Araştırma Makalesi
BibTex RIS Kaynak Göster

Recent approaches in pregnancy nutrition of slaughter animals

Yıl 2015, , 207 - 213, 25.07.2015
https://doi.org/10.7161/anajas.2015.30.2.207-213

Öz

The success of pregnancy in slaughter animals depends on the relationship between growth and development of fetus (es) and the level of nutrient intake of the maternal and fetus in the embryonic and fetal period. This situation is very important in determining the efficiency throughout the life of offspring (postnatal body composition, growth rate, efficiency parameters, meat quality, etc.). Increasing of the daily live weight gains and marble rate in meat in the fattening and consequently to obtain higher and quality meat in terms of producers and consumers depend on manipulation of factors affecting foetal muscle (myogenesis) and fat (adipogenesis) formation during prenatal period. In this review, it was focused on various signal pathways and their receptors managed the myogenesis and adipogenesis process prenatal and thus influenced the meat yield and quality (marble) by affecting formation of muscle (Wnt, β- catenin, Shh, Pax7, etc.) and fat (PPARγ, nuclear factor-KB, tumor necrosis factor-α, etc.) in fetus .The inhibition or activation of these signal paths with the feeding level and some feed additives during pregnancy were also evaluated. As a result, there are need further investigations for better understanding of mechanisms which are activated signal pathways and receptors managed the fetal muscle (myogenesis) and fat (adipogenesis) formation during prenatal period and the effects of feeding on this mechanism.

