Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Germination Temperature on Germination and Seedling Growth Parameters in Cotton (Gossiypium Hirsutum L.) Varieties

Yıl 2024, , 623 - 636, 30.10.2024
https://doi.org/10.7161/omuanajas.1498795

Öz

Germination and seedling growth periods have a very important function in plant life. Especially in cases where abiotic stress conditions occur, these periods are of vital importance for the sustainability of plant life. Taking this into account, this research was conducted to determine the most suitable temperature for germination and seedling growth parameters of cotton varieties. In this research conducted under controlled conditions, germination and seedling development parameters of two cotton varieties (May-344 and Candia) were tested at 8 different temperature levels (8, 12, 16, 20, 24, 28, 32 and 36°C). It was determined that the germination percentage was 45.17-16.17%, the germination time was 4.06-3.94 days and the emergence rate index was 1.89-0.58 in May-344 and Candia cotton varieties, respectively. Moreover; root length 37.89-16.43 mm, stem length 44.69-41.00 mm, root fresh weight 22.40-19.51 mg, stem fresh weight 90.37-131.80 mg and the root/stem ratio was 0.26-0.16 mg/mg in May-344 and Candia cotton varieties, respectively. The results of the experiment revealed that most of the tested parameters were significantly affected by temperature. The highest germination rate, as the average of the two varieties and for both varieties separately, was obtained at 20 oC and no germination occurred at 8 oC. Except root to shoot ratio, other seedling growth parameters were maximum between 20-32 oC and decreased at higher temperatures.

