Yıl 2016, Cilt 31 , Sayı 3, Sayfalar 375 - 384 2016-10-24

Convective, microwave and microwave-convective drying and mathematical modeling of apricot (Prunus armeniaca L.)
Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi

Nazmi İzli [1]


In this study, the effects of convective (50 and 75 °C), microwave (90 and 160W) and microwave-convective (90W-50 °C, 90W-75 °C, 160W-50 °C and 160W-75 °C) drying treatments on the drying parameters of apricot samples were investigated. To select the best thin-layer drying models for the drying treatments, 9 mathematical models were fitted to the experimental data and the performances of these models were compared for the following statistical parameters: reduced chi-squared (χ2), root mean square error (RMSE) and coefficient of determination (R2). Among the drying models investigated, the Midilli et al. model was found to be the best model for describing the drying behavior of apricot samples. The experimental results showed that increasing the drying temperature or microwave power level caused shorter drying time and the combined microwave-convective method provided the greatest time savings in comparison to other methods tested.
Bu çalışmada, kayısı örneklerinin kurutma parametreleri üzerine konvektif (50 ve 75 °C) mikrodalga (90 ve 160W) ve mikrodalga-konvektif (90W-50 °C, 90W-75 °C, 160W-50 °C ve 160W-75 °C) kurutma yöntemlerinin etkisi incelenmiştir. Kurutma işlemlerinde en iyi ince tabaka kurutma modelini seçmek için 9 matematiksel model deneysel verilere uygulanmış ve bu modellerin performansları ki-kare (χ2), hataların karelerinin karekök ortalaması (RMSE) ve belirtme katsayısı (R2)’na göre karşılaştırılmıştır. İncelenen kurutma modelleri arasında, Midilli ve ark. modeli kayısı örneklerinin kurutma davranışlarının tanımlanması için en iyi model olarak bulunmuştur. Artan kurutma hava sıcaklığı ve mikrodalga güç seviyelerinin daha kısa kurutma süresine neden olduğunu deneysel sonuçlar göstermiş ve mikrodalga-konvektif birleşimi yöntem diğer yöntemlerle karşılaştırıldığında en büyük zaman kazanımını sağlamıştır.
  • Abano, E.E., Ma, H., Qu, W., 2014. Optimization of drying conditions for quality dried tomato slices using response surface methodology. Journal of Food Processing and Preservation, 38(3): 996-1009.
  • Agrawal, Y.C., Singh, R.P., 1977. Thin layer drying studies on short grain rough rice. ASAE, No: 3531, St. Joseph MI.
  • Akpinar, E.K., Sarsılmaz, C., Yildiz, C., 2004. Mathematical modelling of a thin layer drying of apricots in a solar energized rotary dryer. International Journal of Energy Research, 28(8): 739-752.
  • Akpınar, E.K., 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering, 73: 75-84.
  • Alagöz, S., Türkyılmaz, M., Tağı, Ş., Özkan, M., 2015. Effects of different sorbic acid and moisture levels on chemical and microbial qualities of sun-dried apricots during storage. Food chemistry,174: 356-364.
  • Alan, Y., Atalan, E., Erbil, N., Zorver, F., Kiycak, G., Çiçek, A.İ., 2013. Malatya kayısısı (Prunus armeniaca L.) ve kayısı çekirdeklerinin antimikrobiyal aktivitesi. Anadolu Doğa Bilimleri Dergisi, 4(2): 60-69.
  • Ayensu, A., 1997. Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4-6): 121-126.
  • Bhattacharya, M., Srivastav, P.P., Mishra, H.N., 2015. Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). Journal of Food Science and Technology, 52(4): 2013-2022.
  • Bingöl, G., Devres, Y.O., 2010. Üzümlerin mikrodalga kurutma eğrilerinin ve sıcaklık değişiminin matematiksel modellenmesi. Mühendislik İTÜ Dergisi/d, 9(4): 63-71.
  • Bondaruk, J., Markowski, M., Błaszczak, W., 2007. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. Journal of Food Engineering, 81: 306-312.
  • Bozkır, O., 2006. Thin-layer drying and mathematical modelling for washed dry apricots. Journal of food engineering, 77(1): 146-151.
  • Celen, S., Kahveci, K., 2013. Microwave drying behaviour of tomato slices. Czech Journal of Food Science, 31(2): 132-138.
  • Cetin, M., 2007. Physical properties of barbunia bean (Phaseolus vulgaris L. cv. ‘Barbunia’) seed. Journal of Food Engineering, 80: 353-358.
  • Chayjan, R.A., Kaveh, M., Khayati, S., 2015. Modeling drying characteristics of hawthorn fruit under microwave-convective conditions. Journal of Food Processing and Preservation, 39(3): 239-253.
  • Chayjan, R.A., Parian, J.A., Esna-Ashari, M., 2011. Modeling of moisture diffusivity, activation energy and specific energy consumption of high moisture corn in a fixed and fluidized bed convective dryer. Spanish Journal of Agricultural Research, 9(1): 28-40.
  • Cihan, A., Kahveci, K., Hacıhafızoğlu, O., 2007. Modelling of intermittent drying of thin layer rough rice. Journal of Food Engineering, 79: 293-298.
  • Contreras, C., Martin-Esparza, M.E., Chiralt, A., Martinez-Navarrete, N., 2008. Influence of microwave application on convective drying: Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88(1): 55-64.
  • Coşkun, A.L., Türkyılmaz, M., Aksu, Ö.T., Koç, B.E., Yemiş, O., Özkan, M., 2013. Effects of various sulphuring methods and storage temperatures on the physical and chemical quality of dried apricots. Food chemistry, 141(4): 3670-3680.
  • Dadalı, G., 2007. Bamya ve ıspanağın mikrodalga tekniği kullanılarak kurutulması, doku ve renk özelliklerinin incelenmesi ve modellenmesi. Yüksek Lisans Tezi, YTÜ Fen Bilimleri Enstitüsü, FBE Kimya Mühendisliği Anabilim Dalı, İstanbul.
  • Darvishi, H., 2012. Energy consumption and mathematical modeling of microwave drying of potato slices. Agricultural Engineering International: CIGR Journal, 14(1): 94-102.
  • Dev, S.R.S., Geetha, P., Orsat, V., Gariépy, Y., Raghavan, G.S.V., 2011. Effects of microwave-assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Drying Technology, 29: 1452-1458.
  • Doymaz, I., 2004. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosystems Engineering, 89(3): 281-287.
