropro.2023.106234)
  • Bode, LE., Butler, BJ., Pearson, SL., Bouse, LF., 1983. Characteristics of the micromax rotary atomizer. Transactions of the ASAE, 24(4): (doi: 10.13031/2013.34064)
  • Dafsari, RA., Yu, S., Choi, Y., Lee, J., 2021. Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour. Biosystems Engineering, 209, 14-29. (doi: 10.1016/j.biosystemseng.2021.06.013)
  • Grella, M., Marucco, P., Zwertvaegher, I., Gioelli, F., Bozzer, C., Biglia, A., Manzone, M., Caffini, A., Fountas, S., Nuyttens, D., Balsari, P., 2022. The effect of fan setting, air-conveyor orientation and nozzle configuration on airblast sprayer efficiency: Insights relevant to trellised vineyards. Crop Protection, 155: 105921. (doi: 10.1016/j.cropro.2022.105921)
  • Griesang. F., Spadoni. ABD., Ferreira, PHU., Ferreira, MC., 2022. Effect of working pressure and spacing of nozzles on the quality of spraying distribution. Crop Protection, 151: (doi: 10.1016/j.cropro.2021.105818)
  • Grisso, R., Dickey, E.C., Schulze, L.D., 1989. The cost of misapplication of herbicides. Applied engineering in Agriculture, 5 (3): 344-347. (doi: 10.13031/2013.26525)
  • Hatem, G., Zeidan, J., Goosens, M., Moreira, C., 2022. Normality testing methods and the importance of skewness and kurtosis in statistical analysis. BAU Journal-Science and Technology, 3(2), Article 7. (doi: 10.54729/KTPE9512)
  • Karagöz, Y., 2016. SPSS 23 ve AMOS 23 Uygulamalı İstatistiksel Analizler. Nobel Akademik Yayıncılık, İkinci Baskı, 1196 s. Ankara
  • Koh, H., Kim, D., Shin, S., Yoon, Y., 2006. Spray characterization in high pressure environment using optical line patternator. Measurement Science and Technology, 17:8, 2159. (doi: 10.1088/0957-0233/17/8/015)
  • Krishnan, P., Williams, TH., Kemble, LJ., 1988. Technical Note: Spray pattern displacement measurement technique for agricultural nozzles using spray table. Transactions of the ASAE, 31(2): 386-389. (doi: 10.13031/2013.30719)
  • Luck, JD., Schaardt, WA., Sharda, A., Forney, SH., 2016. Development and evaluation of an automated spray patternator using digital liquid level sensors. Applied Engineering in Agriculture. 32(1): 47-52. (doi: 10.13031/aea.32.11381)
  • McVey, JB., Russell, S., Kennedy, JB., 1987. High-resolution patternator for the characterization of fuel sprays. Journal of Propulsion and Power, 3:3, 202-209. (doi: 10.2514/3.22975)
  • Minoy, V., Cointault, F., Vangeyte, J., Pieters, J.G., Nuyttens, D., 2014. Spray nozzle characterization using a backlighted high speed imaging technique. Aspects of Applied Biology, 122 (1): 353-361.
  • Ozkan, HE., Ackerman, KD., 1992. An automated computerized spray pattern analysis system. Applied Engineering in Agriculture,8(3): 325-331. (doi: 10.13031/2013.26072)
  • Palleja, T., Tresanchez, M., Llorens, J., Saiz-Vela, A., 2023. Design and characterization of a real-time capacitive system to estimate pesticides spray deposition and drift. Computers and Electronics in Agriculture, 207: 107720. (doi: 10.1016/j.compag.2023.107720)
  • Pascuzzi, S., Cerruto, E., Manetto, G., 2017. Foliar spray deposition in a “tendone” vineyard as affected by airflow rate, volume rate and vegetative development. Crop Protection, 91: 34-48. (doi: 10.1016/j.cropro.2016.09.009)
  • Rice, B., 1967. Spray distribution from ground-crop sprayers. Journal of Agricultural Engineering Research, 12(3): 173-177. (doi: 10.1016/S0021-8634(67)80015-5)
  • Richardson, RG., Combellack, JH., Andrew, L., 1986. Evaluation of a spray nozzle patternator. Crop Protection, 5(1): 8-11. (doi: 10.1016/0261-2194(86)90032-3)
  • Salcedo, R., Sánchez. E., Zhu, H., Fàbregas, X., García-Ruiz. F., Gil. E., 2023. Evaluation of an electrostatic spray charge system implemented in three conventional orchard sprayers used on a commercial apple trees plantation. 167: 106212. (doi: 10.1016/j.cropro.2023.106212)
  • Sayıncı, B., 2016. Poliasetal (POM) meme plakalarının orifis geometrisinde üretim Kusurlarının eliptik fourier tanımlayıcılarıyla tespiti. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30 (1): 57-73.
  • Sayıncı, B., Bastaban, S., 2008. Biyolojik mücadele etmenlerinin uygulanmasında ilaçlama ünitesinin rolü. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 39 (1): 151-157.
  • Sayıncı, B., Bozdoğan, N.Y., Yıldız, C., Demir, B., 2013. Konik hüzmeli memelerde akış katsayısı ve bazı işletme özelliklerinin belirlenmesi. Tarım Makinaları Bilimi Dergisi, 9 (1): 9-20.
  • Sayıncı, B., Kara, M., 2014. The effects of strainer types on Flow Characteristics of anti-drift. Journal of Agricultural Sciences, 21 (4): 558-571. (doi: 10.1501/Tarimbil_0000001357)
  • Sehsah, E.M.E., Kleisinger, S., 2009. Study of some parameters affecting spray distribution uniformity patteren. Irrigation and Drainage, 26 (1): 69-93. (doi. 10.21608/mjae.2009.109864)
  • Tuncer, A., Güler, H., 1998. Meyve bahçesi ve bağlarda kullanılan pülverizatörlerin deney yöntemleri. Türkiye Mekanizasyon 18. Ulusal Kongresi, Cilt 1, 470-480, 17-18 Eylül Tekirdağ
  • Ullom, MJ., Sojka, PE., 2001. A simple optical patternator for evaluating spray symmetry. Review Scientific Instruments 72: 2472–2477. (doi: 10.1063/1.1353196)
  • Younes, M., Gorchev, H., 2000. Pesticides in Drink. Food and Chemical Toxicology, 38 (1): 87-90.(doi: 10.1016/S0278-6915)

