Araştırma Makalesi
BibTex RIS Kaynak Göster

Drying of thin layer mango slices with microwave technique

Yıl 2015, Cilt: 30 Sayı: 2, 99 - 109, 25.07.2015
https://doi.org/10.7161/anajas.2015.30.2.99-109

Öz

In this study, mango slices with 100 (±2) g weight and 89.23% (±0.45) moisture content on wet basis were microwave dried at 1000, 750, 500 and 90 W microwave powers and hot-air dried at 50°C temperature, until the moisture content fell down to 12.75% (±0.17) on wet basis. Microwave drying processes at 1000, 750, 500 and 90 W power levels were completed within 7.5, 12, 18.5 and 111 min, whereas hot-air drying process at 50°C temperature was completed within 255 min. Drying data were modeled with 13 different drying models. Models whose coefficient of regression (R2) are highest and standard error of estimated (SEE), root mean square error (RMSE) and chi-square (χ2) are lowest were chosen to be the most appropriate models. According to this, the best model at 1000, 500 and 90 W microwave powers in terms of the closest values between experimental data and predicted data was determined to be Jena & Das model. On the other hand, the color parameters (L, a, b, C ve α) of dried mango slices were also determined and compared with color parameters of fresh mango slices in this study. According to this, the best color parameters were obtained in the microwave drying at 750 and 500 W microwave power levels. The decreasing or increasing of microwave power levels caused negative effects under the dried mango slices in terms of the color parameters.

