Araştırma Makalesi
BibTex RIS Kaynak Göster

CHEMICAL COMPOSITION AND IN VITRO GAS PRODUCTION KINETICS OF SOME TREE LEAVES OBTAINED IN THE MEDITERRANEAN REGION OF TURKEY

Yıl 2014, , 143 - 146, 11.06.2014
https://doi.org/10.7161/anajas.2014.29.2.143-146

Öz

This study was carried out to determine the potential nutritive value and in vitro gas production (IVGP) kinetics of some tree leaves. In this study four different tree foliages (orchid tree -Bauhinia purpurea L. (Fabaceae), eucalyptus -Eucalyptus camaldulensis, yellow oleander tree -Thevetia peruviana and pepper tree -Schinus molle) were used. The gas production of leaves over time was recorded at 3, 6, 9, 12, 24, 48, 72 and 96 h after incubation. The results of the present study suggested that there were differences among the tree leaves in terms of feed value, IVGP and IVGP kinetics such as energy value and organic matter digestibilities (P<0.01). The leaves of yellow oleander tree had the lowest neutral detergent fiber (NDF), acid detergent fiber (ADF) and condensed tannin (CT) content (P<0.01). Also, IVGP of the leaves from yellow oleander tree was highest throughout the incubation period (P<0.01). In contrast, the lowest total gas production (96 h) was obtained from the fermentation of the leaves of orchid tree. Low fibre and condensed tannin contents of leaves of yellow oleander tree would probably increase the voluntary intake and digestibility of these leaves by small ruminants.

Kaynakça

  • Aganga A.A., Tshwenyane S.O. 2003. Feeding values and anti-nutritive factors of forage tree legumes. Pakistan J. Nutrition, 2(3): 170-177.
  • AOAC., 1998. Officinal Methods of Analysis. 16th Edn., Association of Official Analytical Chemists International, Gaithersburg, MD., USA.
  • Atasoglu C., Canbolat O., Sahin S., Baytekin H. 2010. Potential nutritive value of browse foliages from pinus pinaster, prunus amygdalus and ulmus glabra. J. Anim. Product. 51: 1-7.
  • Barry T.N. 1987. Secondary Compounds of Forages. In: The Nutrition of Herbivores, Hacker, J.B. and J.H. Ternouth (Ed). Academic Press, Sydney, Australia, pp: 91-120.
  • Barry T.N., McNabb W. C. 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Brit. J. Nutr. 81: 263-272.
  • El-Hassan S.M., Kassi A.L., Newbold C.J., Wallace R.J. 2000. Chemical composition and degradation characteristics of foliage of some African multipurpose trees. Anim. Feed Sci. Technol. 86: 27-37.
  • Getachew G., Blümmel M., Makkar H.P.S., Becker K. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 72: 261-281.
  • Kamalak A., Canbolat O., Gurbuz Y., Ozay O., Ozkose E. 2005. Chemical composition and its relationship to in vitro gas production of several tannin containing trees and shrub leaves. Asian Austral. J. Anim. Sci. 18: 203-208.
  • Kilic U., Boga M., Guven I. 2010. Chemical composition and nutritive value of oak (Quercus robur) nut and leaves. J. Applied Anim. Res. 38: 101-104.
  • Kumar S., Vaithiyanathan S. 1990. Occurence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim. Feed Sci. Technol. 30: 21-38.
  • Makkar H.P.S., Blummel M., Becker K. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and their implication in gas production and true digestibility in vitro techniques. Brit. J. Nutr. 73: 897-913.
  • Menke K.H., Raab L., Salewski A., Steingass H., Fritz D., Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. Camb. 93: 217-222.
  • Menke K.H., Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Devel. 28: 7-55.
  • Muller-Harvey I. 2006. Unraveling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86: 2010-2037.
  • Orskov E.R., McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agr. Sci. 92: 499-503.
  • Van Soest P.J., Robertson J.B., Levis B.A. 1991. Method for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.
  • Sindhu A.A., Khan M. A., Nisa M.U., Sarvar M. 2002. Agro-Industrial By-Products as a Potential Source of Livestock Feed. Int. J. Agri. Biol. 4 (2): 307-310.
  • Louhaichi M., Salkini A.K., Petersen S.L. 2009. Effect of small ruminant grazing on the plant community characteristics of semiarid Mediterranean ecosystems. Int. J. Agric. Biol. 11: 681–689.