Kaynakça

  • Ardite, E., Barbera, J.A., Roca, J., Fernandez-Checa, J.C. 2004. Glutathione depletion impairs myogenic differentiation of murine skeletal muscle C2C12 cells through sustained NF-kappaB activation. Am. J. Pathol., 165:719-728.
  • Christodoulides, C., Lagathu, C., Sethi, J. K., Vidal-Puig, A. 2009. Adipogenesis and Wnt signalling. Trends Endocrinol. Metab., 20: 16-24.
  • Dellavalle, A., Maroli, G., Covarello, D., Azzoni, E., Innocenzi, A., Perani, L., Antonini, S., Sambasivan, R., Brunelli,S., Tajbakhsh, S., Cossu, G. 2011. Pericytes resident in postnatal skeletal muscle differentiate into muscle fi bres and generate satellite cells. Nat. Commun., 2: 499.
  • Duarte, M.S., Gionbelli, M.P., Paulino, P.V.R., Serão, N.V.L., Nascimento, C.S., Botelho, M.E., Martins, T.S., Filho, S.C.V., Dodson, M.V., Guimarães, S.E.F., Du, M.. 2014.Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses. J. Anim. Sci., 92: 3846-3854.
  • Du, M., Zhu, M.J. 2009. Fetal programming of skeletal muscle development. In M. Du, & R. J. McCormick (Eds.), Applied muscle biology and meat science (pp. 81−96). Boca Raton, FL: CRC Press.
  • Du, M., Yan, X., Tong, J.F., Zhao, J., Zhu, M.J. 2009. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol. Reprod., 82(1): 4-12.
  • Du, M., Tong, J., Zhao, J.F., Zhao, J., Underwood, K.R., Zhu, M., Ford, S.P., Nathanielsz, P.W. 2010. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci., 88: 51-60.
  • Du, M., Huang, Y., Das, A.K., Yang, Q., Duarte, M.S., Dodson, M.V., Zhu, M.J. 2013. Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J. Anim. Sci. 91: 1419-1427.
  • Fahey, A. J., Brameld, J.M., Parr, T., Buttery, P. J. 2005. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. J. Anim. Sci., 83 :2564–2571.
  • Gnanalingham, M.G., Mostyn, A., Symonds, M.E., Stephenson, T. 2005. Ontogeny and nutritional programming of adiposity in sheep: Potential role of glucocorticoid action and uncoupling protein-2. American J. of Physiology: Regulatory, Integr. Comp. Physiol., 289: 1407-1415.
  • Godfrey, K.M., Barker, D.J.P. 2000. Fetal nutrition and adult disease. American J. of Clinical Nutr. 71: 1344-1352.
  • Gonzalez, J.M., Camacho, L.E., Ebarb, S.M., Swanson, K.C., Vonnahme, K.A., Stelzleni, A.M., Johnson, S.E. 2013. Realimentation of nutrient restricted pregnant beef cows supports compensatory fetal muscle growth. J. Anim. Sci., 91: 4797-806.
  • Greenwood, P.L., Slepetis, R.M.,Hermanson, J.W., Bell, A.W. 1999. Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle. Reprod., Fert., and Dev.11:281−291.
  • Harper, G.S., Pethick, D.W. 2004. How might marbling begin? Aust. J. Exp. Agric., 44: 653-662.
  • Hausman, G.J., Dodson, M.V., Ajuwon, K., Azain, M., Barnes, K.M., Guan, L.L. 2009. Board-invited review: The biology and regulation of preadipocytes and adipocytes in meat animals. J.Anim. Sci., 87: 1218-1246.
  • Hoffman, Maria L. 2014. The Effect of Poor Maternal Nutrition on the Growth and Development of Offspring. Doctoral Dissertations. Paper 588.
  • Hyatt, J.P.K., McCall, G.E., Kander, E.M., Zhong, H., Roy, R.R., Huey, K.A. 2008. Pax3/7 expression coincides with myod during chronic skeletal muscle overload. Muscle Nerve, 38: 861-866.
  • Kajimura, S., Seale, P., Kubota, K., Lunsford, E., Frangioni, J.V., Gygi, S.P. 2009. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature, 460: 1154-1158.
  • Kollias, H.D., McDermott, J.C. 2008. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J. Appl. Physiol., 104: 579-587.
  • Kuang, S., Kuroda, K., Le Grand, F., Rudnicki, M.A. 2007. Asymmetric self renewal and commitment of satellite stem cells in muscle. Cell, 129: 999-1010.
  • Kuran, M., Ulutaş, Z., Ocak, N., Şirin, E. 2009. Koyunlarda ananın beslenmesinin kuzuların post-natal kas lifi gelişimi ve et kalitesine etkisi. Cost Proje Kesin Sonuç Raporu. Proje No: 105T277 (TBAG-U/148).
  • Lawrence, T.L.J., Fowler, V.R. 2002. Prenatal and postnatal growth. Growth of farm animals, CAB International, 2nd Edition.
  • Muñoz, C., Carson, A.F., McCoy, M.A., Dawson, L.E.R., Wylie, A.R.G., Gordon, A.W. 2009. Effects of plane of nutrition of ewes in early and mid-pregnancy on performance of the offspring: Female reproduction and male carcass characteristics. J. of Anim. Sci., 87: 3647-3655.
