Araştırma Makalesi
BibTex RIS Kaynak Göster

Importance of spatial variability in management of saline and boron toxic soils

Yıl 2015, , 189 - 198, 25.07.2015
https://doi.org/10.7161/anajas.2015.30.2.189-198

Öz

Salinity and high boron concentration soils are important problems constrain the agricultural production in arid and semi-arid regions of the world. Considering the significant high spatial variation of salinity and boron concentration in the use of agricultural production and improvement of the problems is required in terms of time, labor and cost efficiency. This study was conducted to model and map the spatial variation of soil properties, and to identify the variables affecting the variation of salt and boron concentrations of soils located under two center pivots. Soils have salinity and alkalinity problems along with the boron toxicity. Each 62 ha pivot area in Central Anatolia has been divided into 100m x 100m square grids and 60 main sampling locations were created in each pivot area. Five transects in each pivot were created to model the shorter distances than the distance between main sampling points and soil samples were collected from 0-20cm depths (total of 150 samples). Texture, pH, electrical conductivity (EC), organic matter, lime content and plant available boron concentrations of soils were analyzed. Semivariogram models were obtained to define the spatial variations and kriging maps were created for each of soil properties. EC reached up to 17.35 dS m-1 within the pivot and average EC of pivots was measured as 2.6 ve 3.52 dS m-1, respectively. The average boron concentrations of soils were higher than the 5 mg kg-1 that is the critical level accepted for plant growth. Boron had significant positive correlations (P<0.01) with pH and clay content, and significant negative relationship with silt and organic matter contents. The relationship obtained in correlation analyses was also clearly observed in the distribution maps of the same soil properties. Negative correlation between organic matter and boron concentration reveals the importance of increasing the organic matter content of soils in the management of boron toxic soils.

