Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı üzüm çeşitlerinde in vitro poliploidi uyarımı

Yıl 2020, , 410 - 418, 14.10.2020
https://doi.org/10.7161/omuanajas.768710

Öz

Poliploidizasyon, kültür bitkilerinde kazanılmış özelliklerden minimum kayıpla iyileştirme sağlanması ve ıslah süresini kısaltması nedeniyle günümüzde sıklıkla tercih edilen bir ıslah yöntemidir. Bu çalışmada, sera koşullarında yetiştirilen Ekşi Kara, Gök Üzüm ve Trakya İlkeren (2x, Vitis vinifera L. cvs.) çeşitlerinin 2 yaşlı fidanlarından, aktif gelişme döneminde alınan tek boğum içeren mikro çelikler kullanılmıştır. Kimyasal mutagen olarak kullanılan kolhisin (10 mg L-1, 20 mg L-1 ve 30 mg L-1), in vitro köklenme aşamasında otoklav sterilizasyonundan sonra, besin ortamı jel kıvamına gelmeden hemen önce filtre sterilizasyonu yapılarak MS ortamına ilave edilmiştir. Uygulamaların etkileri canlılık ve gelişme oranları, stoma sayısı ve boyutları, kloroplast sayımları ve flow sitometri (FC) analizleri ile incelenmiştir. Ekşi Kara, Gök Üzüm ve Trakya İlkeren çeşitlerinde kontrole göre stoma yoğunluğu değerlerinde en fazla azalış 10 mg L-1 (sırasıyla % 48.90, % 46.75, % 50.97) uygulamasında belirlenmiştir. Stoma hücreleri kloroplast sayıları, kontrol Kyoho (4x) çeşidinde 38-40 adet aralığında değişim gösterirken, Ekşi Kara ve Gök Üzüm çeşitlerinde orijinal diploidlerine göre en belirgin artış 20 mg L-1 kolhisin uygulamasında kaydedilmiştir. Dış koşullara alıştırma sonucunda canlılığı devam eden, kloroplast sayımlarında önemli farklılıklar belirlenen bitkiciklerde FC analizi yapılmıştır. Sınırlı sayıdaki örnekle yapılan FC analizlerinde, genotiplerin ploidi seviyesinin değişmediği (2n=2x) belirlenmiştir. Çalışma sonucunda in vitro düzeyde dokuların kolhisin uygulamalarına daha çabuk yanıt verdiği ve başarılı bir sonuç alınması amacıyla sonraki çalışmalarda eksplant tipi, uygulama dozu ve alıştırma koşulları konularının önem arz ettiği anlaşılmıştır.