  • Novakofski, J. 2004. Adipogenesis: Usefulness of in vitro and in vivo experimental models. J. Anim. Sci., 82: 905-915.
  • NRC. 1985. National Research Council. Nutrient requirements of sheep. 6th ed. National Academy Press. Washington, D. C.
  • NRC. 2000. Nutrient requirements of beef cattle. 7th ed. National Academy Press. Washington, D. C.
  • Peñagaricano, F., Wang, X., Rosa, J.M.G., Radunz, E.A., Khatib, H. 2014. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genomics (Basımda), doi:10.1186/1471–2164-15-1034.
  • Petropoulos, H., Skerjanc, I. S. 2002. Beta-Catenin is essential and sufficient for skeletal myogenesis in p19 cells. J. Biol. Chem., 277: 15393-15399.
  • Redmer, D.A., Wallace, D., Reynolds, L. P. 2004. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domestic Anim. Endocr., 27: 199-217.
  • Rehfeldt, C., Fiedler, I., Stickland, N.C. 2004. Number and size of muscle fibres in relation to meat production. In: Muscle Development of Livestock Animals: Physiology, Genetics and Meat Quality. Eds: MFW te Pas, ME Everts, HP Haagmans, CABI Publishing.
  • Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454: 961-967.
  • Shang, Y.C., Zhang, C., Wang, S.H., Xiong, F., Zhao, C.P., Peng, F.N. 2007. Activated beta-catenin induces myogenesis and inhibits adipogenesis in BMderived mesenchymal stromal cells. Cytotherapy, 9: 667-681.
  • Smith, S.B., Kawachi, H., Choi, C.B., Choi, C.W., Wu, G., Sawyer, J. E. 2009. Cellular regulation of bovine intramuscular adipose tissue development and composition. J.Anim.Sci., 87: 72-82.
  • Steinberg, G.R., Michell, B.J., van Denderen, B.J., Watt, M.J., Carey, A.L., Fam, B.C., Andrikopoulos, S., Proietto, J., Gorgun, C.Z., Carling, D., Hotamisligil, G.S., Febbraio, M.A., Kay, T.W., Kemp, B.E. 2006. Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Met., 4: 465-474.
  • Şen, U. 2008. Koyunlarda Gebeliğin 30 ile 80. Günleri Arasında Farklı Seviyelerde Beslemenin Kuzuların Doğum Sonrası Kas Lifi Çeşidi ve Sayısına Etkisi. Y.L. Tezi. GOPÜ Fen Bilimleri Enstütüsü, Tokat.
  • Şirin, E., Aksoy, Y., Şen, U., Ulutaş, Z., Kran, M. 2011. Kuzu doğum ağırlığının semitendinosus kasındaki lif sayısı ve çeşidine etkisi. Anadolu Tarım Bil. Der., 26: 63-67.
  • Tong, J.F., Yan, X., Zhu, M.J., Ford, S.P., Nathanielsz, P.W., Du, M. 2009. Maternal obesity downregulates myogenesis and {beta}-catenin signaling in fetal skeletal muscle. Ame. J. Phy., Endoc. and Metab., 296: 917-924.
  • Underwood, K.R., Kimzey, J.M., Tong, J., Price, P.L., Grings, E.E., Hess, B.W., Means,W.J., Du, M. 2008. Gestational nutrition affects growth and adipose tissue deposition in steers. Proc. Western Sect. Am. Soc. Anim. Sci., 59: 917-924.
  • Uezumi, A., Ito, T., Morikawa, D., Shimizu, N., Yoneda, T., Segawa, M., Yamaguchi, M., Ogawa, R., Matev, M.M., Miyagoe-Suzuki, Y., Takeda, S., Tsujikawa, K., Tsuchida, K., Yamamoto, H., Fukada, S. 2011. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124: 3654-3664.
  • Yablonka-Reuveni, Z., Day, K., Vine, A., Shefer, G. 2008. Defining the transcriptional signature of skeletal muscle stem cells. J. Anim. Sci., 86: 207-216.
  • Yamanouchi, K., Hosoyama, T., Murakami, Y., Nishihara, M. 2007. Myogenic and adipogenic properties of goat skeletal muscle stem cells. J. Reprod. and Dev., 53: 51-58.
  • Wallace, J.M., Aitken, R.P., Cheyne, M.A. 1996. Nutrient partitioning and fetal growth in rapidly growing adolescent ewes. J. of Reprod. and Fertility, 107: 183-190.
  • Wilson, S.J., McEwan, J.C., Sheard, P.W. and Haris, A.J. 1992. Early stages of myogenesis in a large mammal formation of successive generations of myotubes in sheep tibialis cranialis muscle. J. of Muscle Res. and Cell Mot., 13: 534-550.
  • Zhang, R.F., Hu, Q., Li, P.F., Xue, L.F., Piao, X.S., Li, D.F. 2011. Effects of Lysine Intake during Middle to Late Gestation (Day 30 to 110) on Reproductive Performance, Colostrum Composition, Blood Metabolites and Hormones of Multiparous Sows. Asian-Aust. J. Anim. Sci., doi: 10.5713/ajas.2011.10449
  • Zhu, M.J., Han, B., Tong, J., Ma, C., Kimzey, J.M., Underwood, K.R., Xiao,Y.B., Hess, W., Ford, S.P., Nathanielsz, P.W., Du, M. 2008. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J. Physiol., 586: 2651-2664.
  • Zhu, M.J., Ford, S.P., Nathanielsz, P.W., Du, M. 2004. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol. Reprod., 71: 1968-1973.