Kaynakça

  • Acosta, J. A., Faz, A., Jansen, B., Kalbitz, K., Martínez-Martínez, S. 2011. Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. Journal of Arid Environments,75(11): 1056-1066.
  • Allison, L.E., Moodie, CD. 1965. Carbonate. In:C.A.Black ve ark. (edit.) Methods of Soil Analysis, Part 2. Agronomy 9:1379-1400. Am.Soc. of Argon., Inc., Madison, Wisc., USA.
  • Ayers, R.S., Westcot, D.W. 1985. Water quality for agriculture (Vol. 29). Rome: FAO.
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E. 1994. Field-Scale Variability Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am.J., 58: 1501-1511.
  • Cartwright, B., Tiller, K.G., Zarcinas, B.A., Spouncer, L.R. 1983. The chemical assessment of the boron of soils. Aust. J. Soil Res., 21: 321-332.
  • Communar, G., Keren, R., Li, F.H. 2004. Deriving boron adsorption isotherms from soil column displacement experiments. Soil Sci. Soc. Am. J. 68: 481-488.
  • Communar, G., Keren, R. 2006. Rate-limited boron transport in soils: the effect of soil texture and solution pH. Soil Sci. Soc. Am. J., 70: 882-892.
  • Communar, G, Keren, R. 2008. Boron adsorption by soils as affected by dissolved organic matter from treated sewage effluent. Soil Sci Soc Am J., 72: 492-499.
  • Darwish, T., Atallah, T., El-Khatib, M., Hajhasan, S. 2002. Impact of irrigation and fertilization on NO3 leaching and soil-ground water contamination in Lebanon. In: Proceedings of the Transactions 17thWorld Congress of Soil Science, Bangkok, Thailand.
  • Driessen, P.M. 1970. Soil salinity and alkalinity in the Great Konya Basin, Turkey. Centre for Agricultural Publishing and Documentation.
  • Fageria, N.K., Gheyi, H.R., Moreira, A. 2011. Nutrient bioavailability in salt affected soils. Journal of Plant Nutrition, 34(7): 945-962.
  • Gee, G.W., Bouder, J.W. 1986. Particle Size Analysis. In: A. Clute (Ed.) Methods of Soil Analysis. Part I Agronomy No: 9 Am Soc. of Agron. Madison, Wisconsin, USA.
  • Goldberg, S., Glaubig, R.A. 1986. Boron adsorption on California soils. Soil Sci. Soc. Am. J., 50: 1173-1176.
  • Goldberg, S. 1997. Reactions of boron with soils. Plant Soil, 193: 35-48.
  • Goldberg, S., Forster, H.S., Heick, E.L. 1993. Boron adsorption mechanisms on oxides, clay minerals, and soils inferred from ionic strength effects. Soil Science Society of America Journal, 57(3): 704-708.
  • Gu, B., Lowe, L.E. 1990. Studies on the adsorption of boron on humic acids. Can. J. Soil Sci. 70: 305-311.
  • Gupta, U.C., Macleod, J.A. 1981. Plant and soil boron as influenced by soil pH and calcium sources on podzol soils. Soil Science, 131(1): 20.
  • Havlin, J.L., Beaton, J.D., Tisdale, S. L., Nelson, W.L. 2005. Soil Fertility and Fertilizers, 7th ed. Upper Saddle River, NJ: Pearson Prentice Hall.
  • Hou, J., Evans, L.J., Spiers, G.A. 1996. Chemical fractionation of soil boron. I. Method development. Can J Soil Sci., 76: 485-491.
  • John, M.K., Chuah, H.H., Neufeld, J.H. 1975. Application of Improved Azomethine-H Method to the Determination of Boron in Soil and Plants. Anal. Lett. 8: 559-568.
  • Keren, R., Ben-Hur, M. 2003. Interaction effects of clay swelling and dispersion and CaCO3 content on saturated hydraulic conductivity. Aus. J. Soil Res. 41: 979-989.
  • Kitano, Y., Okumura, M., Idogaki, M. 1978. Coprecipitation of borate-boron with calcium carbonate. Geochemical Journal, 12(3): 183-189.
  • Mortvedt, J.J., Murphy, L.S., Follet, R.H. 1999. Fertilizer Technology and Application. Meister Publishing, Willoughby, Ohio.
  • Nable, R.O., Bañuelos, G.S., Paull, J.G. 1997. Boron toxicity. Plant and Soil, 193(1-2): 181-198.
  • Nelson, D.W. Sommer, L.E. 1982. Total Carbon, Organic Carbon, and Organic Matter. p.539-579. In A.L. Page (ed.) Methods of Soil Analysis. 2nd Ed. ASA Monogr. 9(2). Amer. Soc.Agron. Madison, WI.
  • Parks, J.L., Edwards, M. 2005. Boron in the environment. Critical Reviews in Environmental Science and Technology, 35(2): 81-114.
  • Reid, R. 2007. Update on boron toxicity and tolerance in plants. Advances in plant and animal boron nutrition. Springer, Dordrecht, The Netherlands, 83-90.
  • Su, C., Suarez, D.L. 1995. Coordination of adsorbed boron: A FTIR spectroscopic study. Environmental Science & technology, 29(2): 302-311.
  • Tanaka, M., Fujiwara, T. 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv-European Journal of Physiology, 456(4): 671-677.
  • Tsadilas, C.D. 1997. Soil contamination with boron due to irrigation with treated municipal wastewater. In: Bell, R. W. and B. Rerkasem (eds.) Boron in soils and plants. Kluwer, Dordrecht. pp. 265-270.
  • Wang, L., Coles, N. A., Wu, C., Wu, J. 2014. Spatial variability of heavy metals in the coastal soils under long-term reclamation. Estuarine, Coastal and Shelf Science, 151: 310-317.
  • Webster, R., Oliver, M.A. 2007. Geostatistics for Environmental Scientists. John Wiley & Sons Ltd, the Atrium, Southern Gate, Chichester, England, 330 pp
  • Wimmer, M.A., Mühling, K.H., Läuchli, A., Brown, P.H., Goldbach, H.E. 2003. The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves. Plant, Cell & Environment, 26(8): 1267-1274.
  • Yan, X., Wu, P., Ling, H., Xu, G., Xu, F., Zhang, Q. 2006. Plant nutriomics in China: an overview. Annals of Botany, 98(3): 473-482.
  • Yan, L., Zhou, S., Ci-fang, W., Hong-yi, L., Feng, L., 2007. Improved prediction and reduction of sampling density for soil salinity by different geostatistical methods. Agricultural Sciences in China, 6(7): 832-841.
  • Yermiyahu, U., Keren, R., Chen, Y. 2001. Effect of composted organic matter on boron uptake by plants. Soil Sci Soc Am J., 65: 1436-1441.
  • Zerrari, N., Moustaoui, D., Verloo, M. 1999. The forms of boron in soil, effect of soil characteristics and availability for the plants. Agrochimica, 43:77-88.