TÜRKİYE'NİN AKDENİZ BÖLGESİNDEN ELDE EDİLEN BAZI AĞAÇ YAPRAKLARININ KİMYASAL BİLEŞİMİ VE IN VITRO GAZ ÜRETİM KİNETİKLERİ

Yıl 2014, , 143 - 146, 11.06.2014
https://doi.org/10.7161/anajas.2014.29.2.143-146

Öz

Bu çalışma bazı ağaç yapraklarının potansiyel yem değeri ve in vitro gaz üretim (IVGÜ) kinetiklerini belirlemek amacıyla yürütülmüştür. Çalışmada dört farklı ağaç yaprağı (orkide - Bauhinia purpurea L. (Fabaceae), okaliptus -Eucalyptus camaldulensis, sarı zakkum -Thevetia peruviana ve karabiber -Schinus molle) kullanılmıştır. Yaprakların 3, 6, 9, 12, 24, 48, 72 ve 96 saatlik inkübasyonlar sonrası gaz üretimleri kayıt edilmiştir. Çalışmadan elde edilen sonuçlar ağaç yaprakları arasında yem değerleri, IVGÜ, İVGÜ kinetikleri, enerji değeri ve organik madde sindirilebilirlikleri bakımından farklılıklar göstermiştir (P<0.01). En düşük kondanse tanen (KT), nötral çözücülerde çözünmeyen lifli bileşikler (NDF) ve asit çözücülerde çözünmeyen lifli bileşikler (ADF) içerikleri sarı zakkum ağacı yaprağında bulunmuştur (P<0.01). Ayrıca, sarı zakkum ağacı yaprakları inkübasyon periyodu süresince en yüksek IVGÜ değerlerine sahip olmuştur (P<0.01). Ancak, en düşük toplam gaz üretimi (96 saat) orkide ağacı yaprakları fermentasyonundan oluşmuştur. Sarı zakkum ağacı yapraklarının düşük lif ve kondanse tanin içeriği, muhtemelen küçük baş hayvanların bu yaprakları gönüllü tüketimlerini ve sindirilebilirliğini artıracağı düşünülmektedir.

Kaynakça

  • Aganga A.A., Tshwenyane S.O. 2003. Feeding values and anti-nutritive factors of forage tree legumes. Pakistan J. Nutrition, 2(3): 170-177.
  • AOAC., 1998. Officinal Methods of Analysis. 16th Edn., Association of Official Analytical Chemists International, Gaithersburg, MD., USA.
  • Atasoglu C., Canbolat O., Sahin S., Baytekin H. 2010. Potential nutritive value of browse foliages from pinus pinaster, prunus amygdalus and ulmus glabra. J. Anim. Product. 51: 1-7.
  • Barry T.N. 1987. Secondary Compounds of Forages. In: The Nutrition of Herbivores, Hacker, J.B. and J.H. Ternouth (Ed). Academic Press, Sydney, Australia, pp: 91-120.
  • Barry T.N., McNabb W. C. 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Brit. J. Nutr. 81: 263-272.
  • El-Hassan S.M., Kassi A.L., Newbold C.J., Wallace R.J. 2000. Chemical composition and degradation characteristics of foliage of some African multipurpose trees. Anim. Feed Sci. Technol. 86: 27-37.
  • Getachew G., Blümmel M., Makkar H.P.S., Becker K. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 72: 261-281.
  • Kamalak A., Canbolat O., Gurbuz Y., Ozay O., Ozkose E. 2005. Chemical composition and its relationship to in vitro gas production of several tannin containing trees and shrub leaves. Asian Austral. J. Anim. Sci. 18: 203-208.
  • Kilic U., Boga M., Guven I. 2010. Chemical composition and nutritive value of oak (Quercus robur) nut and leaves. J. Applied Anim. Res. 38: 101-104.
  • Kumar S., Vaithiyanathan S. 1990. Occurence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim. Feed Sci. Technol. 30: 21-38.
  • Makkar H.P.S., Blummel M., Becker K. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and their implication in gas production and true digestibility in vitro techniques. Brit. J. Nutr. 73: 897-913.
  • Menke K.H., Raab L., Salewski A., Steingass H., Fritz D., Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. Camb. 93: 217-222.
  • Menke K.H., Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Devel. 28: 7-55.
  • Muller-Harvey I. 2006. Unraveling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86: 2010-2037.
  • Orskov E.R., McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agr. Sci. 92: 499-503.
  • Van Soest P.J., Robertson J.B., Levis B.A. 1991. Method for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.
  • Sindhu A.A., Khan M. A., Nisa M.U., Sarvar M. 2002. Agro-Industrial By-Products as a Potential Source of Livestock Feed. Int. J. Agri. Biol. 4 (2): 307-310.
  • Louhaichi M., Salkini A.K., Petersen S.L. 2009. Effect of small ruminant grazing on the plant community characteristics of semiarid Mediterranean ecosystems. Int. J. Agric. Biol. 11: 681–689.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Zootekni
Yazarlar

Mustafa Boga

Yayımlanma Tarihi 11 Haziran 2014
Yayımlandığı Sayı Yıl 2014

Kaynak Göster

APA Boga, M. (2014). CHEMICAL COMPOSITION AND IN VITRO GAS PRODUCTION KINETICS OF SOME TREE LEAVES OBTAINED IN THE MEDITERRANEAN REGION OF TURKEY. Anadolu Tarım Bilimleri Dergisi, 29(2), 143-146. https://doi.org/10.7161/anajas.2014.29.2.143-146
Online ISSN: 1308-8769