Kasaplık hayvanlarının gebelik dönemi beslenmesinde güncel yaklaşımlar

Yıl 2015, , 207 - 213, 25.07.2015
https://doi.org/10.7161/anajas.2015.30.2.207-213

Öz

Kasaplık hayvanlarda gebeliğin başarısı embriyonal ve fetal dönemde ananın besin madde alım düzeyi ile fetüsün(lerin) büyümesi ve gelişmesi arasındaki ilişkiye bağlıdır. Bu durum yavrunun hayatı boyunca verimliliğini belirlemede (postnatal vücut kompozisyonu, büyüme oranı, verimlilik parametreleri, et kalitesi vb.) oldukça önem taşımaktadır. Beside günlük canlı ağırlık artışı ve ette mermerleşme oranının artması ve dolayısıyla üretici ve tüketici açısından daha fazla ve kaliteli et elde edilmesi, doğum öncesi fetal dönemde kas (miyogenesiz) ve yağ (adipogenesiz) oluşumunu etkileyen faktörlerin düzenlenmesine bağlıdır. Bu derlemede fetal dönemde miyogenesiz ve adipogenesiz sürecini yöneten, dolayısıyla fetüste kas (Wnt, β- catenin, Shh, Pax7, vb.) ve yağ (PPARγ, Nükleer faktör-KB, Tümör nekroz faktörü-α, vb.) dokusu oluşumunu etkileyerek et verimi ve kalitesini (mermerleşme) artıran çeşitli sinyal yolları ve reseptörleri üzerinde durulmuştur. Ayrıca bu sinyal yollarının gebelik dönemindeki besleme düzeyi ve bazı yem katkı maddeleri ile engellenmesi veya aktivasyonu da değerlendirilmiştir. Sonuç olarak fetal dönemde miyogenesiz ve adipogenesiz sürecini yöneten sinyal yollarını ve reseptörlerini aktive eden mekanizmaların ve bu mekanizma üzerinde beslemenin etkilerinin daha iyi anlaşılabilmesi için daha fazla araştırmaya ihtiyaç vardır.