  • Doymaz, I., 2004. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosystems Engineering, 89(3): 281-287.
  • Doymaz, I., 2011. Drying of thyme (Thymus Vulgaris L.) and selection of a suitable thin-layer drying model. Journal of Food Processing and Preservation,35(4): 458-465.
  • Doymaz, I., 2013. Experimental study on drying of pear slices in a convective dryer. International Journal of Food Science & Technology, 48(9): 1909-1915.
  • Evin, D., 2012. Thin layer drying kinetics of Gundelia tournefortii L. Food and Bioproducts Processing, 90: 323-332.
  • FAOSTAT (Food and Agriculture Organization of United Nations). FAOSTAT statistical database 2016. <http://faostat.fao.org/site/339/default.aspx> Erişim 03.01.2016.
  • Funebo, T., Ohlsson, T., 1998. Microwave-assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38: 353-367.
  • Giri, S.K., Prasad, S., 2007. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78: 512-521.
  • Goyal, R.K., Kingsly, A.R.P., Manikantan, M.R., Ilyas, S.M., 2006. Thin-layer drying kinetics of raw mango slices. Biosystems Engineering, 95: 43-49.
  • Harish, A., Rashmi, M., Krishna Murthy, T.P., Blessy, B.M., Ananda, S., 2014. Mathematical modeling of thin layer microwave drying kinetics of elephant foot yam (Amorphophallus paeoniifolius). International Food Research Journal, 21(3): 1081-1087.
  • Hiranvarachat, B., Devahastin, S., Chiewchan, N., 2011. Effects of acid pretreatments on some physicochemical properties of carrot undergoing hot air drying. Food and Bioproducts Processing, 89: 116-127.
  • Ihns, R., Diamante, L. M., Savage, G. P., Vanhanen, L., 2011. Effect of temperature on the drying characteristics, colour, antioxidant and beta‐carotene contents of two apricot varieties. International Journal of Food Science & Technology, 46(2): 275-283.
  • Ihns, R., Diamante, L.M., Savage, G.P., Vanhanen, L., 2011. Effect of temperature on the drying characteristics, colour, antioxidant and beta‐carotene contents of two apricot varieties. International Journal of Food Science & Technology, 46(2): 275-283.
  • Inchuen, S., Narkrugsa, W., Pornchaloempong, P., Chanasinchana, P., Swing, T., 2008. Microwave and hot-air drying of Thai red curry paste. Maejo International Journal of Science and Technology, 1: 38-49.
  • Kasem, A.S., 1998. Comparative studies on thin layer drying models for wheat. 13th International Congress on Agricultural Engineering, 2-6 February, 1998, Morocco.
  • Madamba, P.S., Driscoll, R.H., Buckle, K.A., 1996. The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29: 75-97.
  • Maskan, M., 2000. Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44: 71-78.
  • Menges, H.O., Ertekin, C., 2006. Modelling of air drying of Hacıhaliloglu‐type apricots. Journal of the Science of Food and Agriculture, 86(2): 279-291.
  • Midilli, A., Kucuk, H., Yapar, Z., 2002. A new model for single layer drying. Drying Technology, 20(7): 1503-1513.
  • Mundada, M., Hathan, B.S., Maske, S., 2010. Convective dehydration kinetics of osmotically pretreated pomegranate arils. Biosystems Engineering, 107: 307-316.
  • Murthy, K., Pandurangapp, T., Manohar, B., 2012. Microwave drying of mango ginger (Curcuma amada Roxb): prediction of drying kinetics by mathematical modelling and artificial neural network. International Journal of Food Science & Technology, 47(6): 1229-1236.
  • Orikasa, T., Wu, L., Shiina, T., Tagawa, A., 2008. Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering, 85: 303-308.
  • Orsat, V., Yang, W., Changrue, V., Raghavan, G.S.V., 2007. Microwave-assisted drying of biomaterials. Food and Bioproducts Processing, 85: 255–263.
  • Özbek, B., Dadalı, G., 2007. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering, 83: 541-549.
  • Piotrowski, D., Lenart, A., Wardzynski, A., 2004. Influence of osmotic dehydration on microwave-convective drying of frozen strawberries. Journal of Food Engineering, 65: 519-525.
  • Sharaf-Elden, Y.I., Blaisdell, J.L., Hamdy, M.Y., 1980. A model for ear corn drying. Transactions of the ASAE, 5: 1261-1265.
  • Sharma, G.P., Prasad, S., Chahar, V.K., 2009. Moisture transport in garlic cloves undergoing microwave-convective drying. Food and Bioproducts Processing, 87: 11-16.
  • Taheri-Garavanda, A., Rafiee, S., Keyhania, A., 2011. Mathematical modeling of thin layer drying kinetics of tomato influence of air dryer conditions. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 2(2): 147-160.
  • Toğrul, İ.T., Pehlivan, D., 2002. Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3): 209-216.
  • Türkyılmaz, M., Özkan, M., Güzel, N., 2014. Loss of sulfur dioxide and changes in some chemical properties of Malatya apricots (Prunus armeniaca L.) during sulfuring and drying. Journal of the Science of Food and Agriculture, 94(12): 2488-2496.
  • Wang, C.Y., Singh, R.P., 1978. A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Westerman, P.W., White, G.M., Ross, I.J., 1973. Relative humidity effect on the high temperature drying of shelled corn. Transactions of the ASAE, 16: 1136-1139.
  • Workneh, T.S., Raghavan, V., Gariepy, Y., 2011. Microwave assisted hot air ventilation drying of tomato slices. International Conference on Food Engineering and Biotechnology, 28-30 September, Singapore.
  • Xiao, H.W., Pang, C.L., Wang, L.H., Bai, J.W., Yang, W.X. Gao, Z.J., 2010. Drying kinetics and quality of Monukka Seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering, 105(2): 233–240.
  • Yagcioglu, A., Degirmencioglu, A., Cagatay, F., 1999. Drying characteristics of the laurel leaves under different drying conditions. In: Proceedings of the 7th International Congress on Agricultural Mechanization and Energy. Adana, Turkey, pp. 565-569.
  • Zhang, M., Tang, J., Mujumdar, A., Wang, S., 2006. Trends in microwave related drying of fruits and vegetables. Trends in Food Science and Technology, 17: 524-534.
Bölüm Tarım Makineleri
Yazarlar

