Araştırma Makalesi
BibTex RIS Kaynak Göster

Organik madde uzaklaştırılmasının parçacık büyüklük dağılımına etkileri

Yıl 2020, , 106 - 114, 14.02.2020
https://doi.org/10.7161/omuanajas.615474

Öz

Toprakta devam eden birçok
fiziksel, kimyasal ve biyolojik süreç üzerine önemli düzeyde etkiye sahip olan
parçacık büyüklük dağılımının doğru belirlenmesi, süreçler hakkında daha doğru
yorum yapılabilmesini mümkün kılacaktır. Bu çalışmada, organik madde (OM)
uzaklaştırılması ön muamelesinin kil içerikleri %18.8 ile %83.4 arasında
değişen 80 toprağın parçacık büyüklük dağılımı üzerine etkileri incelenmiş ve
OM uzaklaştırmasının gerekli olup olmadığı tartışılmıştır. Topraklar kil
(<40%, %40-60 ve >60%) ve OM (%0-1, %1-2, %2-4 ve >%4) içeriklerine
göre gruplara ayrılarak OM uzaklaştırmanın etkileri değerlendirilmiştir. OM
uzaklaştırmanın beş farklı kum fraksiyonuna (53µ, 106µ, 250µ, 500µ ve 1000µ)
etkisi de bu çalışma kapsamında incelenmiştir. OM madde içeriği %0.17 ile 6.78%
arasında değişmektedir. Hidrojen peroksit ile OM uzaklaştırılması sonrasında
kum ve kil içerikleri istatistiksel olarak önemli düzeyde değişmiştir. OM
uzaklaştırılması ile toprakların kil ve silt içeriği artarken, kum içeriğinde
OM içeriği %1’in üzerinde olan topraklarda önemli düzeyde düşüş
gerçekleşmiştir. Kum fraksiyonlarında, orta kum (250 µ) boyutundaki artışa
karşılık ince (106 µ) boyuttaki kum miktarında önemli düzeyde azalma tespit
edilmiştir. Sonuçlar, OM içeriği %1’in üzerinde olan topraklarda OM
uzaklaştırılmasının, tekstür bileşenlerini önemli düzeyde değiştirdiğini
göstermiştir. Uzaklaştırma olmadan yapılan tekstür analizinde kil ve silt
içeriklerinin daha düşük, kum içeriğinin ise daha yüksek olacağı
unutulmamalıdır. Bu nedenle, toprağın birçok önemli fonksiyonunun
gerçekleşmesinde etkili olan parçacık büyüklük dağılımının doğru belirlenmesi
adına tekstür analizine başlamadan önce OM uzaklaştırılmasının standart bir ön
işlem haline getirilmesi gerekmektedir. 