Kaynakça

  • Abdelraheem, A., Esmaeili, N., O’Connell, M., Zhang, J., 2019. Progress and perspective on drought and salt stress tolerance in cotton. Ind. Crops Prod., 130: 118–129. https://doi.org/10.1016/j.indcrop.2018.12.070 Ahmad, F., Perveen, A., Mohammad, N., Ali, A.A., Akhtar, M.N., Shahzad, K., Danish, S., Ahmed, N., 2020. Heat stress in cotton: Responses and adaptive mechanisms, in Ahmad, S., & Mirza, H. (Eds.), Cotton Production and Uses. Agronomy, Crop Protection, and Postharvest Technologies. Springer, Singapore, pp393-428.
  • Alsajri, F.A., Singh, B., Wijewardana, C., Irby, J.T., Gao, W., Reddy, K.R., 2019. Evaluating soybean cultivars for low-and high-temperature tolerance during the seedling growth stage. Agronomy, 9(13):1-20. doi: 10.3390/agronomy9010013.
  • Anonymous, 2017. Cotton and its by-products in the United Republic of Tanzania: Analysis of cotton by-products survey. United Nations Conference on Trade and Development. p45. https://unctad.org/system/files/official-document/sucmisc 2017 d12_en.pdf.
  • Anonymous, 2022a. United States Department of Agriculture. Agricultural Outlook Forum, in: Johnson, J., McDonald, S., Meyer, L. and Soley, G. (Eds.). The World and United States Cotton Outlook. https://www.usda.gov/sites/default/files/documents /2023AOF-cotton-outlook.pdf.
  • Anonymous, 2022b. ISTA, International Rules of Seed Testing. Seed Science and Technology, 4: 23-28. https://www.seedtest.org/en/publications/international-rules-seed-testing.html.
  • Benlloch-Gonzalez, M., Bochicchio, R., Berger, J., Bramley, H., Palta, J.A., 2014. High temperature reduces the positive effect of elevated CO2 on wheat root system growth. Field Crops Res., 165: 71–79. doi: 10.1016/j.fcr.2014.04.008.
  • Bibi, A.C., Oosterhuis, D.M., Gonias, E.D., 2008. Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. Journal of Cotton Science, 12(2): 150-159.
  • Bradow, J.M., Bauer, P.J., 2010. Germination and seedling development, in: Stewart J.McD., Oosterhuis D.M., Heitholt J.J., Mauney, J.R. (Eds), Physiology of cotton. Springer, Dordrecht. pp. 48–56.
  • Brand, D., Wijewardana, C., Gao, W., Reddy, K.R., 2016. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth. Frontiers of Earth Science, 10: 607–620. https://doi.org/10.1007/ s11707-016-0605-0.
  • Chu, T., Chen, R., Landivar, J.A., Maeda, M.M., Yang, C., Starek, M., 2016. Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery. Journal of Applied Remote Sensing, 10(3): 1-19. doi: 10.1117/1.JRS.10.036018.
  • Demiray, Y.G., Ekinci, R., Bardak, A., 2023. Investigation of vegetative high temperature tolerance of some cotton (Gossypium hirsutum L.) varieties. Turkish Journal of Nature and Science, 12(2): 111-118.
  • Duesterhaus, B., Hopper, N., Gannaway, J., Valco, T.D., 2000. A screening test for the evaluation of cold tolerance in cottonseed germination and emergence. Proceedings of the Beltwide Cotton Conference, 1: 596–599.
  • Ekinci, R., Sema, B., Emine, K., Çetin, K., 2017. The effects of high temperature stress on some agronomic characters in cotton. Pakistan Journal of Botany, 49(2): 503-508.
  • Fan, C., Hou. M., Si, P., Sun, H., Zhang, K., Bai, Z., Wang, G., Li, C., Liu, L., Zhang, Y., 2022. Response of root and root hair phenotypes of cotton seedlings under high temperature revealed with RhizoPot. Front. Plant Sci., 13: 1-15. doi: 10.3389/fpls.2022.1007145.
  • Fernando, V.B.A., Aníbal, T.P., 2018. Germination of three cotton genotypes seeds (Gossypium hirsutum L.) with imbibition in water treatments. Revista Logos, Ciencia & Tecnología, 10(4): 149-161. https://doi.org/10.22335/rlct.v10i2.557.
  • Fiaz, A., Asia, P., Noor, M., Muhammad, A.A., Muhammad, N.A., Khurram, S., Subhan, D., Niaz, A., 2020. Heat Stress in Cotton: Responses and Adaptive Mechanisms. In: Shakeel A and Mirza H (Eds). Cotton Production and Uses. Agronomy, Crop Protection, and Postharvest Technologies. Springer publisher, pp. 93-425.
  • Gavelienė, V., Jurkonienė, S., Jankovska-Bortkevič, E., Vegždienė, Š.D., 2022. Effects of elevated temperature on root system development of two lupine species. Plants, 11(2): 192-203. doi: 10.3390/plants11020192.
  • Gomez, K.A., Gomez, A.A., 1984. Statistical procedure for agricultural research. 2nd ed., John Wiley and Sons Co, New York.
  • Hasan, M.A., Ahmed, J.U., Hossain, T., Mian, M.A.K., Haque, M.M., 2013. Evaluation of the physiological quality of wheat seed as influenced by high parent plant growth temperature. J. Crop Sci. Biotechnol., 16: 69-74.
  • Hatfield, J.L., Prueger, J.H., 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10: 4–10. https://doi.org/10.1016/j. wace.2015.08.001.
  • Ikram, M., Rehamn, H.U., Soysal, S., Aamir, M., Islam, M.S., Kumari, A., Sabagh, A.E., 2022. Impact of climate change on cotton growth and yield, In: Karademir, E., Karademir, C. (Eds). Cotton Production Under Abiotic Stress, pp. 5-21. İksad Publishing House, Turkey.
  • Iloh, A.C., Omatta, G., Ogbadu, G.H., Onyenekwe, P.C., 2014. Effects of elevated temperature on seed germination and seedling growth on three cereal crops in Nigeria. Scientific Research and Essays, 9:.806–813. doi: 10.5897/SRE2014.5968.
  • Jackson, J.E., 1967. Studies on the sowing dates of cotton in the Sudan Gezira. J Agric Sci., 69: 305–315.