Kaynakça

  • Aghlasho, M., Kianmehr, M.H., Khani, S., Ghasemi, M. 2009. Mathematical modeling of carrot thin-layer drying using new model. International Agrophysics, 23: 313-317.
  • Al-Harahsheh, M., Al-Muhtaseb, A.H., Magee, T.R.A. 2009. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chemical Engineering and Processing, 48: 524-531.
  • Alibas, I. 2007. Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosystems Engineering, 96(4): 495-502.
  • Alibas, I. 2012. Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Journal of Agricultural Sciences, 18: 43-53.
  • Alibas, I. 2014a. Microwave, Air and Combined Microwave-Air Drying of Grape Leaves (Vitis vinifera L.) and the Determination of Some Quality Parameters. International Journal of Food Engineering, 10(1): 69-88.
  • Alibas, I. 2014b. Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. Food Science and Technology, Campinas, 34(2): 394-401.
  • Alibas, I., Koksal, N. 2014. Convective, vacuum and microwave drying kinetics of mallow leaves and comparison of color and ascorbic acid values of three drying methods. Food Science and Technology, Campinas, 34(2): 358-364.
  • Babalis, S.J., Papanicolaou, E., Kyriakis, N., Belessiotis, V.G. 2006. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75: 205-214.
  • Chandra, P.K., Singh, R.P. 1995. Applied numerical methods for food and agricultural engineers. CRC Press, Boca Raton, FL. pp. 163-167.
  • Chattopadhyay, T.K. 2001. A text book on pomology (fundamental of fruit growing). Kalyani publishers, Ludhiana. pp 3–4.
  • Cihan, A., Kahveci, K., Hacıhafızoğlu, O. 2007. Modelling of intermittent drying of thin layer rough rice. Journal of Food Engineering, 79:2 93-298.
  • Demir, V., Gunhan, T., Yagcioglu, A.K. 2007. Mathematical modelling of convection drying of green table olives. Biosystems Engineering, 98: 47–53.
  • Demirhan, E., Ozbek, B. 2011. Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chemical Engineering Communications, 7(198): 957-975.
  • Díaz, G.R., Martínez-Monzó, J., Fito, P., Chiralt, A. 2002. Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science and Emerging Technology, 4: 203-209.
  • Doymaz, İ., Tugrul, N., Pala, M. 2006. Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 77: 559-565.
  • Drouzas, A.E., Tsami, E., Saravacos, G. D. 1999. Microwave/vacuum drying of model fruit gels. Journal of Food Engineering, 39: 117-122.
  • Ertekin, C., Yaldiz, O. 2004. Drying of eggplant and selection of a suitable thin layer Drying model. Journal of Food Engineering, 63: 349-359.
  • Evin, D. 2012. Thin layer drying kinetics of Gundelia tournefortii L. Food and Bioproducts Processing, 90: 323-332.
  • Fasoli, E., Righetti, P.G. 2013. The peel and pulp of mango fruit: A proteomic samba. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1834(12): 2539-2545.
  • Feng, H. 2002. Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model. International Communications in Heat and Mass Transfer, 29: 1021-1033 .
  • Feng, H., Tang, J. 1998. Microwave finish drying of diced apple slices in a spouted bed. Journal of Food Science, 63(4): 679-683.
  • Guarte, R.C. 1996. Modeling the drying behavior of copra and development of a natural convection dryer for production of high quality copra in the Philippines. PhD Thesis (Unpublished), Dissertation, Hohenheim, Stuttgart, Germany
  • Henderson, S.M. 1974. Progress in developing the thin layer drying equation. Transaction of ASAC, 17: 1167-1172.
  • Jena, S., Das, H. 2007. Modelling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79: 92-99.
  • Karaaslan, S.N., Tuncer, İ.K. 2008. Development of a drying model for combined microwave-fan assisted convection drying of spinach. Biosystems Engineering, 100: 44-52.
  • Kouchakzadeh, A., Shafeei, S. 2010. Modeling of microwave-convective drying of pistachios, Energy Conversion and Management, 51(10): 2012-2015.
  • Korbel, E., Servent, A., Catherine, B., Brat, P. 2013. Heat Inactivation of Polyphenol Oxidase and Peroxidase as a Function of Water Activity: A Case Study of Mango Drying, Drying Technology, 31(13-14): 1675-1680.
  • Maskan, M. 2000. Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44: 71-78.
  • Maskan, M. 2001. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2): 177-182.
  • Midilli, A., Kucuk, H., Yapar, Z. 2002. A new model for single layer drying. Drying Technology, 20(7): 1503-1513.
  • Midilli, A., Kucuk, H. 2003. Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7): 1111-1122.
  • Ozkan, I.A., Akbudak, B., Akbudak, N. 2007. Microwave drying characteristics of spinach. Journal of Food Engineering, 78(2): 577-583.
  • Page, G. 1949. Factors influencing the maximum rates of air-drying shelled corn in thin layer. MS Thesis, Department of Mechanical Engineering, Purdue University (Unpublished), West Lafayette, IN, USA
  • Rathore, A.C., Saroj, P.L., Lal, H., Sharma, K.N., Jayaprakash, J., Chaturvedi, O.P., Raizada, A., Tomar, J.M.S., Dogra, P. 2013. Performance of mango based agri-horticultural models under rainfed situation of Western Himalaya, India. Agroforest Systems. DOI 10.1007/s10457-013-9646-5, in press.
  • Sarimeseli, A. 2011. Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52: 1449-1453.
  • Sharma, G.P., Prasad, S.(2001. Drying of garlic (Allium sativum) cloves by microwave-hot air combination. Journal of Food Engineering, 50: 99-105.
  • Sogi, D.S., Siddiq, M., Dolan, K.D. 2014. Total phenolics, carotenoids antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT - Food Science and Technology, in press.
  • Soysal, Y. 2004. Microwave drying characteristics of parsley. Biosystems Engineering, 89(2): 167-173.
  • Thomson, T.L., Peart, P.M., Foster, G.H. 1968. Mathematical simulation of corn drying: a new model. Transaction of ASAE, 11: 582-586.
  • Torringa, E., Esveld, E., Scheewe, I., van den Berg, R., Bartels, P. 2001. Osmotic dehydration as a pretreatment before combined microwave-hot-air drying of mushrooms. Journal of Food Engineering, 49: 185-191.
  • Verma, L.R., Bucklin, R.A., Endan, J.B., Wratten, F.T. 1985. Effects of drying air parameters on rice drying models. Transaction of ASEA, 28: 296-301.
  • Wang, C.Y., Singh, R.P. 1978. A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X. 2007. Mathematical modeling on thin layer microwave drying of apple pomace with and without hot air pre-drying. Journal Food Engineering, 80: 536-544.
  • Yagcioglu, A., Degirmencioglu, A., Cagatay, F. 1999. Drying characteristics of laurel leaves under different drying conditions. In: Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, 565-569, Adana, Turkey.