Tuzlu ve bor toksikliği bulunan arazilerin idaresinde mesafeye bağlı değişkenliğin önemi

Yıl 2015, , 189 - 198, 25.07.2015
https://doi.org/10.7161/anajas.2015.30.2.189-198

Öz

Dünyanın özellikle kurak ve yarı-kurak bölgelerinde tuzluluk ve yüksek bor içeriği tarımsal üretimi sınırlandıran önemli sorunlardır. Her iki sorunda arazi içerisinde önemli düzeyde yüksek değişkenliğe sahip olduğundan, toprakların üretimde kullanımları ve iyileştirilmelerinde bu değişkenliğin dikkate alınması zaman, iş gücü ve maliyet açısından zorunluluktur. Bu çalışma, tuzluluk ve alkalilik sorunlarının yanında şiddetli bor toksikliği bulunan iki ayrı pivot içerisindeki toprak özelliklerinin mesafeye bağlı değişkenliğinin modellenmesi, haritalanması ve tuz ve bor konsantrasyonuna etki eden değişkenlerin belirlenmesi amacı ile yapılmıştır. Orta Anadolu'da her biri 62 ha olan iki ayrı pivot 100 m * 100 m’lik kare gridlere ayrılmış ve her pivotta 60 adet ana örnekleme noktası oluşturulmuştur. Ana örnekleme noktaları arasındaki mesafeden daha kısa mesafelerdeki değişkenliklerin modellenebilmesi amacı ile beş adet ara transekt oluşturularak (toplam 150 örnek) 0-20 cm derinlikten toprak örnekleri alınmıştır. Toprak örneklerinin tekstür, pH, elektriksel iletkenlik (EC), organik madde, kireç içeriği ve bitkiye yarayışlı bor konsantrasyonu analiz edilmiştir. Mesafeye bağlı değişkenlikler için semivaryogram modellemesi yapılmış ve krigleme haritaları oluşturulmuştur. Pivot içerisinde 17.35 dS m-1 gibi yüksek değerlere ulaşan EC, pivotlarda ortalama 2.6 ve 3.52 dS m-1 olarak ölçülmüştür. Her iki pivotda da ortalama bor konsantrasyonları bitkiler için toksik sınır kabul edilen 5 mg kg-1 dan oldukça yüksektir. Bor ile pH ve kil arasında istatistiksel olarak önemli (P < 0.01) düzeyde pozitif bir korelasyon bulunurken, silt ve organik madde ile negatif korelasyon görülmüştür. Korelasyonda elde edilen bu ilişki, aynı özelliklerin dağılım haritalarında da açık bir şekilde görülebilmektedir. Çalışma alanında, organik madde içeriği ile bor konsantrasyonu arasında görülen negatif korelasyon, yüksek bor konsantrasyonu ile mücadele ederken, toprağın organik madde içeriğinin arttırılmasının nedenli önemli olduğunu vurgulamaktadır.