Destekleyen Kurum

Selçuk Universitesi

Proje Numarası

15101013

Kaynakça

  • Acanda, Y., Prado, M., González, M., Rey, M., 2013. Somatic embryogenesis from stamen filaments in grapevine (Vitis vinifera L. cv. Mencía): changes in ploidy level and nuclear DNA content. In Vitro Cellular & Developmental Biology-Plant, 49 (3): 276-284.
  • Aleza, P., Juárez, J., Ollitrault, P., Navarro, L., 2009. Production of tetraploid plants of non apomictic citrus genotypes. Plant cell reports, 28 (12): 1837-1846.
  • Chen, L., Gao, S., 2007, In vitro tetraploid induction and generation of tetraploids from mixoploids in Astragalus membranaceus. Scientia horticulturae, 112 (3): 339-344.
  • Cohen, H., Fait, A., Tel-Zur, N., 2013. Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC plant biology, 13 (1): 173.
  • Dami, I., Hughes, H., 1995. Leaf anatomy and water loss of in vitro PEG-treated ‘Valiant’grape. Plant cell, tissue and organ culture, 42 (2): 179-184.
  • Di Genova, A., Almeida, A., Muñoz-Espinoza, C., Vizoso, P., Travisany, D., Moraga, C., Pinto, M., Hinrichsen, P., Orellana, A., Maass, A., 2014. Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC plant biology, 14 (1): 7.
  • Ekbiç, H., Tangolar, S., 2016. Trakya İlkeren ve Flame Seedless üzüm çeşitlerinde farklı kolhisin dozları kullanılarak poliploidi oluşturma olanakları. Akademik Ziraat Dergisi, 5 (2): 69-76.
  • Gray, D., Benton, C., 1991. In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant cell, tissue and organ culture, 27 (1): 7-14.
  • Huy, N., Luan, V., Tung, H., Hien, V., Ngan, H., Duy, P., Nhut, D., 2019. In vitro polyploid induction of Paphiopedilum villosum using colchicine. Scientia horticulturae, 252: 283-290.
  • Kara, Z., Demirhan, Y., 2005. Bazı sofralık ve şaraplık üzüm çeşitlerinin Konya yöresindeki vegetatif gelişme ve verim değerleri. Tekirdağ Bağcılık Araştırma Enstitüsü. Türkiye, 6: 375-382.
  • Kara, Z., Sabır, A., Yazar, K., Doğan, O., Omar, A., 2017. Fruitfulness of Ancient Grapevine Varety ‘Ekşi Kara’(Vitis vinifera L.). Selçuk Tarım ve Gıda Bilimleri Dergisi. 31 (3): 62-68.
  • Kumar, K., Rao, I., 2012. Morphophysiologicals problems in acclimatization of micropropagated plants in-ex vitro conditions. A Reviews, 271-283.
  • Kunter, B., Karataş, D., 2011. Asmalarda Mutasyonlar ve Mutant Vitis vinifera L. Çeşitleri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 21 (2): 146-151.
  • Mbah, E., Wakil, S., 2012. Elimination of bacteria from in vitro yam tissue cultures using antibiotics. Journal of Plant Pathology, 94 (1): 53-58.
  • Moghbel, N., Borujeni, M., Bernard, F., 2015. Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro. Journal of Genetic Engineering and Biotechnology, 13 (1): 1-6.
  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15 (3): 473-497.
  • Notsuka, K., Tsuru, T., Shiraishi, M., 2000. Induced polyploid grapes via in vitro chromosome doubling. Journal of the Japanese Society for Horticultural Science, 69 (5): 543-551.
  • OIV, 2017a. Distribution of the world’s grapevine varieties. http://www.oiv.int/public/medias/5888/en-distribution-of-the-worlds-grapevine-varieties.pdf (Erişim Tarihi: 8.9.2018).
  • OIV, 2017b. 2017 World Vitiviniculture Situation. http://www.oiv.int/public/medias/5479/oiv-en-bilan-2017.pdf. (Erişim Tarihi: 08.09.2018).
  • Olmo, H., 1937. Chromosome numbers in the european grape (Vitis vinifera). Cytologia (1): 606-613.
  • Planchais, S., Glab, N., Inzé, D., Bergounioux, C., 2000. Chemical inhibitors: a tool for plant cell cycle studies. Febs Letters, 476 (1-2): 78-83.
  • Prado, M., Rodriguez, E., Rey, L., González, M., Santos, C., Rey, M., 2010. Detection of somaclonal variants in somatic embryogenesis-regenerated plants of Vitis vinifera by flow cytometry and microsatellite markers. Plant Cell, Tissue and Organ Culture (PCTOC), 103 (1): 49-59.
  • Ramsey, J., Schemske, D., 1998, Pathways, mechanisms, and rates of polyploid formation in flowering plants, Annual Review of Ecology and Systematics, 29 (1), 467-501.
  • Sattler, M., Carvalho, C., Clarindo, W., 2016. The polyploidy and its key role in plant breeding. Planta, 243 (2): 281-296.
  • Sinski, I., Dal Bosco, D., Pierozzi, N., Maia, J., Ritschel, P., Quecini, V., 2014. Improving in vitro induction of autopolyploidy in grapevine seedless cultivars. Euphytica, 196 (2), 299-311. Tepe, Ş., Ellialtıoğlu, Ş., Yenice, N., Tipirdamaz, R., 2002. In vitro kolhisin uygulaması ile poliploid nane (Mentha longifolia L.) bitkilerinin elde edilmesi. Mediterranean agricultural sciences, 15 (2): 63-69.
  • Torregrosa, L., Bouquet, A., Goussard, P., 2001. In vitro culture and propagation of grapevine, In: Molecular Biology & Biotechnology of the Grapevine. Eds: Springer, 281-326. TÜİK, 2018. http://www.tuik.gov.tr/Start.do. (Erişim Tarihi:08.09.2018).
  • Väinölä, A., 2000. Polyploidization and early screening of Rhododendron hybrids, Euphytica, 112 (3), 239-244.
  • Xie, X., Agüero, C., Wang, Y., Walker, M., 2015. In vitro induction of tetraploids in Vitis x Muscadinia hybrids. Plant cell, tissue and organ culture, 122 (3): 675-683. Yamada, M., Sato, A., 2016. Advances in table grape breeding in Japan. Breeding science, 66 (1): 34-45.
  • Yang, X., Cao, Z., An, L., Wang, Y., Fang, X., 2006. In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica, 152 (2): 217-224.
  • Yuan, S., Liu, Y.M., Fang, Z.Y., Yang, L.M., Zhuang, M., Zhang, Y.Y., Sun, P.T., 2009. Study on the relationship between the ploidy level of microspore-derived plants and the number of chloroplast in stomatal guard cells in Brassica oleracea. Agricultural Sciences in China, 8 (8): 939-946.
  • Yue, Y., Zhu, Y., Fan, X., Hou, X., Zhao, C., Zhang, S., Wu, J., 2017. Generation of octoploid switchgrass in three cultivars by colchicine treatment. Industrial Crops and Products, 107, 20-21.
  • Zhou, J., Guo, F., Fu, J., Xiao, Y., Wu, J., 2020, In vitro polyploid induction using colchicine for Zingiber Officinale Roscoe cv.‘Fengtou’ginger. Plant Cell, Tissue and Organ Culture (PCTOC), 1-8.
  • Ziv, M., 1995. In vitro acclimatization, In: Automation and environmental control in plant tissue culture. Eds: Springer, 493-516.