Kaynakça

  • Askin, T., Özdemir, N., 2003. Soil bulk density as related to soil particle size distribution and organic matter content. Agriculture 9, 52–56.
  • Bayat, H., Rastgo, M., Zadeh, M. M., Vereecken, H., 2015. Particle size distribution models, their characteristics and fitting capability. Journal of hydrology, 529, 872-889.
  • Bieganowski A., Chojecki T., Ryzak M., Sochan A., Lamorski K., 2013. Methodological aspects of fractal dimension estimation 1 on the basis of PSD. Vadose Zone J., 12(1), 1-9.
  • Blott S.J., Pye K., 2006. Particle size distribution analysis of sand-sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effects of particle shape. Sedimentology, 53, 671-685.
  • Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464–465.
  • Brady, N.C., Weil, R.R., 2010. Elements of the Nature and Properties of Soils. Pearson Educational International, Upper Saddle River, NJ.
  • Broersma, K., Lavkulich, L., 1980. Organic matter distribution with particle-size in surface horizons of some sombric soils in Vancouver Island. Can. J. Soil Sci. 60 (3), 583–586.
  • Bronick, C. J., Lal, R., 2005. Soil structure and management: a review. Geoderma, 124(1-2), 3-22.
  • Burgos, P., Madejón, E., Cabrera, F., 2006. Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes. Waste Manage. Res. 24 (2), 175–182.
  • Chiu, C.Y., Chen, T.H., Imberger, K., Tian, G., 2006. Particle size fractionation of fungal and bacterial biomass in subalpine grassland and forest soils. Geoderma 130 (3), 265–271.
  • Dobrowolski R., Bieganowski A., Mroczek P., Ryzak M., 2012. Role of periglacial processes in epikarst morphogenesis: a case study from Che³m Chalk Quarry, Lublin Upland, Eastern Poland. Permafrost Periglac. Process., 23(4), 251-266.
  • Elonen, P., 1971. Particle-size analysis of soil. Acta Agralia Fennica no. 122.
  • Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., Coban, S., 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particlesize distribution. Geoderma 136 (3), 588–597.
  • Filgueira, R.R., Fournier, L.L., Cerisola, C.I., Gelati, P., García, M.G., 2006. Particle-size distribution in soils: a critical study of the fractal model validation. Geoderma 134 (3), 327–334.
  • Gee, G.W., Bouder, J.W., 1986. Particle Size Analysis. In: A. Clute (Ed.) Methods of Soil Analysis. Part I Agronomy No: 9 Am Soc. of Agron. Madison, Wisconsin, USA.
  • Gee, G.W, Or, D., 2002. Particle-size analysis. In: Dane JH, Topp GC, editors. Methods of Soil Analysis Part 4-Physical methods. Soil Science Society of America, Inc. Madison, Wisconsin, USA 2002. p. 255-294.
  • Gray, C.W., Allbrook, R., 2002. Relationships between shrinkage indices and soil properties in some New Zealand soils. Geoderma, 108(3-4), 287-299.
  • Gunal, H., Ersahin, S., Yetgin, B., Kutlu, T., 2008. Use of Chromameter‐Measured Color Parameters in Estimating Color‐Related Soil Variables. Communications in soil science and plant analysis, 39(5-6), 726-740.
  • Gunal, H., Ersahin, S., Uz, B.Y., Budak, M., Acir, N., 2011. Soil particle size distribution and solid fractal dimension as influenced by pretreatments. J. Agr. Sci., 17, 217-229.
  • Hajnos, M., Calka, A., Józefaciuk, G., 2013. Wettability of mineral soils. Geoderma, 206, 63-69.
  • Hamarshid, N.H., Othman, M.A., Hussain, M.A.H., 2010. Effects of soil texture on chemical compositions, microbial populations and carbon mineralization in soil. Egypt. J. Exp. Biol. (Bot.), 6(1), 59-64.
  • Hillel, D., 1980. Fundamentals of Soil Physics. Academic Press, Inc. (London) Ltd..
  • Horn, R., Smucker, A., 2005. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil and Tillage Research, 82(1), 5-14.
  • Jakson, M.L., 1958. Soil Chemical Analysis. Prentice-Hall Inc., Englowed Cliffts, New Jersey U.S.A.
  • Jensen, J.L., Schjønning, P., Watts, C.W., Christensen, B.T., Munkholm, L.J., 2017. Soil texture analysis revisited: Removal of organic matter matters more than ever. PLoS ONE 12(5): e0178039. https://doi.org/10.1371/journal.pone.0178039
  • Kabala, C., Zapart, J., 2012. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma, 175-176, 9-20.
  • Kacar, B., 1994. Bitki ve Toprağın Kimyasal Analizleri III Toprak Analizleri. Ankara Üni. Zir. Fak. Eğitim Araştırma Geliştirme Vakfı Yayınları No.3.
  • Karup, D., Moldrup, P., Paradelo, M., Katuwal, S., Norgaard, T., Greve, MH., de Jonge, L. W., 2016. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents. J. Contam. Hydrol. 192: 194-202.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute A, editor. Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison, WI. p 425-42.
  • Kilmer, V.J., Alexander, L.T., 1949. Methods of making mechanical analyses of soils. Soil Science, 68(1), 15-24.
  • Kone, B., Yao-Kouamé, A., Ettien, J.B., Oikeh, S., Yoro, G., Diatta, S., 2009. Modelling the relationship between soil color and particle size for soil survey in Ferralsol environments. Soil and Environment, 28(2), 93-105.
  • Kunze, G.W. Dixon, J.B., 1986. Pretreatment for mineralogical analysis. In: Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods, 2nd edn (ed. A. Klute), pp. 91–100. Agronomy Monograph No 9, American Society of Agronomy, Madison, WI.
  • Lamorski, K., Pachepsky, Y., Slawiñski, C., 2008. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci. Soc. Am. J., 72(5), 1243-1247.
  • McLean, W., 1931. Effect of hydrogen peroxide on soil organic matter. Journal of Agricultural Science, Cambridge, 21, 251–261.
  • Mikutta, R., Kleber, M., Kaiser, K., Jahn, R., 2005. Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. J. 69: 120–135. https://doi.org/10.2136/sssaj2005.0120
  • Mohammadi, M.H., Meskini-Vishkaee, F., 2013. Predicting soil moisture characteristic curves from continuous particlesize distribution data. Pedosphere, 23(1), 70-80.
  • Nelson, D.W., Sommers, L.E., 1982. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Page, A.L., Miller, R.H. Keeney, D.R. (Ed) 2nd Ed. SSS of Am. Inc. Pub., Madison, Wisconsin.
  • Nimmo, J., 2004. Porosity and pore size distribution. Encycl. Soils Environ. 3, 295– 303.
  • Polakowski, C., Sochan, A., Bieganowski, A., Ryzak, M., Földényi, R., Tóth, J., 2014. Influence of the sand particle shape on particle size distribution measured by laser diffraction method. International Agrophysics, 28(2), 195-200.
  • Rhoades, J., Chandavi, D., Lesch, S.F., 1999. Soil Salinity Assessment Methods and Interpretation of Electrical Conductivity Measurement FAO Irrigation and Drainage Paper 57 Rome.
  • Schjønning, P., Keller, T., Obour, P.B., McBride, R.A., 2017. Predicting soil particle density from clay and soil organic matter contents. Geoderma. 286: 83-87.
  • Scott, E. E., Rothstein, D. E., 2014. The dynamic exchange of dissolved organic matter percolating through six diverse soils. Soil Biology and Biochemistry, 69, 83-92.
  • Sepaskah, A.R., Tafteh, A., 2013. Pedotransfer function for estimation of soil-specific surface area using soil fractal dimension of improved particle-size distribution. Arch. Acker. Pfl. Boden., 59(1), 93-103.
  • Shi, Z. H., Fang, N. F., Wu, F. Z., Wang, L., Yue, B. J., Wu, G.L., 2012. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology, 454, 123-130.
  • Stanchi, S.E., Bonifacio, E.Z., Perfect, E., 2008. Chemical and physical treatment effects on aggregate breakup in the 0- to 2-mm size range. Soil Science Society of American Journal 72(5):14181421
  • Sumner, M. E., (Ed.). 1999. Handbook of soil science. CRC press.
  • Walkiewicz, A., Bulak, P., Brzeziñska, M., Włodarczyk, T., Polakowski, C., 2012. Kinetics of methane oxidation in selected mineral soils. International Agrophysics, 26(4), 401-406.
  • Wilding, L.G., 1985. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. In: D.R. Nielsen and J. Bouma (Eds), Soil Spatial Variability, Pudoc, Wageningen, pp. 166- 193.