Mekanik Püskürtme Paternatörü Tasarımı, Prototip İmalatı ve Pülverizatör Memelerinde Akış Testleri

Yıl 2023, , 597 - 618, 26.10.2023
https://doi.org/10.7161/omuanajas.1351081

Öz

Bu araştırmada pülverizatör memelerinin püskürtme paternini belirlemek ve akış düzgünlüğünü kontrol etmek için 60 kanallı 120×100 cm ölçülerinde 20 mm kanal açıklığına sahip tek noktadan püskürtmeli, yüksekliği ayarlanabilir tipte düşük maliyetli bir püskürtme paternatörünün tasarımı ve prototip imalatı yapılmıştır. Paternatörün ölçüm tablasında kullanılan kanallar paslanmaz çelik sacdan imal edilmiştir. Test sisteminin ana gövdesinde yapı çeliğinden üretilmiş profiller kullanılmıştır. Püskürtme sırasında her bir kanalda biriken sıvı, 25 ml hacimli ölçü silindirlerinde toplanmıştır. Her denemeden sonra ölçü silindirlerinde biriken akışkanı tahliye etmek için aç-kapa mekanizması geliştirilmiştir. Her bir ölçü silindirine yerleştirilen işaretleyiciler sayesinde püskürtme paterni izlenebilmiştir. Püskürtme paternini sayısallaştırmak için görüntüleme yapılmış ve değerlendirmeler görüntü işleme tekniğiyle gerçekleştirilmiştir. Püskürtme testleri için 5 farklı orifis çapına (Ø1.0 mm, Ø1.2 mm, Ø1.6 mm, Ø2.0 mm ve Ø2.4 mm) sahip konik hüzmeli meme plakaları kullanılmıştır. Püskürtme denemeleri sabit 8 bar işletme basıncında ve 55 cm püskürtme yüksekliğinde yapılmıştır. Denemeler her bir orifis çapı için 40 tekerrürlü yürütülmüştür. Deneme sonucunda püskürtme paterniyle ilgili çarpıklık, basıklık, püskürtme paterninin varyasyon katsayısı (%CV), farklı meme aralıklarında (25 cm, 30 cm, 35cm, 40 cm, 45 cm ve 50 cm) enine dağılım düzgünlüğü (%CV), meme hüzme açısı ve meme örtme genişliği değişkenleri belirlenmiştir. Araştırma sonuçlarına göre; paternatör prototipinde yapılan tüm püskürtme paterni testleri pratik bir şekilde yapılmış ve değerler başarılı bir şekilde alınmıştır. Hüzme açısı ortalamaları 78.1°-93.8° aralığında belirlenmiştir. Meme orifis çapı arttıkça püskürtme paterninin çarpıklığı azalmıştır. Püskürtme paternleri genelde normale göre üstten basık formda oluşmuştur. Ofisi çapı Ø1.0 mm ve Ø1.2 mm olan meme plakalarının en düşük CV ortalaması; 25 cm ve 30 cm meme aralıklarında elde edilmiştir. Büyük orifis çaplı memelerde optimum bum yüksekliğinin belirlenmesi gerekmektedir.