In vitro poliploidy induction in some grape cultivars

Yıl 2020, , 410 - 418, 14.10.2020
https://doi.org/10.7161/omuanajas.768710

Öz

Polyploidization is a frequently preferred breeding method today because it provides improvement with minimum loss from the properties acquired in cultivars and shortens breeding time. In this study, single node micro cuttings taken from the 2-year old seedlings of Ekşi Kara, Gök Üzüm and Trakya İlkeren (2x, Vitis vinifera L. cvs.) cultivars grown in greenhouse conditions were used. Colchicine (10 mg L-1, 20 mg L-1 and 30 mg L-1) which are used as chemical mutagen, was added to the MS medium after autoclave sterilization in vitro rooting, before the nutrient medium reached gel consistency. The effects of applications were investigated by viability and development rates, number and size of stomata, chloroplast counts and flow cytometry (FC) analysis. In Ekşi Kara, Gök Üzüm and Trakya İlkeren cultivars, the maximum decrease in stoma density values were determined in the 10 mg L-1 application (48.90%, 46.75%, 50.97% respectively). Stoma cells chloroplast counts varied in the control Kyoho (4x) cultivar in the range of 38-40, while the most significant increase in Ekşi Kara and Gök Üzüm cultivars compared to the original diploids was recorded in the 20 mg L-1 colchicine application. FC analysis was carried out in plantlets whose vitality was maintained after acclimatization and significant differences were determined in chloroplast counts. In FC analyzes with a limited number of samples, it was determined that the ploidy level of the genotypes did not change (2n = 2x). As a result of the study, it was understood that in vitro tissues respond to the applications of colchicine more and to get a successful result, type of explant, application dose and conditions are important in further studies.

