Araştırma Makalesi
BibTex RIS Kaynak Göster

A deep learning based approach for the detection of diseases in pepper and potato leaves

Yıl 2021, , 167 - 178, 15.06.2021
https://doi.org/10.7161/omuanajas.805152

Öz

The present study proposes a Faster R-CNN Object Detection Approach with GoogLeNet Classifier (Faster R-CNN-GC) using image stitching, Faster R-CNN and GoogLeNet to detect pepper and potato leaves as well as leaf diseases in them. It is widely known that for a successful object detection performance, Faster R-CNN requires performing image labelling on a very high number of data, which will later train Faster R-CNN. However, this process is often very time-consuming. The present study mainly aims to shorten this process by designing an object detection approach which benefits from Faster R-CNN and GoogLeNet architecture. Firstly, Faster R-CNN and GoogLeNet were trained. Later, for the testing process, some of two-piece images were combined using an image stitching approach. Finally, using Faster R-CNN and GoogLeNet, pepper and potato leaves are detected and diseases are written on them. In addition, the proposed system was compared with Faster R-CNN Object Detection Approach with AlexNet Classifier (Faster R-CNN-AC), Faster R-CNN Object Detection Approach with SequezeNet Classifier (Faster R-CNN-SC) and Faster R-CNN. The findings of the experimental studies demonstrated that Faster R-CNN-GC displayed a higher object detection performance compared to other approaches.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Brown, M., Lowe D.G. 2007. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 74(1):59-73. https://doi.org/10.1007/s11263-006-0002-3.
  • Geetharamani, G., Pandian, A. (2019). Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers & Electrical Engineering, 76: 323-338. https://doi.org/10.1016/j.compeleceng.2019.04.011.
  • Hu, G., Yang, X., Zhang, Y., Wan, M. (2019). Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustainable Computing: Informatics and Systems, 24:100353. https://doi.org/10.1016/j.suscom.2019.100353.
  • Hughes, D., Salathé, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv Preprint arXiv:1511.08060.
  • Lumini, A., Nanni, L. (2019). Deep learning and transfer learning features for plankton classification. Ecological informatics, 51: 33-43. https://doi.org/10.1016/j.ecoinf.2019.02.007.
  • Ozguven, M. M., Adem, K. (2019). Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Physica A: Statistical Mechanics and its Applications, 535: 122537. https://doi.org/10.1016/j.physa.2019.122537.
  • Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, 28: 91–99.
  • Shi, J., Chang, Y., Xu, C., Khan, F., Chen, G., Li, C. (2020). Real-time leak detection using an infrared camera and Faster R-CNN technique. Computers & Chemical Engineering, 135:106780. https://doi.org/10.1016/j.compchemeng.2020.106780.
  • Sibiya, M., Sumbwanyambe, M. (2019). A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering, 1(1): 119-131. https://doi.org/10.3390/agriengineering1010009.
  • Sokolova, M., Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4): 427-437. https://doi.org/10.1016/j.ipm.2009.03.002.
  • Too, E.C., Yujian, L., Njuki, S., Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161: 272-279. https://doi.org/10.1016/j.compag.2018.03.032.
  • Zhou, G., Zhang, W., Chen, A., He, M., Ma, X. (2019). Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion. IEEE Access, 7:143190-143206. https://doi.org/10.1109/ACCESS.2019.2943454

Biber ve patates yapraklarındaki hastalıkların saptanması için derin öğrenme temelli bir yaklaşım