Kaynakça

  • Azimi, AH., Carpenter, TG., Reichard. DL., 1985. Nozzle spray distribution for pesticide application. Transactions of the ASAE, 28(5): 1410-1414. (doi: 10.13031/2013.32451)
  • Bock, CH., Cottrell, TE., Hotchkiss, MW., 2023. Spray coverage profiles from pecan air-blast sprayers, with a radial air-flow and a volüme-generated focused air-flow, as affected by forward speed and application volume. Crop Protection, 168: (doi: 10.1016/j.cropro.2023.106234)
  • Bode, LE., Butler, BJ., Pearson, SL., Bouse, LF., 1983. Characteristics of the micromax rotary atomizer. Transactions of the ASAE, 24(4): (doi: 10.13031/2013.34064)
  • Dafsari, RA., Yu, S., Choi, Y., Lee, J., 2021. Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour. Biosystems Engineering, 209, 14-29. (doi: 10.1016/j.biosystemseng.2021.06.013)
  • Grella, M., Marucco, P., Zwertvaegher, I., Gioelli, F., Bozzer, C., Biglia, A., Manzone, M., Caffini, A., Fountas, S., Nuyttens, D., Balsari, P., 2022. The effect of fan setting, air-conveyor orientation and nozzle configuration on airblast sprayer efficiency: Insights relevant to trellised vineyards. Crop Protection, 155: 105921. (doi: 10.1016/j.cropro.2022.105921)
  • Griesang. F., Spadoni. ABD., Ferreira, PHU., Ferreira, MC., 2022. Effect of working pressure and spacing of nozzles on the quality of spraying distribution. Crop Protection, 151: (doi: 10.1016/j.cropro.2021.105818)
  • Grisso, R., Dickey, E.C., Schulze, L.D., 1989. The cost of misapplication of herbicides. Applied engineering in Agriculture, 5 (3): 344-347. (doi: 10.13031/2013.26525)
  • Hatem, G., Zeidan, J., Goosens, M., Moreira, C., 2022. Normality testing methods and the importance of skewness and kurtosis in statistical analysis. BAU Journal-Science and Technology, 3(2), Article 7. (doi: 10.54729/KTPE9512)
  • Karagöz, Y., 2016. SPSS 23 ve AMOS 23 Uygulamalı İstatistiksel Analizler. Nobel Akademik Yayıncılık, İkinci Baskı, 1196 s. Ankara
  • Koh, H., Kim, D., Shin, S., Yoon, Y., 2006. Spray characterization in high pressure environment using optical line patternator. Measurement Science and Technology, 17:8, 2159. (doi: 10.1088/0957-0233/17/8/015)
  • Krishnan, P., Williams, TH., Kemble, LJ., 1988. Technical Note: Spray pattern displacement measurement technique for agricultural nozzles using spray table. Transactions of the ASAE, 31(2): 386-389. (doi: 10.13031/2013.30719)
  • Luck, JD., Schaardt, WA., Sharda, A., Forney, SH., 2016. Development and evaluation of an automated spray patternator using digital liquid level sensors. Applied Engineering in Agriculture. 32(1): 47-52. (doi: 10.13031/aea.32.11381)
  • McVey, JB., Russell, S., Kennedy, JB., 1987. High-resolution patternator for the characterization of fuel sprays. Journal of Propulsion and Power, 3:3, 202-209. (doi: 10.2514/3.22975)
  • Minoy, V., Cointault, F., Vangeyte, J., Pieters, J.G., Nuyttens, D., 2014. Spray nozzle characterization using a backlighted high speed imaging technique. Aspects of Applied Biology, 122 (1): 353-361.
  • Ozkan, HE., Ackerman, KD., 1992. An automated computerized spray pattern analysis system. Applied Engineering in Agriculture,8(3): 325-331. (doi: 10.13031/2013.26072)