İnce tabaka mango dilimlerinin mikrodalga tekniği ile kurutulması

Yıl 2015, Cilt: 30 Sayı: 2, 99 - 109, 25.07.2015
https://doi.org/10.7161/anajas.2015.30.2.99-109

Öz

Bu çalışma kapsamında yaş baza göre nem içeriği %89.23±0.45 olan mango dilimleri 100±2 g ağırlığında tartılarak 1000, 750, 500 ve 90 W mikrodalga gücünde ve 50°C sıcaklığında sıcak havayla kurutma yöntemi ile yaş baza göre nem içeriği %12.75±0.17 oluncaya dek kurutulmuştur. Kurutma işlemleri 1000, 750, 500 ve 90 W mikrodalga kurutma seviyeleri için sırasıyla 7.5, 12, 18.5 ve 111 dakika; 50°C sıcaklık seviyesinde ise 255 dakika sürmüştür. Kurutma verileri 13 farklı ince tabaka kurutma modeli ile modellenmiştir. Regresyon katsayısının (R2) en büyük olduğu, standart hata (SEE), ki kare (χ2) ve ortalama karesel hatanın (RMSE) en küçük olduğu model en iyi model olarak seçilmiştir. Buna göre 1000, 500 ve 90 W mikrodalga kurutma deneylerinden elde edilen verilere en yakın sonuçları veren kurutma modelinin Jena & Das modeli olduğu belirlenmiştir. Buna karşın 750 W mikrodalga gücünde ve 50°C sıcaklıktaki kurutma işlemlerinde deneysel verilere en yakın tahmin sonuçlarını veren modelin Alibas modeli olduğu saptanmıştır. Çalışmada ayrıca mikrodalga kurutma tekniği ve sıcak hava ile kurutulan mango dilimlerinin renk değerleri (L, a, b, C ve α) de saptanmış olup taze ürünün renk değerleri ile karşılaştırmalı olarak verilmiştir. Buna göre taze ürüne en yakın renk değerinin 750 ve 500 W mikrodalga seviyelerinde elde edildiği, mikrodalga enerjisinin artırılması ya da azaltılmasının renk özellikleri üzerinde olumsuz etkilere neden olduğu belirlenmiştir.