  • Jingxiang H., Jiarui, Z., Xuezhi, L., Yingying, M., Zhenhua, W., Heng, W., Fulai, L., 2023. Effect of biochar addition and reduced irrigation regimes on growth, physiology and water use efficiency of cotton plants under salt stress. Industrial Crops & Products, 198: 1-16. https://doi.org/10.1016/j.indcrop.2023.116702.
  • Khaeim, H., Kende, Z., Jolánkai, M., Kovács, G.P., Gyuricza, C., Tarnawa, A., 2022. Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy, 12: 2-23. doi:10.3390/agronomy12020397.
  • Khetran, A.S., Waseem, B., Sanaullah, B., Akram, S., Adnan, N.S., Muhammad, Y., Salih, A.I.S., Bilal, H.M., Muzafar, A.L., Shabeer, A., Sheer, A.M., Shahbaz, K.B., 2015. Influence of temperature regimes on germination of cotton (Gossypium hirsutum L.) Varieties. Journal of Biology, Agriculture and Healthcare, 5(11): 1-7.
  • Maguire, J.D., 1962. Speed of germination-aid in selection and evaluation for seedling emrgence and vigor. Crop Science, 2: 176–177. https://doi.org/10.2135/cropsci1962. 0011183 X000200020033x.
  • Mahmud, K.P., Smith, J.P., Rogiers, S.Y., Nielsen, S., Guisard, Y., Holzapfel, B.P., 2019. Diurnal dynamics of fine root growth in grapevines. Sci. Hortic-Amsterdam, 250: 138–147. doi: 10.1016/j.scienta.2019.02.035.
  • Maleki, K., Maleki, K., Soltani, E., Oveisi, M., Gonzalez-Andujar, J.L., 2023. A Model for Changes in Germination Synchrony and Its Implements to Study Weed Population Dynamics: A Case Study of Brassicaceae. Plants, 12: 1-12. doi.org/10.3390/ plants12020233.
  • Martins, S., Montiel-Jorda, A., Cayrel, A., Huguet, S., Roux, C.P.L., Ljung, K., 2017. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat. Commun, 8:1-11. doi: 10.1038/s41467-017- 00355-4.
  • Mašková, T., Herben, T., 2018. Root:shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecology and Evolution, 8: 7143–7150. doi: 10.1002/ece3.4238.
  • Qi, Y., Wei, W., Chen, C., Chen, L., 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, p.1-14. https://doi.org/10.1016/j.gecco. 2019.e00606.
  • Rajjou, L., M. Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., Job, D., 2012. Seed germination and vigor. Ann. Rev. Plant Biol., 63: 507-533.
  • Ranal, M.A., Denise, G.D.A., Wanessa, R.F., Clesnan, M.R., 2009. Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany, 32(4): 849-855. https://doi.org/10.1590/S0100-84042009000400022.
  • Raphael, J.P.A., Bruno, G., Jesion, G.S.N., Gabrielle, C.M., Ciro, A.R., 2017. Cotton germination and emergence under high diurnal temperatures. Crop Science, 57: 2761–2769. https://doi.org/10.2135/cropsci2017.03.0182.
  • Reddy, K.R., Brand, D., Wijewardana, C., Gao, W., 2017. Temperature effects on cotton seedling emergence, growth, and development. Agronomy Journal, 109(4): 1379–1387. https://doi.org/10.2134/agron j2016.07.0439.
  • Ribeiro, P.R., Fernandez, L.G., de Castro, R.D., Ligterink, W., Hilhorst, H.W., 2014. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach. BMC Plant Biol., 14: 223. doi: 10.1186/s12870-014-0223-5.
  • Sainju, U.M., Brett, L.A., Andrew, W.L., Rajan, P.G., 2017. Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates. Field Crops Research, 210: 183–191.
  • Sghaier, A.H., Tarnawa, Á., Khaeim, H., Kovács, G.P., Gyuricza, C., Kende, Z., 2022. The effects of temperature and water on the seed germination and seedling development of rapeseed (Brassica napus L.). Plants, 11: 2-18. https://doi.org/10.3390/plants11212819.
  • Sharma, S., Singh, V., Tanwar, H., Mor, V.S., Kumar, M., Punia, R.C., Dalal, M.S., Khan, M., Sangwan, S., Bhuker, A., Dagar, C.S., Yashveer, S., Singh, J., 2022. Impact of High Temperature on Germination, Seedling Growth and Enzymatic Activity of Wheat. Agriculture, 12: 2-19. https://doi.org/10.3390/agriculture12091500.
  • Singh, B., Norvell, E., Wijewardana, C., Wallace, T., Chastain, D., Reddy, K.R., 2018. Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. J. Agron. Crop Sci., 4: 467-476.
  • Smith, C.W., Varvil, J.J., 1984. Standard and cool germination tests compared with field emergence in upland cotton. Agronomy Journal, 76: 587–589. https://doi.org/10.2134/agronj1984.00021962007600040019x.
  • Taranet, P., Kirchhof, G., Fujinuma, R., Menzies, N., 2018. Root zone temperature alters storage root formation and growth of sweetpotato. J. Agron. Crop Sci., 204: 313–324. doi: 10.1111/jac.12262.
  • Virk, G., Snider, J.L., Chee, P., Jespersen, D., Pilon, C., Rains, G., 2021. Extreme temperatures affect seedling growth and photosynthetic performance of advanced cotton genotypes. Ind. Crop Prod., 172: 114025. doi: 10.1016/ j. indcrop.2021.114025.
  • Walne, C.H., Reddy, K.R., 2022. Temperature Effects on the Shoot and Root Growth, Development, and Biomass Accumulation of Corn (Zea mays L.). Agriculture, 12 (443): 2-21. https://doi.org/10.3390/ agriculture12040443.
  • Wanjura, D.F., Buxton, D.R., 1972. Water uptake and radical emergence of cottonseed as affected by soil moisture and temperature. Agronomy Journal, 64: 427–431. Doi: 10.2134/agronj1972.00021962006400040005x.
  • Whitford, W.G., Duval, B.D., 2020. Ecology of Desert Systems (Second Edition), pp. 473. https://doi.org/10.1016/B978-0-12-815055-9.00007-2.

