Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Gübreleme Oranlarının Kuraklık-tuzluluk Stresi Koşullarında Tatlı Mısırın Verim, Bitki Su Tüketimi ve Su Kullanım Verimliliğinin Karşılaştırılması

Yıl 2024, , 649 - 665, 30.10.2024
https://doi.org/10.7161/omuanajas.1516821

Öz

Bu çalışmada üç gübreleme (N-P2O5-K2O) oranı (F1:240-100-120 kg ha-1, F2: 192-80-96 kg ha-1, F3:154-64-77 kg ha-1) ile birlikte dört sulama uygulamasının (Kontrol: C, tarla kapasitesinin %100’ü kadar sulanmıştır, Kuraklık: D, C konusun %60’ı kadar sulanmıştır, Tuzlu: S, tarla kapasitesinin %100’ü kadar sulanmıştır, Kuraklık ve Tuzlu: S konusunun %60’ı kadar sulanmıştır) tatlı mısırın verim, bitki su tüketimi (ET), su kullanım verimliliği (WUE) ve gövde yaş-kuru ağırlıkları üzerine etkileri araştırılmıştır. Elde edilen sonuçlar, D, S ve D+S uygulamalarında tane veriminin C uygulamasına göre sırasıyla %24.2, %46.6 ve %62.2 oranında azaldığını göstermiştir. Ayrıca, F3 koşulunda tane verimi F1 koşuluna kıyasla %45.3 oranında azalmıştır. Bununla birlikte, en yüksek ET (330.7 mm) ve verim (74.0 g) F1×C konusundan elde edilmiştir. F2 ve F3 uygulamaları, F1 uygulamasına kıyasla WUE' yi sırasıyla %17.9 ve %31.5 oranında azaltmıştır. Tüm gübreleme koşulları altında verim, ET, WUE ve sürgün taze-kuru ağırlıklarında en yüksek azalma D+S sulama uygulamasında bulunmuştur. En uzun bitkiler F1×C uygulamasında gözlenmiş olup, F1×(D+S), F2×(D+S) ve F3×(D+S) uygulamalarındaki bitkilerden sırasıyla %24.0, %33.5 ve %43.2 daha uzun olmuştur. F3 koşullarında, tatlı mısır bitkisinin tek başına veya birlikte tuzluluk ve kuraklık stresine maruz bırakılması, bitkinin büyüme yeteneğini önemli ölçüde bozduğundan, tarımsal açıdan ekonomik ve sürdürülebilir bir yetiştirme yöntemi değildir. Sonuç olarak, tatlı mısır bitkilerinin tek başına veya kombine kuraklık-tuzluluk stresi altında yetiştirilmesi, dane verimindeki yüksek düşüş nedeniyle önerilmemektedir.

Etik Beyan

Bu çalışma etik kurul onayı gerektirmez.

Destekleyen Kurum

Bu çalışma için herhangi bir kurumdan maddi destek almamıştır.