Proje Numarası

15101013

Kaynakça

  • Acanda, Y., Prado, M., González, M., Rey, M., 2013. Somatic embryogenesis from stamen filaments in grapevine (Vitis vinifera L. cv. Mencía): changes in ploidy level and nuclear DNA content. In Vitro Cellular & Developmental Biology-Plant, 49 (3): 276-284.
  • Aleza, P., Juárez, J., Ollitrault, P., Navarro, L., 2009. Production of tetraploid plants of non apomictic citrus genotypes. Plant cell reports, 28 (12): 1837-1846.
  • Chen, L., Gao, S., 2007, In vitro tetraploid induction and generation of tetraploids from mixoploids in Astragalus membranaceus. Scientia horticulturae, 112 (3): 339-344.
  • Cohen, H., Fait, A., Tel-Zur, N., 2013. Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC plant biology, 13 (1): 173.
  • Dami, I., Hughes, H., 1995. Leaf anatomy and water loss of in vitro PEG-treated ‘Valiant’grape. Plant cell, tissue and organ culture, 42 (2): 179-184.
  • Di Genova, A., Almeida, A., Muñoz-Espinoza, C., Vizoso, P., Travisany, D., Moraga, C., Pinto, M., Hinrichsen, P., Orellana, A., Maass, A., 2014. Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC plant biology, 14 (1): 7.
  • Ekbiç, H., Tangolar, S., 2016. Trakya İlkeren ve Flame Seedless üzüm çeşitlerinde farklı kolhisin dozları kullanılarak poliploidi oluşturma olanakları. Akademik Ziraat Dergisi, 5 (2): 69-76.
  • Gray, D., Benton, C., 1991. In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant cell, tissue and organ culture, 27 (1): 7-14.
  • Huy, N., Luan, V., Tung, H., Hien, V., Ngan, H., Duy, P., Nhut, D., 2019. In vitro polyploid induction of Paphiopedilum villosum using colchicine. Scientia horticulturae, 252: 283-290.
  • Kara, Z., Demirhan, Y., 2005. Bazı sofralık ve şaraplık üzüm çeşitlerinin Konya yöresindeki vegetatif gelişme ve verim değerleri. Tekirdağ Bağcılık Araştırma Enstitüsü. Türkiye, 6: 375-382.
  • Kara, Z., Sabır, A., Yazar, K., Doğan, O., Omar, A., 2017. Fruitfulness of Ancient Grapevine Varety ‘Ekşi Kara’(Vitis vinifera L.). Selçuk Tarım ve Gıda Bilimleri Dergisi. 31 (3): 62-68.
  • Kumar, K., Rao, I., 2012. Morphophysiologicals problems in acclimatization of micropropagated plants in-ex vitro conditions. A Reviews, 271-283.
  • Kunter, B., Karataş, D., 2011. Asmalarda Mutasyonlar ve Mutant Vitis vinifera L. Çeşitleri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 21 (2): 146-151.
  • Mbah, E., Wakil, S., 2012. Elimination of bacteria from in vitro yam tissue cultures using antibiotics. Journal of Plant Pathology, 94 (1): 53-58.
  • Moghbel, N., Borujeni, M., Bernard, F., 2015. Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro. Journal of Genetic Engineering and Biotechnology, 13 (1): 1-6.
  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15 (3): 473-497.
  • Notsuka, K., Tsuru, T., Shiraishi, M., 2000. Induced polyploid grapes via in vitro chromosome doubling. Journal of the Japanese Society for Horticultural Science, 69 (5): 543-551.
  • OIV, 2017a. Distribution of the world’s grapevine varieties. http://www.oiv.int/public/medias/5888/en-distribution-of-the-worlds-grapevine-varieties.pdf (Erişim Tarihi: 8.9.2018).
  • OIV, 2017b. 2017 World Vitiviniculture Situation. http://www.oiv.int/public/medias/5479/oiv-en-bilan-2017.pdf. (Erişim Tarihi: 08.09.2018).