Kaynakça

  • Aghlasho, M., Kianmehr, M.H., Khani, S., Ghasemi, M. 2009. Mathematical modeling of carrot thin-layer drying using new model. International Agrophysics, 23: 313-317.
  • Al-Harahsheh, M., Al-Muhtaseb, A.H., Magee, T.R.A. 2009. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chemical Engineering and Processing, 48: 524-531.
  • Alibas, I. 2007. Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosystems Engineering, 96(4): 495-502.
  • Alibas, I. 2012. Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Journal of Agricultural Sciences, 18: 43-53.
  • Alibas, I. 2014a. Microwave, Air and Combined Microwave-Air Drying of Grape Leaves (Vitis vinifera L.) and the Determination of Some Quality Parameters. International Journal of Food Engineering, 10(1): 69-88.
  • Alibas, I. 2014b. Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. Food Science and Technology, Campinas, 34(2): 394-401.
  • Alibas, I., Koksal, N. 2014. Convective, vacuum and microwave drying kinetics of mallow leaves and comparison of color and ascorbic acid values of three drying methods. Food Science and Technology, Campinas, 34(2): 358-364.
  • Babalis, S.J., Papanicolaou, E., Kyriakis, N., Belessiotis, V.G. 2006. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75: 205-214.
  • Chandra, P.K., Singh, R.P. 1995. Applied numerical methods for food and agricultural engineers. CRC Press, Boca Raton, FL. pp. 163-167.
  • Chattopadhyay, T.K. 2001. A text book on pomology (fundamental of fruit growing). Kalyani publishers, Ludhiana. pp 3–4.
  • Cihan, A., Kahveci, K., Hacıhafızoğlu, O. 2007. Modelling of intermittent drying of thin layer rough rice. Journal of Food Engineering, 79:2 93-298.
  • Demir, V., Gunhan, T., Yagcioglu, A.K. 2007. Mathematical modelling of convection drying of green table olives. Biosystems Engineering, 98: 47–53.
  • Demirhan, E., Ozbek, B. 2011. Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chemical Engineering Communications, 7(198): 957-975.
  • Díaz, G.R., Martínez-Monzó, J., Fito, P., Chiralt, A. 2002. Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science and Emerging Technology, 4: 203-209.
  • Doymaz, İ., Tugrul, N., Pala, M. 2006. Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 77: 559-565.
  • Drouzas, A.E., Tsami, E., Saravacos, G. D. 1999. Microwave/vacuum drying of model fruit gels. Journal of Food Engineering, 39: 117-122.
  • Ertekin, C., Yaldiz, O. 2004. Drying of eggplant and selection of a suitable thin layer Drying model. Journal of Food Engineering, 63: 349-359.
  • Evin, D. 2012. Thin layer drying kinetics of Gundelia tournefortii L. Food and Bioproducts Processing, 90: 323-332.
  • Fasoli, E., Righetti, P.G. 2013. The peel and pulp of mango fruit: A proteomic samba. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1834(12): 2539-2545.
  • Feng, H. 2002. Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model. International Communications in Heat and Mass Transfer, 29: 1021-1033 .
  • Feng, H., Tang, J. 1998. Microwave finish drying of diced apple slices in a spouted bed. Journal of Food Science, 63(4): 679-683.
  • Guarte, R.C. 1996. Modeling the drying behavior of copra and development of a natural convection dryer for production of high quality copra in the Philippines. PhD Thesis (Unpublished), Dissertation, Hohenheim, Stuttgart, Germany
  • Henderson, S.M. 1974. Progress in developing the thin layer drying equation. Transaction of ASAC, 17: 1167-1172.
  • Jena, S., Das, H. 2007. Modelling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79: 92-99.
  • Karaaslan, S.N., Tuncer, İ.K. 2008. Development of a drying model for combined microwave-fan assisted convection drying of spinach. Biosystems Engineering, 100: 44-52.
  • Kouchakzadeh, A., Shafeei, S. 2010. Modeling of microwave-convective drying of pistachios, Energy Conversion and Management, 51(10): 2012-2015.
  • Korbel, E., Servent, A., Catherine, B., Brat, P. 2013. Heat Inactivation of Polyphenol Oxidase and Peroxidase as a Function of Water Activity: A Case Study of Mango Drying, Drying Technology, 31(13-14): 1675-1680.
  • Maskan, M. 2000. Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44: 71-78.
  • Maskan, M. 2001. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2): 177-182.
  • Midilli, A., Kucuk, H., Yapar, Z. 2002. A new model for single layer drying. Drying Technology, 20(7): 1503-1513.
  • Midilli, A., Kucuk, H. 2003. Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7): 1111-1122.
  • Ozkan, I.A., Akbudak, B., Akbudak, N. 2007. Microwave drying characteristics of spinach. Journal of Food Engineering, 78(2): 577-583.
  • Page, G. 1949. Factors influencing the maximum rates of air-drying shelled corn in thin layer. MS Thesis, Department of Mechanical Engineering, Purdue University (Unpublished), West Lafayette, IN, USA
  • Rathore, A.C., Saroj, P.L., Lal, H., Sharma, K.N., Jayaprakash, J., Chaturvedi, O.P., Raizada, A., Tomar, J.M.S., Dogra, P. 2013. Performance of mango based agri-horticultural models under rainfed situation of Western Himalaya, India. Agroforest Systems. DOI 10.1007/s10457-013-9646-5, in press.
  • Sarimeseli, A. 2011. Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management, 52: 1449-1453.
  • Sharma, G.P., Prasad, S.(2001. Drying of garlic (Allium sativum) cloves by microwave-hot air combination. Journal of Food Engineering, 50: 99-105.
  • Sogi, D.S., Siddiq, M., Dolan, K.D. 2014. Total phenolics, carotenoids antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT - Food Science and Technology, in press.
  • Soysal, Y. 2004. Microwave drying characteristics of parsley. Biosystems Engineering, 89(2): 167-173.
  • Thomson, T.L., Peart, P.M., Foster, G.H. 1968. Mathematical simulation of corn drying: a new model. Transaction of ASAE, 11: 582-586.
  • Torringa, E., Esveld, E., Scheewe, I., van den Berg, R., Bartels, P. 2001. Osmotic dehydration as a pretreatment before combined microwave-hot-air drying of mushrooms. Journal of Food Engineering, 49: 185-191.
  • Verma, L.R., Bucklin, R.A., Endan, J.B., Wratten, F.T. 1985. Effects of drying air parameters on rice drying models. Transaction of ASEA, 28: 296-301.
  • Wang, C.Y., Singh, R.P. 1978. A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X. 2007. Mathematical modeling on thin layer microwave drying of apple pomace with and without hot air pre-drying. Journal Food Engineering, 80: 536-544.
  • Yagcioglu, A., Degirmencioglu, A., Cagatay, F. 1999. Drying characteristics of laurel leaves under different drying conditions. In: Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, 565-569, Adana, Turkey.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tarım Makineleri
Yazarlar