Kaynakça

  • Abaza, A.S.D., Elshamly, A.M.S., Alwahibi, M.S., Elshikh, M.S., Ditta, A., 2023. Impact of different sowing dates and irrigation levels on NPK absorption, yield and water use efficiency of maize. Scientific Reports, 2023 13(1):–14. https://doi.org/10.1038/s41598-023-40032-9.
  • Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., Hernandez, J.A., 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 18. https://doi.org/10.3390/agronomy7010018.
  • Ahanger, M.A., Qin, C., Begum, N., Maodong, Q., Dong, X.X., El-Esawi, M., El-Sheikh, M.A., Alatar, A.A., Zhang, L., 2019. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biology, 19, 1–12. https://doi.org/10.1186/S12870-019-2085-3/FIGURES/8.
  • Angon, P.B., Tahjib-Ul-Arif, M., Samin, S.I., Habiba, U., Hossain, M.A., Brestic, M., 2022. How do plants respond to combined drought and salinity stress?—a systematic review. Plants, 11, 2884. https://doi.org/10.3390/PLANTS11212884/S1.
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77. https://doi.org/10.1016/J.PLAPHY.2020.08.042.
  • Ashraf, M., Athar, H.R., Harris, P.J.C., Kwon, T.R., 2008. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45–110. https://doi.org/10.1016/S0065-2113(07)00002-8.
  • Cao, H., Ding, R., Kang, S., Du, T., Tong, L., Zhang, Y., Chen, J., Shukla, M.K., 2023. Drought, salt, and combined stresses in plants: Effects, tolerance mechanisms, and strategies. Advances in Agronomy 178, 107–163. https://doi.org/10.1016/bs.agron.2022.11.004
  • Chávez-Arias, C.C., Ligarreto-Moreno, G.A., Ramírez-Godoy, A., Restrepo-Díaz, H., 2021. Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: a physiological, biochemical and molecular view. Front. Plant Sci. 12, 702841. https://doi.org/10.3389/FPLS.2021.702841/BIBTEX.
  • Du, K., Zhang, Y., Qin, S., Wang, L., Zhang, B., Wang, S., 2022. Effects of nitrogen fertilization on physiological response of maize to soil salinity. Agriculture, 12, 877. https://doi.org/10.3390/AGRICULTURE12060877.
  • Du, Q., Zhao, X. H., X, L., Jiang, C. Ji., Wang, X. guang., H, Y., Wang, J., Yu, H. qiu, 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J Integr Agric. 18, 395–406. https://doi.org/10.1016/S2095-3119(18)61953-7.
  • Özdemir, O., Ünlükara, A., Kurunc, A., 2009. Response of cowpea (Vigna unguiculata) to salinity and irrigation regimes. N Z J Crop Hortic. Sci. 37, 271–280. https://doi.org/10.1080/01140670909510273.
  • Garcia y Garcia, A., Guerra, L.C., Hoogenboom, G., 2009. Water use and water use efficiency of sweet corn under different weather conditions and soil moisture regimes. Agricultural Water Management, 96, 1369–1376. https://doi.org/10.1016/J.AGWAT.2009.04.022.
  • Gucdemir, İ., 2006. Türkiye fertilizer and fertilization guide, Updated and expanded edition. Soil Fertilizer and Water Resources Central Research Institute Directorate. General publication no: 213, Technical publication no: T69. Ankara, Türkiye.
  • Guo, Y., Wang, Z., Li, J., 2023. Coupling effects of phosphate fertilizer type and drip fertigation strategy on soil nutrient distribution, maize yield and nutrient uptake. Agricultural Water Management, 290, 108602. https://doi.org/10.1016/J.AGWAT.2023.108602.
  • Han, K., Han, X., Curtis, D.J., Kleinman, P.J.A., Wang, D., Wang, L., 2016. Impact of irrigation, nitrogen fertilization, and spatial management on maize. Agron. J. 108, 1794–1804. https://doi.org/10.2134/AGRONJ2015.0551.
  • Hu, Y., Schmidhalter, U., 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168, 541–549. https://doi.org/10.1002/JPLN.200420516.
  • Javed, S.A., Jaffar, M.T., Shahzad, S.M., Ashraf, M., Piracha, M.A., Mukhtar, A., Rahman, S.U., Almoallim, H.S., Ansari, M.J., Zhang, J., 2024. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environ. Exp. Bot. 226, 105836. https://doi.org/10.1016/J.ENVEXPBOT.2024.105836.
  • Kang, S., Zhang, J., 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J. Exp. Bot. 55, 2437–2446. https://doi.org/10.1093/JXB/ERH249.
  • Kaplan, M., Baran, O., Unlukara, A., Kale, H., Arslan, M., Kara, K., Beyzi, S.B., Konca, Y., Ulas, A., 2016. The effects of different nitrogen doses and irrigation levels on yield, nutritive value, fermentation and gas production of corn silage. Turkish Journal of Field Crops, 21, 101–109. https://doi.org/10.17557/TJFC.82794.