Kaynakça

  • Acosta, J. A., Faz, A., Jansen, B., Kalbitz, K., Martínez-Martínez, S. 2011. Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. Journal of Arid Environments,75(11): 1056-1066.
  • Allison, L.E., Moodie, CD. 1965. Carbonate. In:C.A.Black ve ark. (edit.) Methods of Soil Analysis, Part 2. Agronomy 9:1379-1400. Am.Soc. of Argon., Inc., Madison, Wisc., USA.
  • Ayers, R.S., Westcot, D.W. 1985. Water quality for agriculture (Vol. 29). Rome: FAO.
  • Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E. 1994. Field-Scale Variability Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am.J., 58: 1501-1511.
  • Cartwright, B., Tiller, K.G., Zarcinas, B.A., Spouncer, L.R. 1983. The chemical assessment of the boron of soils. Aust. J. Soil Res., 21: 321-332.
  • Communar, G., Keren, R., Li, F.H. 2004. Deriving boron adsorption isotherms from soil column displacement experiments. Soil Sci. Soc. Am. J. 68: 481-488.
  • Communar, G., Keren, R. 2006. Rate-limited boron transport in soils: the effect of soil texture and solution pH. Soil Sci. Soc. Am. J., 70: 882-892.
  • Communar, G, Keren, R. 2008. Boron adsorption by soils as affected by dissolved organic matter from treated sewage effluent. Soil Sci Soc Am J., 72: 492-499.
  • Darwish, T., Atallah, T., El-Khatib, M., Hajhasan, S. 2002. Impact of irrigation and fertilization on NO3 leaching and soil-ground water contamination in Lebanon. In: Proceedings of the Transactions 17thWorld Congress of Soil Science, Bangkok, Thailand.
  • Driessen, P.M. 1970. Soil salinity and alkalinity in the Great Konya Basin, Turkey. Centre for Agricultural Publishing and Documentation.
  • Fageria, N.K., Gheyi, H.R., Moreira, A. 2011. Nutrient bioavailability in salt affected soils. Journal of Plant Nutrition, 34(7): 945-962.
  • Gee, G.W., Bouder, J.W. 1986. Particle Size Analysis. In: A. Clute (Ed.) Methods of Soil Analysis. Part I Agronomy No: 9 Am Soc. of Agron. Madison, Wisconsin, USA.
  • Goldberg, S., Glaubig, R.A. 1986. Boron adsorption on California soils. Soil Sci. Soc. Am. J., 50: 1173-1176.
  • Goldberg, S. 1997. Reactions of boron with soils. Plant Soil, 193: 35-48.
  • Goldberg, S., Forster, H.S., Heick, E.L. 1993. Boron adsorption mechanisms on oxides, clay minerals, and soils inferred from ionic strength effects. Soil Science Society of America Journal, 57(3): 704-708.
  • Gu, B., Lowe, L.E. 1990. Studies on the adsorption of boron on humic acids. Can. J. Soil Sci. 70: 305-311.
  • Gupta, U.C., Macleod, J.A. 1981. Plant and soil boron as influenced by soil pH and calcium sources on podzol soils. Soil Science, 131(1): 20.
  • Havlin, J.L., Beaton, J.D., Tisdale, S. L., Nelson, W.L. 2005. Soil Fertility and Fertilizers, 7th ed. Upper Saddle River, NJ: Pearson Prentice Hall.
  • Hou, J., Evans, L.J., Spiers, G.A. 1996. Chemical fractionation of soil boron. I. Method development. Can J Soil Sci., 76: 485-491.
  • John, M.K., Chuah, H.H., Neufeld, J.H. 1975. Application of Improved Azomethine-H Method to the Determination of Boron in Soil and Plants. Anal. Lett. 8: 559-568.
  • Keren, R., Ben-Hur, M. 2003. Interaction effects of clay swelling and dispersion and CaCO3 content on saturated hydraulic conductivity. Aus. J. Soil Res. 41: 979-989.