Kaynakça

  • Ardite, E., Barbera, J.A., Roca, J., Fernandez-Checa, J.C. 2004. Glutathione depletion impairs myogenic differentiation of murine skeletal muscle C2C12 cells through sustained NF-kappaB activation. Am. J. Pathol., 165:719-728.
  • Christodoulides, C., Lagathu, C., Sethi, J. K., Vidal-Puig, A. 2009. Adipogenesis and Wnt signalling. Trends Endocrinol. Metab., 20: 16-24.
  • Dellavalle, A., Maroli, G., Covarello, D., Azzoni, E., Innocenzi, A., Perani, L., Antonini, S., Sambasivan, R., Brunelli,S., Tajbakhsh, S., Cossu, G. 2011. Pericytes resident in postnatal skeletal muscle differentiate into muscle fi bres and generate satellite cells. Nat. Commun., 2: 499.
  • Duarte, M.S., Gionbelli, M.P., Paulino, P.V.R., Serão, N.V.L., Nascimento, C.S., Botelho, M.E., Martins, T.S., Filho, S.C.V., Dodson, M.V., Guimarães, S.E.F., Du, M.. 2014.Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses. J. Anim. Sci., 92: 3846-3854.
  • Du, M., Zhu, M.J. 2009. Fetal programming of skeletal muscle development. In M. Du, & R. J. McCormick (Eds.), Applied muscle biology and meat science (pp. 81−96). Boca Raton, FL: CRC Press.
  • Du, M., Yan, X., Tong, J.F., Zhao, J., Zhu, M.J. 2009. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol. Reprod., 82(1): 4-12.
  • Du, M., Tong, J., Zhao, J.F., Zhao, J., Underwood, K.R., Zhu, M., Ford, S.P., Nathanielsz, P.W. 2010. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci., 88: 51-60.
  • Du, M., Huang, Y., Das, A.K., Yang, Q., Duarte, M.S., Dodson, M.V., Zhu, M.J. 2013. Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J. Anim. Sci. 91: 1419-1427.
  • Fahey, A. J., Brameld, J.M., Parr, T., Buttery, P. J. 2005. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. J. Anim. Sci., 83 :2564–2571.
  • Gnanalingham, M.G., Mostyn, A., Symonds, M.E., Stephenson, T. 2005. Ontogeny and nutritional programming of adiposity in sheep: Potential role of glucocorticoid action and uncoupling protein-2. American J. of Physiology: Regulatory, Integr. Comp. Physiol., 289: 1407-1415.
  • Godfrey, K.M., Barker, D.J.P. 2000. Fetal nutrition and adult disease. American J. of Clinical Nutr. 71: 1344-1352.
  • Gonzalez, J.M., Camacho, L.E., Ebarb, S.M., Swanson, K.C., Vonnahme, K.A., Stelzleni, A.M., Johnson, S.E. 2013. Realimentation of nutrient restricted pregnant beef cows supports compensatory fetal muscle growth. J. Anim. Sci., 91: 4797-806.
  • Greenwood, P.L., Slepetis, R.M.,Hermanson, J.W., Bell, A.W. 1999. Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle. Reprod., Fert., and Dev.11:281−291.
  • Harper, G.S., Pethick, D.W. 2004. How might marbling begin? Aust. J. Exp. Agric., 44: 653-662.
  • Hausman, G.J., Dodson, M.V., Ajuwon, K., Azain, M., Barnes, K.M., Guan, L.L. 2009. Board-invited review: The biology and regulation of preadipocytes and adipocytes in meat animals. J.Anim. Sci., 87: 1218-1246.
  • Hoffman, Maria L. 2014. The Effect of Poor Maternal Nutrition on the Growth and Development of Offspring. Doctoral Dissertations. Paper 588.
  • Hyatt, J.P.K., McCall, G.E., Kander, E.M., Zhong, H., Roy, R.R., Huey, K.A. 2008. Pax3/7 expression coincides with myod during chronic skeletal muscle overload. Muscle Nerve, 38: 861-866.
  • Kajimura, S., Seale, P., Kubota, K., Lunsford, E., Frangioni, J.V., Gygi, S.P. 2009. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature, 460: 1154-1158.
  • Kollias, H.D., McDermott, J.C. 2008. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J. Appl. Physiol., 104: 579-587.
  • Kuang, S., Kuroda, K., Le Grand, F., Rudnicki, M.A. 2007. Asymmetric self renewal and commitment of satellite stem cells in muscle. Cell, 129: 999-1010.
  • Kuran, M., Ulutaş, Z., Ocak, N., Şirin, E. 2009. Koyunlarda ananın beslenmesinin kuzuların post-natal kas lifi gelişimi ve et kalitesine etkisi. Cost Proje Kesin Sonuç Raporu. Proje No: 105T277 (TBAG-U/148).
  • Lawrence, T.L.J., Fowler, V.R. 2002. Prenatal and postnatal growth. Growth of farm animals, CAB International, 2nd Edition.
  • Muñoz, C., Carson, A.F., McCoy, M.A., Dawson, L.E.R., Wylie, A.R.G., Gordon, A.W. 2009. Effects of plane of nutrition of ewes in early and mid-pregnancy on performance of the offspring: Female reproduction and male carcass characteristics. J. of Anim. Sci., 87: 3647-3655.
  • Novakofski, J. 2004. Adipogenesis: Usefulness of in vitro and in vivo experimental models. J. Anim. Sci., 82: 905-915.
  • NRC. 1985. National Research Council. Nutrient requirements of sheep. 6th ed. National Academy Press. Washington, D. C.