  • Kiremit, M.S., Arslan, H., 2018. Response of leek (Allium porrum L.) to different irrigation water levels under rain shelter. Commun. Soil Sci. Plant Anal. 49, 99–108. https://doi.org/10.1080/00103624.2017.1421652.
  • Kurunc, A., Unlukara, A., Cemek, B., 2011. Salinity and drought affect yield response of bell pepper similarly. Acta Agric. Scand. B Soil Plant Sci. 61, 514–522. https://doi.org/10.1080/09064710.2010.513691.
  • Liu, Ji, Wang, Y., Li, Yong, Peñuelas, J., Zhao, Y., Sardans, J., Tetzlaff, D., Liu, Jian, Liu, X., Yuan, H., Li, Yanyan, Chen, J., Wu, J., 2023. Soil ecological stoichiometry synchronously regulates stream nitrogen and phosphorus concentrations and ratios. Catena (Amst) 231, 107357. https://doi.org/10.1016/J.CATENA.2023.107357.
  • Osman, H.M., Arslan, H., 2022. Response of leaf nutrients, yield, growth parameters, and evapotranspiration of sweet corn (Zea mays L. saccharata Sturt) to shallow and saline groundwater depths. Archives of Agronomy and Soil Science, 69(11), 2138-2153. https://doi.org/10.1080/03650340.2022.2140144.
  • Singh, A., 2022. Soil salinity: A global threat to sustainable development. Soil Use Manag. 38, 39–67. https://doi.org/10.1111/SUM.12772.
  • Sperling, O., Perry, A., Ben-Gal, A., Yermiyahu, U., Hochberg, U., 2024. Potassium deficiency reduces grapevine transpiration through decreased leaf area and stomatal conductance. Plant Physiology and Biochemistry, 208, 108534. https://doi.org/10.1016/J.PLAPHY.2024.
  • Subrata, B.A.G., Kiremit, M., Öztürk, E., Arslan, H., Sezer, İ., Akay, H., 2022. Evaluation of the directly and indirectly effects of the morpho-physiological traits of sweet corn seedlings on yield with structural equation modeling partial least square (SEM-PLS) Approach. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 8, 79–91. https://doi.org/10.24180/ijaws.1000535.
  • Takma, Ç., Gevrekçi, Y., Hızlı, H., 2023. Statistical analysis in agricultural research, 1stEdition ed. Holistence Publications, Çanakkale, Türkiye.
  • Ünlükara, A., Kurunç, A., Cemek, B., 2015. Green long pepper growth under different saline and water regime conditions and usability of water consumption in plant salt tolerance. Tarım Bilimleri Dergisi, 21, 167. https://doi.org/10.15832/tbd.82317.
  • Vaughan, M.M., Block, A., Christensen, S.A., Allen, L.H., Schmelz, E.A., 2018. The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochemistry Reviews, 17, 37–49. https://doi.org/10.1007/S11101-017-9508-2/FIGURES/2.
  • Wang, X.C., Liu, R., Luo, J. nan, Zhu, P. fei, Wang, Y. sheng, Pan, X.C., Shu, L.Z., 2022. Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation. Agric. Water Manag. 271, 107785. https://doi.org/10.1016/J.AGWAT.2022.107785.
  • Wang, Y., Zhang, X., Chen, J., Chen, A., Wang, L., Guo, X., Niu, Y., Liu, S., Mi, G., Gao, Q., 2019. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agric. Water Manag. 212, 328–337. https://doi.org/10.1016/J.AGWAT.2018.09.010.
  • Wei, H., Geng, X., Zhu, W., Zhang, Xiang, Zhang, Xubin, Chen, Y., Huo, Z., Xu, K., Zhou, G., Meng, T., Dai, Q., 2023. Individual and combined influences of salinity and drought stress on the agro-physiological traits and grain yield of rice. Field Crops Res 304, 109172. https://doi.org/10.1016/J.FCR.2023.109172.
  • Yaghoubi Khanghahi, M., Leoni, B., Crecchio, C., 2021. Photosynthetic responses of durum wheat to chemical/microbiological fertilization management under salt and drought stresses. Acta Physiol. Plant. 43, 1–14. https://doi.org/10.1007/S11738-021-03289-Z/TABLES/4.
  • Ye, T., Ma, J., Zhang, P., Shan, S., Liu, L., Tang, L., Cao, W., Liu, B., Zhu, Y., 2022. Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain. Agric. Water Manag. 271, 107787. https://doi.org/10.1016/J.AGWAT.2022.107787.
  • Yue, Q., Guo, P., 2021. Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty. Agric. Water Manag. 252, 106899. https://doi.org/10.1016/J.AGWAT.2021.106899.
  • Yurtseven, E., Kesmez, G.D., Ünlükara, A., 2005. The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central anatolian tomato species (Lycopersicon esculantum). Agric. Water Manag. 78, 128–135. https://doi.org/10.1016/J.AGWAT.2005.04.018.
  • Zou, H., Fan, J., Zhang, F., Xiang, Y., Wu, L., Yan, S., 2020. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 230, 105986. https://doi.org/10.1016/J.AGWAT.2019.105986.