Çimlenme Sıcaklığının Pamuk (Gossiypium Hirsutum L.) Çeşitlerinde Çimlenme ve Fide Büyüme Parametrelerine Etkisi

Yıl 2024, , 623 - 636, 30.10.2024
https://doi.org/10.7161/omuanajas.1498795

Öz

Bitki yaşamında çimlenme ve fide büyüme periyodu çok önemli bir fonksiyona sahiptir. Özellikle abiyotik stress koşullarının oluştuğu durumlarda bu periyotlar bitki yaşamının sürdürülebilirliği için hayatı derecede öneme sahiptirler. Bu durum dikkate alınarak pamuk çeşitlerinin çimlenmesi ve fide büyüme parametreleri açısından en uygun sıcaklık derecesinin tespit edilmesi amacıyla bu araştırma yürütülmüştür. Kontrollü koşullar altında yürütülen bu araştırmada, iki pamuk çeşidinin (May-344 ve Candia) çimlenme ve fide gelişim parametreleri 8 farklı sıcaklık seviyelerinde (8, 12, 16, 20, 24, 28, 32 ve 36°C) test edilmiştir. Araştırma sonucu May-344 ve Candia pamuk çeşitlerinde sırasıyla çimlenme yüzdesinin %45,17-16,17, çimlenme süresinin 4,06-3,94 gün ve çıkış oranı indeksinin 1,89-0,58 olduğu belirlenmiştir. Ayrıca; May-344 ve Candia pamuk çeşitlerinde sırasıyla kök uzunluğu 37,89-16,43 mm, gövde uzunluğu 44,69-41,00 mm, kök taze ağırlığı 22,40-19,51 mg, gövde taze ağırlığı 90,37-131,80 mg ve kök/gövde oranı 0,26-0,16 mg/mg olarak bulunmuştur. İlave olarak test edilen parametrelerin çoğunun sıcaklıktan önemli ölçüde etkilendiğini belirlenmiştir. Her iki pamuk çeşidinin ortalaması ve her iki çeşit için ayrı ayrı en yüksek çimlenme oranı 20 oC'de elde edilmiştir. 8 oC'de ise çimlenme kaydedilmemiştir. Kök/sürgün oranı dışında diğer fide büyüme parametreleri 20-32 oC arasında maksimuma ulaşırken, daha yüksek sıcaklıklarda azalmıştır.

Etik Beyan

Gerek Yoktur

Destekleyen Kurum

OMU BAP

Teşekkür

The support provided for this project (PYO.ZRT.1904.23.017) by the Ondokuz May University Scientific Research Projects Office (OMU-BAP).