Effects of organic matter removal on particle size distribution

Yıl 2020, , 106 - 114, 14.02.2020
https://doi.org/10.7161/omuanajas.615474

Öz

Accurate determination of the particle size
distribution, which has significant impacts on many physical, chemical and
biological processes in soil, will enable a more accurate interpretation of the
processes. In this study, the effects of organic matter (OM) removal pretreatment
on the particle size distribution of 80 soil samples which have a clay content
ranging from 18.8 to 83.4% were investigated to determine the necessity of OM
removal pretreatment. The effect of OM removal was discussed by separating soil
samples into clay (<40%, 40-60% and > 60%) and OM (0-1%, 1-2%, 2-4% and
> 4%) group contents. The effect of OM removal on five different sand
fractions (53µ, 106µ, 250µ, 500µ and 1000µ) was also investigated in this
study. The mean OM content was 2.48% and ranged from 0.17 to 6.78%. Sand and
clay contents of soil samples significantly changed after the removal of OM
with hydrogen peroxide. The removal of OM caused an increase in clay and silt
contents, while sand content significantly decreased in soils with an OM content
of higher than 1%. Fine sand fraction (106 µ) significantly decreased despite
an increase in 250 µ size sand fraction. The results showed that removal of OM
with an OM content of higher than 1% significantly changes the particle size
distribution. If soil texture is determined without removal of OM, clay and
silt contents will be lower and the sand content will be higher than the actual
case. Therefore, the removal of OM should be set as a standard pretreatment
procedure before starting the texture analysis in order to accurately determine
the particle size distribution which is crucial for many important soil
functions.