Comparison of Different Fertilization Rates on Yield, Evapotranspiration, and Water Use Efficiency of Sweet Corn under Drought-salinity Stresses

Yıl 2024, , 649 - 665, 30.10.2024
https://doi.org/10.7161/omuanajas.1516821

Öz

The present study investigated the effects of three fertilization (N-P2O5-K2O) rates (F1: 240-100-120 kg ha-1, F2: 192-80-96 kg ha-1, F3: 154-64-77 kg ha-1) coupled with four irrigation practices (Control: C, irrigated at the 100% field capacity, Drought: D, irrigated 60% of C, Saline: S, irrigated at the 100% field capacity, Drought and saline: D+S, irrigated 60% of S) on sweet corn yield, evapotranspiration (ET), water use efficiency (WUE), and shoot fresh-dry weights. The obtained results depicted that the grain yield at D, S, and D+S treatments decreased by 24.2%, 46.6%, and 62.0%, respectively, relative to the C treatment. Moreover, grain yield at the F3 condition was reduced by 45.3% compared to the F1 condition. Additionally, the highest ET (330.7 mm) and yield (74.0 g) was achieved with F1×C treatment. The F2 and F3 treatments reduced WUE by 17.9% and 31.5%, respectively, compared to the F1 treatment. The highest reduction in yield, ET, WUE, and shoot fresh-dry weights was found at D+S irrigation treatment under all fertilization conditions. The tallest plants were observed in the F1×C treatment, being 24.0%, 33.5%, and 43.2% taller than plants in the F1×(D+S), F2×(D+S), and F3×(D+S) treatments, respectively. Under F3 conditions, exposing sweet corn plants to single or combined salinity and drought stress remarkably degraded the growth ability of the plants, and therefore, it is not economical and sustainable cultivation for agriculture. Finally, cultivation of sweet corn plants under individual or combined drought-salinity stress is not recommended due to the high reduction in grain yield.

Etik Beyan

This study does not require approval from the ethics committee.

Destekleyen Kurum

This study did not receive financial support from any institute.