Kaynakça

  • Abdelraheem, A., Esmaeili, N., O’Connell, M., Zhang, J., 2019. Progress and perspective on drought and salt stress tolerance in cotton. Ind. Crops Prod., 130: 118–129. https://doi.org/10.1016/j.indcrop.2018.12.070 Ahmad, F., Perveen, A., Mohammad, N., Ali, A.A., Akhtar, M.N., Shahzad, K., Danish, S., Ahmed, N., 2020. Heat stress in cotton: Responses and adaptive mechanisms, in Ahmad, S., & Mirza, H. (Eds.), Cotton Production and Uses. Agronomy, Crop Protection, and Postharvest Technologies. Springer, Singapore, pp393-428.
  • Alsajri, F.A., Singh, B., Wijewardana, C., Irby, J.T., Gao, W., Reddy, K.R., 2019. Evaluating soybean cultivars for low-and high-temperature tolerance during the seedling growth stage. Agronomy, 9(13):1-20. doi: 10.3390/agronomy9010013.
  • Anonymous, 2017. Cotton and its by-products in the United Republic of Tanzania: Analysis of cotton by-products survey. United Nations Conference on Trade and Development. p45. https://unctad.org/system/files/official-document/sucmisc 2017 d12_en.pdf.
  • Anonymous, 2022a. United States Department of Agriculture. Agricultural Outlook Forum, in: Johnson, J., McDonald, S., Meyer, L. and Soley, G. (Eds.). The World and United States Cotton Outlook. https://www.usda.gov/sites/default/files/documents /2023AOF-cotton-outlook.pdf.
  • Anonymous, 2022b. ISTA, International Rules of Seed Testing. Seed Science and Technology, 4: 23-28. https://www.seedtest.org/en/publications/international-rules-seed-testing.html.
  • Benlloch-Gonzalez, M., Bochicchio, R., Berger, J., Bramley, H., Palta, J.A., 2014. High temperature reduces the positive effect of elevated CO2 on wheat root system growth. Field Crops Res., 165: 71–79. doi: 10.1016/j.fcr.2014.04.008.
  • Bibi, A.C., Oosterhuis, D.M., Gonias, E.D., 2008. Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. Journal of Cotton Science, 12(2): 150-159.
  • Bradow, J.M., Bauer, P.J., 2010. Germination and seedling development, in: Stewart J.McD., Oosterhuis D.M., Heitholt J.J., Mauney, J.R. (Eds), Physiology of cotton. Springer, Dordrecht. pp. 48–56.
  • Brand, D., Wijewardana, C., Gao, W., Reddy, K.R., 2016. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth. Frontiers of Earth Science, 10: 607–620. https://doi.org/10.1007/ s11707-016-0605-0.
  • Chu, T., Chen, R., Landivar, J.A., Maeda, M.M., Yang, C., Starek, M., 2016. Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery. Journal of Applied Remote Sensing, 10(3): 1-19. doi: 10.1117/1.JRS.10.036018.
  • Demiray, Y.G., Ekinci, R., Bardak, A., 2023. Investigation of vegetative high temperature tolerance of some cotton (Gossypium hirsutum L.) varieties. Turkish Journal of Nature and Science, 12(2): 111-118.
  • Duesterhaus, B., Hopper, N., Gannaway, J., Valco, T.D., 2000. A screening test for the evaluation of cold tolerance in cottonseed germination and emergence. Proceedings of the Beltwide Cotton Conference, 1: 596–599.
  • Ekinci, R., Sema, B., Emine, K., Çetin, K., 2017. The effects of high temperature stress on some agronomic characters in cotton. Pakistan Journal of Botany, 49(2): 503-508.
  • Fan, C., Hou. M., Si, P., Sun, H., Zhang, K., Bai, Z., Wang, G., Li, C., Liu, L., Zhang, Y., 2022. Response of root and root hair phenotypes of cotton seedlings under high temperature revealed with RhizoPot. Front. Plant Sci., 13: 1-15. doi: 10.3389/fpls.2022.1007145.
  • Fernando, V.B.A., Aníbal, T.P., 2018. Germination of three cotton genotypes seeds (Gossypium hirsutum L.) with imbibition in water treatments. Revista Logos, Ciencia & Tecnología, 10(4): 149-161. https://doi.org/10.22335/rlct.v10i2.557.