  • Palleja, T., Tresanchez, M., Llorens, J., Saiz-Vela, A., 2023. Design and characterization of a real-time capacitive system to estimate pesticides spray deposition and drift. Computers and Electronics in Agriculture, 207: 107720. (doi: 10.1016/j.compag.2023.107720)
  • Pascuzzi, S., Cerruto, E., Manetto, G., 2017. Foliar spray deposition in a “tendone” vineyard as affected by airflow rate, volume rate and vegetative development. Crop Protection, 91: 34-48. (doi: 10.1016/j.cropro.2016.09.009)
  • Rice, B., 1967. Spray distribution from ground-crop sprayers. Journal of Agricultural Engineering Research, 12(3): 173-177. (doi: 10.1016/S0021-8634(67)80015-5)
  • Richardson, RG., Combellack, JH., Andrew, L., 1986. Evaluation of a spray nozzle patternator. Crop Protection, 5(1): 8-11. (doi: 10.1016/0261-2194(86)90032-3)
  • Salcedo, R., Sánchez. E., Zhu, H., Fàbregas, X., García-Ruiz. F., Gil. E., 2023. Evaluation of an electrostatic spray charge system implemented in three conventional orchard sprayers used on a commercial apple trees plantation. 167: 106212. (doi: 10.1016/j.cropro.2023.106212)
  • Sayıncı, B., 2016. Poliasetal (POM) meme plakalarının orifis geometrisinde üretim Kusurlarının eliptik fourier tanımlayıcılarıyla tespiti. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30 (1): 57-73.
  • Sayıncı, B., Bastaban, S., 2008. Biyolojik mücadele etmenlerinin uygulanmasında ilaçlama ünitesinin rolü. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 39 (1): 151-157.
  • Sayıncı, B., Bozdoğan, N.Y., Yıldız, C., Demir, B., 2013. Konik hüzmeli memelerde akış katsayısı ve bazı işletme özelliklerinin belirlenmesi. Tarım Makinaları Bilimi Dergisi, 9 (1): 9-20.
  • Sayıncı, B., Kara, M., 2014. The effects of strainer types on Flow Characteristics of anti-drift. Journal of Agricultural Sciences, 21 (4): 558-571. (doi: 10.1501/Tarimbil_0000001357)
  • Sehsah, E.M.E., Kleisinger, S., 2009. Study of some parameters affecting spray distribution uniformity patteren. Irrigation and Drainage, 26 (1): 69-93. (doi. 10.21608/mjae.2009.109864)
  • Tuncer, A., Güler, H., 1998. Meyve bahçesi ve bağlarda kullanılan pülverizatörlerin deney yöntemleri. Türkiye Mekanizasyon 18. Ulusal Kongresi, Cilt 1, 470-480, 17-18 Eylül Tekirdağ
  • Ullom, MJ., Sojka, PE., 2001. A simple optical patternator for evaluating spray symmetry. Review Scientific Instruments 72: 2472–2477. (doi: 10.1063/1.1353196)
  • Younes, M., Gorchev, H., 2000. Pesticides in Drink. Food and Chemical Toxicology, 38 (1): 87-90.(doi: 10.1016/S0278-6915)
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarım Makine Sistemleri, Tarım Makineleri
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Ruçhan Çömlek 0000-0002-2240-4343

Bahadır Sayıncı 0000-0001-7148-0855

Erken Görünüm Tarihi 20 Ekim 2023
Yayımlanma Tarihi 26 Ekim 2023
Kabul Tarihi 23 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çömlek, R., & Sayıncı, B. (2023). Mekanik Püskürtme Paternatörü Tasarımı, Prototip İmalatı ve Pülverizatör Memelerinde Akış Testleri. Anadolu Tarım Bilimleri Dergisi, 38(3), 597-618. https://doi.org/10.7161/omuanajas.1351081
Online ISSN: 1308-8769