  • Kitano, Y., Okumura, M., Idogaki, M. 1978. Coprecipitation of borate-boron with calcium carbonate. Geochemical Journal, 12(3): 183-189.
  • Mortvedt, J.J., Murphy, L.S., Follet, R.H. 1999. Fertilizer Technology and Application. Meister Publishing, Willoughby, Ohio.
  • Nable, R.O., Bañuelos, G.S., Paull, J.G. 1997. Boron toxicity. Plant and Soil, 193(1-2): 181-198.
  • Nelson, D.W. Sommer, L.E. 1982. Total Carbon, Organic Carbon, and Organic Matter. p.539-579. In A.L. Page (ed.) Methods of Soil Analysis. 2nd Ed. ASA Monogr. 9(2). Amer. Soc.Agron. Madison, WI.
  • Parks, J.L., Edwards, M. 2005. Boron in the environment. Critical Reviews in Environmental Science and Technology, 35(2): 81-114.
  • Reid, R. 2007. Update on boron toxicity and tolerance in plants. Advances in plant and animal boron nutrition. Springer, Dordrecht, The Netherlands, 83-90.
  • Su, C., Suarez, D.L. 1995. Coordination of adsorbed boron: A FTIR spectroscopic study. Environmental Science & technology, 29(2): 302-311.
  • Tanaka, M., Fujiwara, T. 2008. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv-European Journal of Physiology, 456(4): 671-677.
  • Tsadilas, C.D. 1997. Soil contamination with boron due to irrigation with treated municipal wastewater. In: Bell, R. W. and B. Rerkasem (eds.) Boron in soils and plants. Kluwer, Dordrecht. pp. 265-270.
  • Wang, L., Coles, N. A., Wu, C., Wu, J. 2014. Spatial variability of heavy metals in the coastal soils under long-term reclamation. Estuarine, Coastal and Shelf Science, 151: 310-317.
  • Webster, R., Oliver, M.A. 2007. Geostatistics for Environmental Scientists. John Wiley & Sons Ltd, the Atrium, Southern Gate, Chichester, England, 330 pp
  • Wimmer, M.A., Mühling, K.H., Läuchli, A., Brown, P.H., Goldbach, H.E. 2003. The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves. Plant, Cell & Environment, 26(8): 1267-1274.
  • Yan, X., Wu, P., Ling, H., Xu, G., Xu, F., Zhang, Q. 2006. Plant nutriomics in China: an overview. Annals of Botany, 98(3): 473-482.
  • Yan, L., Zhou, S., Ci-fang, W., Hong-yi, L., Feng, L., 2007. Improved prediction and reduction of sampling density for soil salinity by different geostatistical methods. Agricultural Sciences in China, 6(7): 832-841.
  • Yermiyahu, U., Keren, R., Chen, Y. 2001. Effect of composted organic matter on boron uptake by plants. Soil Sci Soc Am J., 65: 1436-1441.
  • Zerrari, N., Moustaoui, D., Verloo, M. 1999. The forms of boron in soil, effect of soil characteristics and availability for the plants. Agrochimica, 43:77-88.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Toprak Bilimi ve Bitki Besleme
Yazarlar

Hikmet Günal

Nurullah Acır Bu kişi benim

Atilla Polat

Elif Günal

Mesut Budak Bu kişi benim

Nazife Erdem Bu kişi benim

Zekeriya Malı Bu kişi benim

Hüseyin Önen

Yayımlanma Tarihi 25 Temmuz 2015
Yayımlandığı Sayı Yıl 2015

Kaynak Göster

APA Günal, H., Acır, N., Polat, A., Günal, E., vd. (2015). Tuzlu ve bor toksikliği bulunan arazilerin idaresinde mesafeye bağlı değişkenliğin önemi. Anadolu Tarım Bilimleri Dergisi, 30(2), 189-198. https://doi.org/10.7161/anajas.2015.30.2.189-198
Online ISSN: 1308-8769