Kaynakça

  • Abaza, A.S.D., Elshamly, A.M.S., Alwahibi, M.S., Elshikh, M.S., Ditta, A., 2023. Impact of different sowing dates and irrigation levels on NPK absorption, yield and water use efficiency of maize. Scientific Reports, 2023 13(1):–14. https://doi.org/10.1038/s41598-023-40032-9.
  • Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., Hernandez, J.A., 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7, 18. https://doi.org/10.3390/agronomy7010018.
  • Ahanger, M.A., Qin, C., Begum, N., Maodong, Q., Dong, X.X., El-Esawi, M., El-Sheikh, M.A., Alatar, A.A., Zhang, L., 2019. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biology, 19, 1–12. https://doi.org/10.1186/S12870-019-2085-3/FIGURES/8.
  • Angon, P.B., Tahjib-Ul-Arif, M., Samin, S.I., Habiba, U., Hossain, M.A., Brestic, M., 2022. How do plants respond to combined drought and salinity stress?—a systematic review. Plants, 11, 2884. https://doi.org/10.3390/PLANTS11212884/S1.
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77. https://doi.org/10.1016/J.PLAPHY.2020.08.042.
  • Ashraf, M., Athar, H.R., Harris, P.J.C., Kwon, T.R., 2008. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45–110. https://doi.org/10.1016/S0065-2113(07)00002-8.
  • Cao, H., Ding, R., Kang, S., Du, T., Tong, L., Zhang, Y., Chen, J., Shukla, M.K., 2023. Drought, salt, and combined stresses in plants: Effects, tolerance mechanisms, and strategies. Advances in Agronomy 178, 107–163. https://doi.org/10.1016/bs.agron.2022.11.004
  • Chávez-Arias, C.C., Ligarreto-Moreno, G.A., Ramírez-Godoy, A., Restrepo-Díaz, H., 2021. Maize responses challenged by drought, elevated daytime temperature and arthropod herbivory stresses: a physiological, biochemical and molecular view. Front. Plant Sci. 12, 702841. https://doi.org/10.3389/FPLS.2021.702841/BIBTEX.
  • Du, K., Zhang, Y., Qin, S., Wang, L., Zhang, B., Wang, S., 2022. Effects of nitrogen fertilization on physiological response of maize to soil salinity. Agriculture, 12, 877. https://doi.org/10.3390/AGRICULTURE12060877.
  • Du, Q., Zhao, X. H., X, L., Jiang, C. Ji., Wang, X. guang., H, Y., Wang, J., Yu, H. qiu, 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J Integr Agric. 18, 395–406. https://doi.org/10.1016/S2095-3119(18)61953-7.
  • Özdemir, O., Ünlükara, A., Kurunc, A., 2009. Response of cowpea (Vigna unguiculata) to salinity and irrigation regimes. N Z J Crop Hortic. Sci. 37, 271–280. https://doi.org/10.1080/01140670909510273.
  • Garcia y Garcia, A., Guerra, L.C., Hoogenboom, G., 2009. Water use and water use efficiency of sweet corn under different weather conditions and soil moisture regimes. Agricultural Water Management, 96, 1369–1376. https://doi.org/10.1016/J.AGWAT.2009.04.022.
  • Gucdemir, İ., 2006. Türkiye fertilizer and fertilization guide, Updated and expanded edition. Soil Fertilizer and Water Resources Central Research Institute Directorate. General publication no: 213, Technical publication no: T69. Ankara, Türkiye.
  • Guo, Y., Wang, Z., Li, J., 2023. Coupling effects of phosphate fertilizer type and drip fertigation strategy on soil nutrient distribution, maize yield and nutrient uptake. Agricultural Water Management, 290, 108602. https://doi.org/10.1016/J.AGWAT.2023.108602.
  • Han, K., Han, X., Curtis, D.J., Kleinman, P.J.A., Wang, D., Wang, L., 2016. Impact of irrigation, nitrogen fertilization, and spatial management on maize. Agron. J. 108, 1794–1804. https://doi.org/10.2134/AGRONJ2015.0551.
  • Hu, Y., Schmidhalter, U., 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168, 541–549. https://doi.org/10.1002/JPLN.200420516.
  • Javed, S.A., Jaffar, M.T., Shahzad, S.M., Ashraf, M., Piracha, M.A., Mukhtar, A., Rahman, S.U., Almoallim, H.S., Ansari, M.J., Zhang, J., 2024. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environ. Exp. Bot. 226, 105836. https://doi.org/10.1016/J.ENVEXPBOT.2024.105836.
  • Kang, S., Zhang, J., 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J. Exp. Bot. 55, 2437–2446. https://doi.org/10.1093/JXB/ERH249.
  • Kaplan, M., Baran, O., Unlukara, A., Kale, H., Arslan, M., Kara, K., Beyzi, S.B., Konca, Y., Ulas, A., 2016. The effects of different nitrogen doses and irrigation levels on yield, nutritive value, fermentation and gas production of corn silage. Turkish Journal of Field Crops, 21, 101–109. https://doi.org/10.17557/TJFC.82794.
  • Kiremit, M.S., Arslan, H., 2018. Response of leek (Allium porrum L.) to different irrigation water levels under rain shelter. Commun. Soil Sci. Plant Anal. 49, 99–108. https://doi.org/10.1080/00103624.2017.1421652.
  • Kurunc, A., Unlukara, A., Cemek, B., 2011. Salinity and drought affect yield response of bell pepper similarly. Acta Agric. Scand. B Soil Plant Sci. 61, 514–522. https://doi.org/10.1080/09064710.2010.513691.