  • Fiaz, A., Asia, P., Noor, M., Muhammad, A.A., Muhammad, N.A., Khurram, S., Subhan, D., Niaz, A., 2020. Heat Stress in Cotton: Responses and Adaptive Mechanisms. In: Shakeel A and Mirza H (Eds). Cotton Production and Uses. Agronomy, Crop Protection, and Postharvest Technologies. Springer publisher, pp. 93-425.
  • Gavelienė, V., Jurkonienė, S., Jankovska-Bortkevič, E., Vegždienė, Š.D., 2022. Effects of elevated temperature on root system development of two lupine species. Plants, 11(2): 192-203. doi: 10.3390/plants11020192.
  • Gomez, K.A., Gomez, A.A., 1984. Statistical procedure for agricultural research. 2nd ed., John Wiley and Sons Co, New York.
  • Hasan, M.A., Ahmed, J.U., Hossain, T., Mian, M.A.K., Haque, M.M., 2013. Evaluation of the physiological quality of wheat seed as influenced by high parent plant growth temperature. J. Crop Sci. Biotechnol., 16: 69-74.
  • Hatfield, J.L., Prueger, J.H., 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10: 4–10. https://doi.org/10.1016/j. wace.2015.08.001.
  • Ikram, M., Rehamn, H.U., Soysal, S., Aamir, M., Islam, M.S., Kumari, A., Sabagh, A.E., 2022. Impact of climate change on cotton growth and yield, In: Karademir, E., Karademir, C. (Eds). Cotton Production Under Abiotic Stress, pp. 5-21. İksad Publishing House, Turkey.
  • Iloh, A.C., Omatta, G., Ogbadu, G.H., Onyenekwe, P.C., 2014. Effects of elevated temperature on seed germination and seedling growth on three cereal crops in Nigeria. Scientific Research and Essays, 9:.806–813. doi: 10.5897/SRE2014.5968.
  • Jackson, J.E., 1967. Studies on the sowing dates of cotton in the Sudan Gezira. J Agric Sci., 69: 305–315.
  • Jingxiang H., Jiarui, Z., Xuezhi, L., Yingying, M., Zhenhua, W., Heng, W., Fulai, L., 2023. Effect of biochar addition and reduced irrigation regimes on growth, physiology and water use efficiency of cotton plants under salt stress. Industrial Crops & Products, 198: 1-16. https://doi.org/10.1016/j.indcrop.2023.116702.
  • Khaeim, H., Kende, Z., Jolánkai, M., Kovács, G.P., Gyuricza, C., Tarnawa, A., 2022. Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy, 12: 2-23. doi:10.3390/agronomy12020397.
  • Khetran, A.S., Waseem, B., Sanaullah, B., Akram, S., Adnan, N.S., Muhammad, Y., Salih, A.I.S., Bilal, H.M., Muzafar, A.L., Shabeer, A., Sheer, A.M., Shahbaz, K.B., 2015. Influence of temperature regimes on germination of cotton (Gossypium hirsutum L.) Varieties. Journal of Biology, Agriculture and Healthcare, 5(11): 1-7.
  • Maguire, J.D., 1962. Speed of germination-aid in selection and evaluation for seedling emrgence and vigor. Crop Science, 2: 176–177. https://doi.org/10.2135/cropsci1962. 0011183 X000200020033x.
  • Mahmud, K.P., Smith, J.P., Rogiers, S.Y., Nielsen, S., Guisard, Y., Holzapfel, B.P., 2019. Diurnal dynamics of fine root growth in grapevines. Sci. Hortic-Amsterdam, 250: 138–147. doi: 10.1016/j.scienta.2019.02.035.
  • Maleki, K., Maleki, K., Soltani, E., Oveisi, M., Gonzalez-Andujar, J.L., 2023. A Model for Changes in Germination Synchrony and Its Implements to Study Weed Population Dynamics: A Case Study of Brassicaceae. Plants, 12: 1-12. doi.org/10.3390/ plants12020233.
  • Martins, S., Montiel-Jorda, A., Cayrel, A., Huguet, S., Roux, C.P.L., Ljung, K., 2017. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat. Commun, 8:1-11. doi: 10.1038/s41467-017- 00355-4.
  • Mašková, T., Herben, T., 2018. Root:shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecology and Evolution, 8: 7143–7150. doi: 10.1002/ece3.4238.
  • Qi, Y., Wei, W., Chen, C., Chen, L., 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, p.1-14. https://doi.org/10.1016/j.gecco. 2019.e00606.
  • Rajjou, L., M. Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., Job, D., 2012. Seed germination and vigor. Ann. Rev. Plant Biol., 63: 507-533.
