The present study proposes a Faster R-CNN Object Detection Approach with GoogLeNet Classifier (Faster R-CNN-GC) using image stitching, Faster R-CNN and GoogLeNet to detect pepper and potato leaves as well as leaf diseases in them. It is widely known that for a successful object detection performance, Faster R-CNN requires performing image labelling on a very high number of data, which will later train Faster R-CNN. However, this process is often very time-consuming. The present study mainly aims to shorten this process by designing an object detection approach which benefits from Faster R-CNN and GoogLeNet architecture. Firstly, Faster R-CNN and GoogLeNet were trained. Later, for the testing process, some of two-piece images were combined using an image stitching approach. Finally, using Faster R-CNN and GoogLeNet, pepper and potato leaves are detected and diseases are written on them. In addition, the proposed system was compared with Faster R-CNN Object Detection Approach with AlexNet Classifier (Faster R-CNN-AC), Faster R-CNN Object Detection Approach with SequezeNet Classifier (Faster R-CNN-SC) and Faster R-CNN. The findings of the experimental studies demonstrated that Faster R-CNN-GC displayed a higher object detection performance compared to other approaches.
Leaf Disease Detection Faster R-CNN Object Detection GoogLeNet SequezeNet AlexNet
-
-
-
Bu çalışmada, görüntü birleştirme, daha hızlı-bölgesel evrişimsel sinir ağı (Faster R-CNN) ve GoogLeNet kullanılarak biber ve patates yapraklarını tespit eden ve tespit edilen yapraklardaki hastalık türünü gösteren, GoogLeNet sınıflandırıcılı Faster R-CNN nesne tespit yaklaşımı (Faster R-CNN-GC) önerilmiştir. Bilindiği gibi, Faster R-CNN’nin başarılı bir şekilde nesne tespitini gerçekleştirebilmesi için, çok fazla eğitim datası üzerinde imge etiketleme yapılması ve bu datalarla Faster R-CNN’nin eğitim sürecinden geçirilmesi gerekmektedir. Fakat bu süreç çok zaman alıcıdır. Bu çalışmadaki temel amaç bu süreci kısaltmak için Faster R-CNN ve GoogLeNet mimarisinin birlikte çalıştığı bir nesne tespit yaklaşımının tasarlanmasıdır. Çalışmada başlangıçta Faster R-CNN ve GoogLeNet’in eğitim süreci tamamlamıştır. Ardından test sürecine geçilmiş ve bazı test resimleri iki parçalı olduğu için görüntü birleştirme yaklaşımıyla bu görüntüler birleştirilmiştir. Ardından, Faster R-CNN ile resimdeki yaprak/yapraklar tespiti edilmiş ve GoogLeNet ile hastalık durumu belirlenmiştir. Bunlara ek olarak önerilen sistem, AlexNet sınıflandırıcılı Faster R-CNN nesne tespit yaklaşımı (Faster R-CNN-AC), SequezeNet sınıflandırıcılı Faster R-CNN nesne tespit yaklaşımı (Faster R-CNN-SC) ve Faster R-CNN ile karşılaştırılmıştır. Gerçekleştirilen deneysel çalışmalar önerilen Faster R-CNN-GC’nin diğer yaklaşımlara göre daha üstün bir şekilde nesne tespitini gerçekleştirdiği göstermiştir.
Yaprak hastalık tespiti Faster R-CNN Nesne tespiti GoogLeNet SequezeNet AlexNet
-
Birincil Dil | İngilizce |
---|---|
Bölüm | Anadolu Tarım Bilimleri Dergisi |
Yazarlar | |
Proje Numarası | - |
Yayımlanma Tarihi | 15 Haziran 2021 |
Kabul Tarihi | 15 Mart 2021 |
Yayımlandığı Sayı | Yıl 2021 |