Kaynakça

  • Askin, T., Özdemir, N., 2003. Soil bulk density as related to soil particle size distribution and organic matter content. Agriculture 9, 52–56.
  • Bayat, H., Rastgo, M., Zadeh, M. M., Vereecken, H., 2015. Particle size distribution models, their characteristics and fitting capability. Journal of hydrology, 529, 872-889.
  • Bieganowski A., Chojecki T., Ryzak M., Sochan A., Lamorski K., 2013. Methodological aspects of fractal dimension estimation 1 on the basis of PSD. Vadose Zone J., 12(1), 1-9.
  • Blott S.J., Pye K., 2006. Particle size distribution analysis of sand-sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effects of particle shape. Sedimentology, 53, 671-685.
  • Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464–465.
  • Brady, N.C., Weil, R.R., 2010. Elements of the Nature and Properties of Soils. Pearson Educational International, Upper Saddle River, NJ.
  • Broersma, K., Lavkulich, L., 1980. Organic matter distribution with particle-size in surface horizons of some sombric soils in Vancouver Island. Can. J. Soil Sci. 60 (3), 583–586.
  • Bronick, C. J., Lal, R., 2005. Soil structure and management: a review. Geoderma, 124(1-2), 3-22.
  • Burgos, P., Madejón, E., Cabrera, F., 2006. Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes. Waste Manage. Res. 24 (2), 175–182.
  • Chiu, C.Y., Chen, T.H., Imberger, K., Tian, G., 2006. Particle size fractionation of fungal and bacterial biomass in subalpine grassland and forest soils. Geoderma 130 (3), 265–271.
  • Dobrowolski R., Bieganowski A., Mroczek P., Ryzak M., 2012. Role of periglacial processes in epikarst morphogenesis: a case study from Che³m Chalk Quarry, Lublin Upland, Eastern Poland. Permafrost Periglac. Process., 23(4), 251-266.
  • Elonen, P., 1971. Particle-size analysis of soil. Acta Agralia Fennica no. 122.
  • Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., Coban, S., 2006. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particlesize distribution. Geoderma 136 (3), 588–597.
  • Filgueira, R.R., Fournier, L.L., Cerisola, C.I., Gelati, P., García, M.G., 2006. Particle-size distribution in soils: a critical study of the fractal model validation. Geoderma 134 (3), 327–334.
  • Gee, G.W., Bouder, J.W., 1986. Particle Size Analysis. In: A. Clute (Ed.) Methods of Soil Analysis. Part I Agronomy No: 9 Am Soc. of Agron. Madison, Wisconsin, USA.
  • Gee, G.W, Or, D., 2002. Particle-size analysis. In: Dane JH, Topp GC, editors. Methods of Soil Analysis Part 4-Physical methods. Soil Science Society of America, Inc. Madison, Wisconsin, USA 2002. p. 255-294.
  • Gray, C.W., Allbrook, R., 2002. Relationships between shrinkage indices and soil properties in some New Zealand soils. Geoderma, 108(3-4), 287-299.
  • Gunal, H., Ersahin, S., Yetgin, B., Kutlu, T., 2008. Use of Chromameter‐Measured Color Parameters in Estimating Color‐Related Soil Variables. Communications in soil science and plant analysis, 39(5-6), 726-740.
  • Gunal, H., Ersahin, S., Uz, B.Y., Budak, M., Acir, N., 2011. Soil particle size distribution and solid fractal dimension as influenced by pretreatments. J. Agr. Sci., 17, 217-229.
  • Hajnos, M., Calka, A., Józefaciuk, G., 2013. Wettability of mineral soils. Geoderma, 206, 63-69.
  • Hamarshid, N.H., Othman, M.A., Hussain, M.A.H., 2010. Effects of soil texture on chemical compositions, microbial populations and carbon mineralization in soil. Egypt. J. Exp. Biol. (Bot.), 6(1), 59-64.
  • Hillel, D., 1980. Fundamentals of Soil Physics. Academic Press, Inc. (London) Ltd..
  • Horn, R., Smucker, A., 2005. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil and Tillage Research, 82(1), 5-14.
  • Jakson, M.L., 1958. Soil Chemical Analysis. Prentice-Hall Inc., Englowed Cliffts, New Jersey U.S.A.
  • Jensen, J.L., Schjønning, P., Watts, C.W., Christensen, B.T., Munkholm, L.J., 2017. Soil texture analysis revisited: Removal of organic matter matters more than ever. PLoS ONE 12(5): e0178039. https://doi.org/10.1371/journal.pone.0178039
  • Kabala, C., Zapart, J., 2012. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma, 175-176, 9-20.