İlknur Alibaş

Yayımlanma Tarihi 25 Temmuz 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 30 Sayı: 2

Kaynak Göster

APA Alibaş, İ. (2015). İnce tabaka mango dilimlerinin mikrodalga tekniği ile kurutulması. Anadolu Tarım Bilimleri Dergisi, 30(2), 99-109. https://doi.org/10.7161/anajas.2015.30.2.99-109
AMA Alibaş İ. İnce tabaka mango dilimlerinin mikrodalga tekniği ile kurutulması. ANAJAS. Ağustos 2015;30(2):99-109. doi:10.7161/anajas.2015.30.2.99-109
Chicago Alibaş, İlknur. “İnce Tabaka Mango Dilimlerinin Mikrodalga tekniği Ile Kurutulması”. Anadolu Tarım Bilimleri Dergisi 30, sy. 2 (Ağustos 2015): 99-109. https://doi.org/10.7161/anajas.2015.30.2.99-109.
EndNote Alibaş İ (01 Ağustos 2015) İnce tabaka mango dilimlerinin mikrodalga tekniği ile kurutulması. Anadolu Tarım Bilimleri Dergisi 30 2 99–109.
IEEE İ. Alibaş, “İnce tabaka mango dilimlerinin mikrodalga tekniği ile kurutulması”, ANAJAS, c. 30, sy. 2, ss. 99–109, 2015, doi: 10.7161/anajas.2015.30.2.99-109.
ISNAD Alibaş, İlknur. “İnce Tabaka Mango Dilimlerinin Mikrodalga tekniği Ile Kurutulması”. Anadolu Tarım Bilimleri Dergisi 30/2 (Ağustos 2015), 99-109. https://doi.org/10.7161/anajas.2015.30.2.99-109.
JAMA Alibaş İ. İnce tabaka mango dilimlerinin mikrodalga tekniği ile kurutulması. ANAJAS. 2015;30:99–109.
MLA Alibaş, İlknur. “İnce Tabaka Mango Dilimlerinin Mikrodalga tekniği Ile Kurutulması”. Anadolu Tarım Bilimleri Dergisi, c. 30, sy. 2, 2015, ss. 99-109, doi:10.7161/anajas.2015.30.2.99-109.
Vancouver Alibaş İ. İnce tabaka mango dilimlerinin mikrodalga tekniği ile kurutulması. ANAJAS. 2015;30(2):99-109.
Online ISSN: 1308-8769