  • NRC. 2000. Nutrient requirements of beef cattle. 7th ed. National Academy Press. Washington, D. C.
  • Peñagaricano, F., Wang, X., Rosa, J.M.G., Radunz, E.A., Khatib, H. 2014. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep. BMC Genomics (Basımda), doi:10.1186/1471–2164-15-1034.
  • Petropoulos, H., Skerjanc, I. S. 2002. Beta-Catenin is essential and sufficient for skeletal myogenesis in p19 cells. J. Biol. Chem., 277: 15393-15399.
  • Redmer, D.A., Wallace, D., Reynolds, L. P. 2004. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domestic Anim. Endocr., 27: 199-217.
  • Rehfeldt, C., Fiedler, I., Stickland, N.C. 2004. Number and size of muscle fibres in relation to meat production. In: Muscle Development of Livestock Animals: Physiology, Genetics and Meat Quality. Eds: MFW te Pas, ME Everts, HP Haagmans, CABI Publishing.
  • Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454: 961-967.
  • Shang, Y.C., Zhang, C., Wang, S.H., Xiong, F., Zhao, C.P., Peng, F.N. 2007. Activated beta-catenin induces myogenesis and inhibits adipogenesis in BMderived mesenchymal stromal cells. Cytotherapy, 9: 667-681.
  • Smith, S.B., Kawachi, H., Choi, C.B., Choi, C.W., Wu, G., Sawyer, J. E. 2009. Cellular regulation of bovine intramuscular adipose tissue development and composition. J.Anim.Sci., 87: 72-82.
  • Steinberg, G.R., Michell, B.J., van Denderen, B.J., Watt, M.J., Carey, A.L., Fam, B.C., Andrikopoulos, S., Proietto, J., Gorgun, C.Z., Carling, D., Hotamisligil, G.S., Febbraio, M.A., Kay, T.W., Kemp, B.E. 2006. Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Met., 4: 465-474.
  • Şen, U. 2008. Koyunlarda Gebeliğin 30 ile 80. Günleri Arasında Farklı Seviyelerde Beslemenin Kuzuların Doğum Sonrası Kas Lifi Çeşidi ve Sayısına Etkisi. Y.L. Tezi. GOPÜ Fen Bilimleri Enstütüsü, Tokat.
  • Şirin, E., Aksoy, Y., Şen, U., Ulutaş, Z., Kran, M. 2011. Kuzu doğum ağırlığının semitendinosus kasındaki lif sayısı ve çeşidine etkisi. Anadolu Tarım Bil. Der., 26: 63-67.
  • Tong, J.F., Yan, X., Zhu, M.J., Ford, S.P., Nathanielsz, P.W., Du, M. 2009. Maternal obesity downregulates myogenesis and {beta}-catenin signaling in fetal skeletal muscle. Ame. J. Phy., Endoc. and Metab., 296: 917-924.
  • Underwood, K.R., Kimzey, J.M., Tong, J., Price, P.L., Grings, E.E., Hess, B.W., Means,W.J., Du, M. 2008. Gestational nutrition affects growth and adipose tissue deposition in steers. Proc. Western Sect. Am. Soc. Anim. Sci., 59: 917-924.
  • Uezumi, A., Ito, T., Morikawa, D., Shimizu, N., Yoneda, T., Segawa, M., Yamaguchi, M., Ogawa, R., Matev, M.M., Miyagoe-Suzuki, Y., Takeda, S., Tsujikawa, K., Tsuchida, K., Yamamoto, H., Fukada, S. 2011. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124: 3654-3664.
  • Yablonka-Reuveni, Z., Day, K., Vine, A., Shefer, G. 2008. Defining the transcriptional signature of skeletal muscle stem cells. J. Anim. Sci., 86: 207-216.
  • Yamanouchi, K., Hosoyama, T., Murakami, Y., Nishihara, M. 2007. Myogenic and adipogenic properties of goat skeletal muscle stem cells. J. Reprod. and Dev., 53: 51-58.
  • Wallace, J.M., Aitken, R.P., Cheyne, M.A. 1996. Nutrient partitioning and fetal growth in rapidly growing adolescent ewes. J. of Reprod. and Fertility, 107: 183-190.
  • Wilson, S.J., McEwan, J.C., Sheard, P.W. and Haris, A.J. 1992. Early stages of myogenesis in a large mammal formation of successive generations of myotubes in sheep tibialis cranialis muscle. J. of Muscle Res. and Cell Mot., 13: 534-550.
  • Zhang, R.F., Hu, Q., Li, P.F., Xue, L.F., Piao, X.S., Li, D.F. 2011. Effects of Lysine Intake during Middle to Late Gestation (Day 30 to 110) on Reproductive Performance, Colostrum Composition, Blood Metabolites and Hormones of Multiparous Sows. Asian-Aust. J. Anim. Sci., doi: 10.5713/ajas.2011.10449
  • Zhu, M.J., Han, B., Tong, J., Ma, C., Kimzey, J.M., Underwood, K.R., Xiao,Y.B., Hess, W., Ford, S.P., Nathanielsz, P.W., Du, M. 2008. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J. Physiol., 586: 2651-2664.
  • Zhu, M.J., Ford, S.P., Nathanielsz, P.W., Du, M. 2004. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol. Reprod., 71: 1968-1973.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Canan Kop Bozbay

Nuh Ocak

Mehmet Kuran Bu kişi benim

Yayımlanma Tarihi 25 Temmuz 2015
Yayımlandığı Sayı Yıl 2015

Kaynak Göster

APA Kop Bozbay, C., Ocak, N., & Kuran, M. (2015). Kasaplık hayvanlarının gebelik dönemi beslenmesinde güncel yaklaşımlar. Anadolu Tarım Bilimleri Dergisi, 30(2), 207-213. https://doi.org/10.7161/anajas.2015.30.2.207-213
Online ISSN: 1308-8769