  • Kacar, B., 1994. Bitki ve Toprağın Kimyasal Analizleri III Toprak Analizleri. Ankara Üni. Zir. Fak. Eğitim Araştırma Geliştirme Vakfı Yayınları No.3.
  • Karup, D., Moldrup, P., Paradelo, M., Katuwal, S., Norgaard, T., Greve, MH., de Jonge, L. W., 2016. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents. J. Contam. Hydrol. 192: 194-202.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute A, editor. Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison, WI. p 425-42.
  • Kilmer, V.J., Alexander, L.T., 1949. Methods of making mechanical analyses of soils. Soil Science, 68(1), 15-24.
  • Kone, B., Yao-Kouamé, A., Ettien, J.B., Oikeh, S., Yoro, G., Diatta, S., 2009. Modelling the relationship between soil color and particle size for soil survey in Ferralsol environments. Soil and Environment, 28(2), 93-105.
  • Kunze, G.W. Dixon, J.B., 1986. Pretreatment for mineralogical analysis. In: Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods, 2nd edn (ed. A. Klute), pp. 91–100. Agronomy Monograph No 9, American Society of Agronomy, Madison, WI.
  • Lamorski, K., Pachepsky, Y., Slawiñski, C., 2008. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci. Soc. Am. J., 72(5), 1243-1247.
  • McLean, W., 1931. Effect of hydrogen peroxide on soil organic matter. Journal of Agricultural Science, Cambridge, 21, 251–261.
  • Mikutta, R., Kleber, M., Kaiser, K., Jahn, R., 2005. Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. J. 69: 120–135. https://doi.org/10.2136/sssaj2005.0120
  • Mohammadi, M.H., Meskini-Vishkaee, F., 2013. Predicting soil moisture characteristic curves from continuous particlesize distribution data. Pedosphere, 23(1), 70-80.
  • Nelson, D.W., Sommers, L.E., 1982. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Page, A.L., Miller, R.H. Keeney, D.R. (Ed) 2nd Ed. SSS of Am. Inc. Pub., Madison, Wisconsin.
  • Nimmo, J., 2004. Porosity and pore size distribution. Encycl. Soils Environ. 3, 295– 303.
  • Polakowski, C., Sochan, A., Bieganowski, A., Ryzak, M., Földényi, R., Tóth, J., 2014. Influence of the sand particle shape on particle size distribution measured by laser diffraction method. International Agrophysics, 28(2), 195-200.
  • Rhoades, J., Chandavi, D., Lesch, S.F., 1999. Soil Salinity Assessment Methods and Interpretation of Electrical Conductivity Measurement FAO Irrigation and Drainage Paper 57 Rome.
  • Schjønning, P., Keller, T., Obour, P.B., McBride, R.A., 2017. Predicting soil particle density from clay and soil organic matter contents. Geoderma. 286: 83-87.
  • Scott, E. E., Rothstein, D. E., 2014. The dynamic exchange of dissolved organic matter percolating through six diverse soils. Soil Biology and Biochemistry, 69, 83-92.
  • Sepaskah, A.R., Tafteh, A., 2013. Pedotransfer function for estimation of soil-specific surface area using soil fractal dimension of improved particle-size distribution. Arch. Acker. Pfl. Boden., 59(1), 93-103.
  • Shi, Z. H., Fang, N. F., Wu, F. Z., Wang, L., Yue, B. J., Wu, G.L., 2012. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology, 454, 123-130.
  • Stanchi, S.E., Bonifacio, E.Z., Perfect, E., 2008. Chemical and physical treatment effects on aggregate breakup in the 0- to 2-mm size range. Soil Science Society of American Journal 72(5):14181421
  • Sumner, M. E., (Ed.). 1999. Handbook of soil science. CRC press.
  • Walkiewicz, A., Bulak, P., Brzeziñska, M., Włodarczyk, T., Polakowski, C., 2012. Kinetics of methane oxidation in selected mineral soils. International Agrophysics, 26(4), 401-406.
  • Wilding, L.G., 1985. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. In: D.R. Nielsen and J. Bouma (Eds), Soil Spatial Variability, Pudoc, Wageningen, pp. 166- 193.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Nurullah Acir 0000-0001-7591-0496

Hikmet Günal Bu kişi benim

İsmail Çelik

Yayımlanma Tarihi 14 Şubat 2020
Kabul Tarihi 25 Kasım 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Acir, N., Günal, H., & Çelik, İ. (2020). Organik madde uzaklaştırılmasının parçacık büyüklük dağılımına etkileri. Anadolu Tarım Bilimleri Dergisi, 35(1), 106-114. https://doi.org/10.7161/omuanajas.615474
Online ISSN: 1308-8769