Yıl 2021, , 167 - 178, 15.06.2021
https://doi.org/10.7161/omuanajas.805152

Öz

Bu çalışmada, görüntü birleştirme, daha hızlı-bölgesel evrişimsel sinir ağı (Faster R-CNN) ve GoogLeNet kullanılarak biber ve patates yapraklarını tespit eden ve tespit edilen yapraklardaki hastalık türünü gösteren, GoogLeNet sınıflandırıcılı Faster R-CNN nesne tespit yaklaşımı (Faster R-CNN-GC) önerilmiştir. Bilindiği gibi, Faster R-CNN’nin başarılı bir şekilde nesne tespitini gerçekleştirebilmesi için, çok fazla eğitim datası üzerinde imge etiketleme yapılması ve bu datalarla Faster R-CNN’nin eğitim sürecinden geçirilmesi gerekmektedir. Fakat bu süreç çok zaman alıcıdır. Bu çalışmadaki temel amaç bu süreci kısaltmak için Faster R-CNN ve GoogLeNet mimarisinin birlikte çalıştığı bir nesne tespit yaklaşımının tasarlanmasıdır. Çalışmada başlangıçta Faster R-CNN ve GoogLeNet’in eğitim süreci tamamlamıştır. Ardından test sürecine geçilmiş ve bazı test resimleri iki parçalı olduğu için görüntü birleştirme yaklaşımıyla bu görüntüler birleştirilmiştir. Ardından, Faster R-CNN ile resimdeki yaprak/yapraklar tespiti edilmiş ve GoogLeNet ile hastalık durumu belirlenmiştir. Bunlara ek olarak önerilen sistem, AlexNet sınıflandırıcılı Faster R-CNN nesne tespit yaklaşımı (Faster R-CNN-AC), SequezeNet sınıflandırıcılı Faster R-CNN nesne tespit yaklaşımı (Faster R-CNN-SC) ve Faster R-CNN ile karşılaştırılmıştır. Gerçekleştirilen deneysel çalışmalar önerilen Faster R-CNN-GC’nin diğer yaklaşımlara göre daha üstün bir şekilde nesne tespitini gerçekleştirdiği göstermiştir.

Proje Numarası

-

Kaynakça

  • Brown, M., Lowe D.G. 2007. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 74(1):59-73. https://doi.org/10.1007/s11263-006-0002-3.
  • Geetharamani, G., Pandian, A. (2019). Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers & Electrical Engineering, 76: 323-338. https://doi.org/10.1016/j.compeleceng.2019.04.011.
  • Hu, G., Yang, X., Zhang, Y., Wan, M. (2019). Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustainable Computing: Informatics and Systems, 24:100353. https://doi.org/10.1016/j.suscom.2019.100353.
  • Hughes, D., Salathé, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv Preprint arXiv:1511.08060.
  • Lumini, A., Nanni, L. (2019). Deep learning and transfer learning features for plankton classification. Ecological informatics, 51: 33-43. https://doi.org/10.1016/j.ecoinf.2019.02.007.
  • Ozguven, M. M., Adem, K. (2019). Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Physica A: Statistical Mechanics and its Applications, 535: 122537. https://doi.org/10.1016/j.physa.2019.122537.
  • Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, 28: 91–99.
  • Shi, J., Chang, Y., Xu, C., Khan, F., Chen, G., Li, C. (2020). Real-time leak detection using an infrared camera and Faster R-CNN technique. Computers & Chemical Engineering, 135:106780. https://doi.org/10.1016/j.compchemeng.2020.106780.
  • Sibiya, M., Sumbwanyambe, M. (2019). A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering, 1(1): 119-131. https://doi.org/10.3390/agriengineering1010009.
  • Sokolova, M., Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4): 427-437. https://doi.org/10.1016/j.ipm.2009.03.002.
  • Too, E.C., Yujian, L., Njuki, S., Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161: 272-279. https://doi.org/10.1016/j.compag.2018.03.032.
  • Zhou, G., Zhang, W., Chen, A., He, M., Ma, X. (2019). Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion. IEEE Access, 7:143190-143206. https://doi.org/10.1109/ACCESS.2019.2943454
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Eser Sert 0000-0002-8611-701X

Proje Numarası -
Yayımlanma Tarihi 15 Haziran 2021
Kabul Tarihi 15 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Sert, E. (2021). A deep learning based approach for the detection of diseases in pepper and potato leaves. Anadolu Tarım Bilimleri Dergisi, 36(2), 167-178. https://doi.org/10.7161/omuanajas.805152

Cited By





Disease detection in bean leaves using deep learning
Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering
https://doi.org/10.33769/aupse.1247233




Online ISSN: 1308-8769