  • Liu, Ji, Wang, Y., Li, Yong, Peñuelas, J., Zhao, Y., Sardans, J., Tetzlaff, D., Liu, Jian, Liu, X., Yuan, H., Li, Yanyan, Chen, J., Wu, J., 2023. Soil ecological stoichiometry synchronously regulates stream nitrogen and phosphorus concentrations and ratios. Catena (Amst) 231, 107357. https://doi.org/10.1016/J.CATENA.2023.107357.
  • Osman, H.M., Arslan, H., 2022. Response of leaf nutrients, yield, growth parameters, and evapotranspiration of sweet corn (Zea mays L. saccharata Sturt) to shallow and saline groundwater depths. Archives of Agronomy and Soil Science, 69(11), 2138-2153. https://doi.org/10.1080/03650340.2022.2140144.
  • Singh, A., 2022. Soil salinity: A global threat to sustainable development. Soil Use Manag. 38, 39–67. https://doi.org/10.1111/SUM.12772.
  • Sperling, O., Perry, A., Ben-Gal, A., Yermiyahu, U., Hochberg, U., 2024. Potassium deficiency reduces grapevine transpiration through decreased leaf area and stomatal conductance. Plant Physiology and Biochemistry, 208, 108534. https://doi.org/10.1016/J.PLAPHY.2024.
  • Subrata, B.A.G., Kiremit, M., Öztürk, E., Arslan, H., Sezer, İ., Akay, H., 2022. Evaluation of the directly and indirectly effects of the morpho-physiological traits of sweet corn seedlings on yield with structural equation modeling partial least square (SEM-PLS) Approach. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 8, 79–91. https://doi.org/10.24180/ijaws.1000535.
  • Takma, Ç., Gevrekçi, Y., Hızlı, H., 2023. Statistical analysis in agricultural research, 1stEdition ed. Holistence Publications, Çanakkale, Türkiye.
  • Ünlükara, A., Kurunç, A., Cemek, B., 2015. Green long pepper growth under different saline and water regime conditions and usability of water consumption in plant salt tolerance. Tarım Bilimleri Dergisi, 21, 167. https://doi.org/10.15832/tbd.82317.
  • Vaughan, M.M., Block, A., Christensen, S.A., Allen, L.H., Schmelz, E.A., 2018. The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochemistry Reviews, 17, 37–49. https://doi.org/10.1007/S11101-017-9508-2/FIGURES/2.
  • Wang, X.C., Liu, R., Luo, J. nan, Zhu, P. fei, Wang, Y. sheng, Pan, X.C., Shu, L.Z., 2022. Effects of water and NPK fertigation on watermelon yield, quality, irrigation-water, and nutrient use efficiency under alternate partial root-zone drip irrigation. Agric. Water Manag. 271, 107785. https://doi.org/10.1016/J.AGWAT.2022.107785.
  • Wang, Y., Zhang, X., Chen, J., Chen, A., Wang, L., Guo, X., Niu, Y., Liu, S., Mi, G., Gao, Q., 2019. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agric. Water Manag. 212, 328–337. https://doi.org/10.1016/J.AGWAT.2018.09.010.
  • Wei, H., Geng, X., Zhu, W., Zhang, Xiang, Zhang, Xubin, Chen, Y., Huo, Z., Xu, K., Zhou, G., Meng, T., Dai, Q., 2023. Individual and combined influences of salinity and drought stress on the agro-physiological traits and grain yield of rice. Field Crops Res 304, 109172. https://doi.org/10.1016/J.FCR.2023.109172.
  • Yaghoubi Khanghahi, M., Leoni, B., Crecchio, C., 2021. Photosynthetic responses of durum wheat to chemical/microbiological fertilization management under salt and drought stresses. Acta Physiol. Plant. 43, 1–14. https://doi.org/10.1007/S11738-021-03289-Z/TABLES/4.
  • Ye, T., Ma, J., Zhang, P., Shan, S., Liu, L., Tang, L., Cao, W., Liu, B., Zhu, Y., 2022. Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain. Agric. Water Manag. 271, 107787. https://doi.org/10.1016/J.AGWAT.2022.107787.
  • Yue, Q., Guo, P., 2021. Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty. Agric. Water Manag. 252, 106899. https://doi.org/10.1016/J.AGWAT.2021.106899.
  • Yurtseven, E., Kesmez, G.D., Ünlükara, A., 2005. The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central anatolian tomato species (Lycopersicon esculantum). Agric. Water Manag. 78, 128–135. https://doi.org/10.1016/J.AGWAT.2005.04.018.
  • Zou, H., Fan, J., Zhang, F., Xiang, Y., Wu, L., Yan, S., 2020. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 230, 105986. https://doi.org/10.1016/J.AGWAT.2019.105986.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sulama Suyu Kalitesi
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Mehmet Kiremit 0000-0002-7394-303X

Erken Görünüm Tarihi 25 Ekim 2024
Yayımlanma Tarihi 30 Ekim 2024
Gönderilme Tarihi 16 Temmuz 2024
Kabul Tarihi 19 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kiremit, M. (2024). Comparison of Different Fertilization Rates on Yield, Evapotranspiration, and Water Use Efficiency of Sweet Corn under Drought-salinity Stresses. Anadolu Tarım Bilimleri Dergisi, 39(3), 649-665. https://doi.org/10.7161/omuanajas.1516821
Online ISSN: 1308-8769