  • Olmo, H., 1937. Chromosome numbers in the european grape (Vitis vinifera). Cytologia (1): 606-613.
  • Planchais, S., Glab, N., Inzé, D., Bergounioux, C., 2000. Chemical inhibitors: a tool for plant cell cycle studies. Febs Letters, 476 (1-2): 78-83.
  • Prado, M., Rodriguez, E., Rey, L., González, M., Santos, C., Rey, M., 2010. Detection of somaclonal variants in somatic embryogenesis-regenerated plants of Vitis vinifera by flow cytometry and microsatellite markers. Plant Cell, Tissue and Organ Culture (PCTOC), 103 (1): 49-59.
  • Ramsey, J., Schemske, D., 1998, Pathways, mechanisms, and rates of polyploid formation in flowering plants, Annual Review of Ecology and Systematics, 29 (1), 467-501.
  • Sattler, M., Carvalho, C., Clarindo, W., 2016. The polyploidy and its key role in plant breeding. Planta, 243 (2): 281-296.
  • Sinski, I., Dal Bosco, D., Pierozzi, N., Maia, J., Ritschel, P., Quecini, V., 2014. Improving in vitro induction of autopolyploidy in grapevine seedless cultivars. Euphytica, 196 (2), 299-311. Tepe, Ş., Ellialtıoğlu, Ş., Yenice, N., Tipirdamaz, R., 2002. In vitro kolhisin uygulaması ile poliploid nane (Mentha longifolia L.) bitkilerinin elde edilmesi. Mediterranean agricultural sciences, 15 (2): 63-69.
  • Torregrosa, L., Bouquet, A., Goussard, P., 2001. In vitro culture and propagation of grapevine, In: Molecular Biology & Biotechnology of the Grapevine. Eds: Springer, 281-326. TÜİK, 2018. http://www.tuik.gov.tr/Start.do. (Erişim Tarihi:08.09.2018).
  • Väinölä, A., 2000. Polyploidization and early screening of Rhododendron hybrids, Euphytica, 112 (3), 239-244.
  • Xie, X., Agüero, C., Wang, Y., Walker, M., 2015. In vitro induction of tetraploids in Vitis x Muscadinia hybrids. Plant cell, tissue and organ culture, 122 (3): 675-683. Yamada, M., Sato, A., 2016. Advances in table grape breeding in Japan. Breeding science, 66 (1): 34-45.
  • Yang, X., Cao, Z., An, L., Wang, Y., Fang, X., 2006. In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica, 152 (2): 217-224.
  • Yuan, S., Liu, Y.M., Fang, Z.Y., Yang, L.M., Zhuang, M., Zhang, Y.Y., Sun, P.T., 2009. Study on the relationship between the ploidy level of microspore-derived plants and the number of chloroplast in stomatal guard cells in Brassica oleracea. Agricultural Sciences in China, 8 (8): 939-946.
  • Yue, Y., Zhu, Y., Fan, X., Hou, X., Zhao, C., Zhang, S., Wu, J., 2017. Generation of octoploid switchgrass in three cultivars by colchicine treatment. Industrial Crops and Products, 107, 20-21.
  • Zhou, J., Guo, F., Fu, J., Xiao, Y., Wu, J., 2020, In vitro polyploid induction using colchicine for Zingiber Officinale Roscoe cv.‘Fengtou’ginger. Plant Cell, Tissue and Organ Culture (PCTOC), 1-8.
  • Ziv, M., 1995. In vitro acclimatization, In: Automation and environmental control in plant tissue culture. Eds: Springer, 493-516.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Zeki Kara 0000-0003-1096-8288

Kevser Yazar 0000-0002-0390-0341

Proje Numarası 15101013
Yayımlanma Tarihi 14 Ekim 2020
Kabul Tarihi 27 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kara, Z., & Yazar, K. (2020). Bazı üzüm çeşitlerinde in vitro poliploidi uyarımı. Anadolu Tarım Bilimleri Dergisi, 35(3), 410-418. https://doi.org/10.7161/omuanajas.768710
Online ISSN: 1308-8769