  • Ranal, M.A., Denise, G.D.A., Wanessa, R.F., Clesnan, M.R., 2009. Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany, 32(4): 849-855. https://doi.org/10.1590/S0100-84042009000400022.
  • Raphael, J.P.A., Bruno, G., Jesion, G.S.N., Gabrielle, C.M., Ciro, A.R., 2017. Cotton germination and emergence under high diurnal temperatures. Crop Science, 57: 2761–2769. https://doi.org/10.2135/cropsci2017.03.0182.
  • Reddy, K.R., Brand, D., Wijewardana, C., Gao, W., 2017. Temperature effects on cotton seedling emergence, growth, and development. Agronomy Journal, 109(4): 1379–1387. https://doi.org/10.2134/agron j2016.07.0439.
  • Ribeiro, P.R., Fernandez, L.G., de Castro, R.D., Ligterink, W., Hilhorst, H.W., 2014. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach. BMC Plant Biol., 14: 223. doi: 10.1186/s12870-014-0223-5.
  • Sainju, U.M., Brett, L.A., Andrew, W.L., Rajan, P.G., 2017. Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates. Field Crops Research, 210: 183–191.
  • Sghaier, A.H., Tarnawa, Á., Khaeim, H., Kovács, G.P., Gyuricza, C., Kende, Z., 2022. The effects of temperature and water on the seed germination and seedling development of rapeseed (Brassica napus L.). Plants, 11: 2-18. https://doi.org/10.3390/plants11212819.
  • Sharma, S., Singh, V., Tanwar, H., Mor, V.S., Kumar, M., Punia, R.C., Dalal, M.S., Khan, M., Sangwan, S., Bhuker, A., Dagar, C.S., Yashveer, S., Singh, J., 2022. Impact of High Temperature on Germination, Seedling Growth and Enzymatic Activity of Wheat. Agriculture, 12: 2-19. https://doi.org/10.3390/agriculture12091500.
  • Singh, B., Norvell, E., Wijewardana, C., Wallace, T., Chastain, D., Reddy, K.R., 2018. Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. J. Agron. Crop Sci., 4: 467-476.
  • Smith, C.W., Varvil, J.J., 1984. Standard and cool germination tests compared with field emergence in upland cotton. Agronomy Journal, 76: 587–589. https://doi.org/10.2134/agronj1984.00021962007600040019x.
  • Taranet, P., Kirchhof, G., Fujinuma, R., Menzies, N., 2018. Root zone temperature alters storage root formation and growth of sweetpotato. J. Agron. Crop Sci., 204: 313–324. doi: 10.1111/jac.12262.
  • Virk, G., Snider, J.L., Chee, P., Jespersen, D., Pilon, C., Rains, G., 2021. Extreme temperatures affect seedling growth and photosynthetic performance of advanced cotton genotypes. Ind. Crop Prod., 172: 114025. doi: 10.1016/ j. indcrop.2021.114025.
  • Walne, C.H., Reddy, K.R., 2022. Temperature Effects on the Shoot and Root Growth, Development, and Biomass Accumulation of Corn (Zea mays L.). Agriculture, 12 (443): 2-21. https://doi.org/10.3390/ agriculture12040443.
  • Wanjura, D.F., Buxton, D.R., 1972. Water uptake and radical emergence of cottonseed as affected by soil moisture and temperature. Agronomy Journal, 64: 427–431. Doi: 10.2134/agronj1972.00021962006400040005x.
  • Whitford, W.G., Duval, B.D., 2020. Ecology of Desert Systems (Second Edition), pp. 473. https://doi.org/10.1016/B978-0-12-815055-9.00007-2.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Bitkileri
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Mashenene Charles Malima 0009-0000-5221-7613

Muhammet Safa Hacıkamiloğlu 0000-0002-2188-2765

Orhan Kurt 0000-0002-5662-9372

Erken Görünüm Tarihi 25 Ekim 2024
Yayımlanma Tarihi 30 Ekim 2024
Gönderilme Tarihi 13 Haziran 2024
Kabul Tarihi 19 Ağustos 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Malima, M. C., Hacıkamiloğlu, M. S., & Kurt, O. (2024). Effect of Germination Temperature on Germination and Seedling Growth Parameters in Cotton (Gossiypium Hirsutum L.) Varieties. Anadolu Tarım Bilimleri Dergisi, 39(3), 623-636. https://doi.org/10.7161/omuanajas.1498795
Online ISSN: 1308-8769