Yazar: Nazmi İzli

Tarihler

Yayımlanma Tarihi : 24 Ekim 2016

Bibtex @ { omuanajas269991, journal = {Anadolu Tarım Bilimleri Dergisi}, issn = {1308-8750}, eissn = {1308-8769}, address = {}, publisher = {Ondokuz Mayıs Üniversitesi}, year = {2016}, volume = {31}, pages = {375 - 384}, doi = {10.7161/omuanajas.269991}, title = {Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi}, key = {cite}, author = {İzli, Nazmi} }
APA İzli, N . (2016). Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi. Anadolu Tarım Bilimleri Dergisi , 31 (3) , 375-384 . DOI: 10.7161/omuanajas.269991
MLA İzli, N . "Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi". Anadolu Tarım Bilimleri Dergisi 31 (2016 ): 375-384 <https://dergipark.org.tr/tr/pub/omuanajas/issue/25593/269991>
Chicago İzli, N . "Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi". Anadolu Tarım Bilimleri Dergisi 31 (2016 ): 375-384
RIS TY - JOUR T1 - Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi AU - Nazmi İzli Y1 - 2016 PY - 2016 N1 - doi: 10.7161/omuanajas.269991 DO - 10.7161/omuanajas.269991 T2 - Anadolu Tarım Bilimleri Dergisi JF - Journal JO - JOR SP - 375 EP - 384 VL - 31 IS - 3 SN - 1308-8750-1308-8769 M3 - doi: 10.7161/omuanajas.269991 UR - https://doi.org/10.7161/omuanajas.269991 Y2 - 2019 ER -
EndNote %0 Anadolu Tarım Bilimleri Dergisi Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi %A Nazmi İzli %T Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi %D 2016 %J Anadolu Tarım Bilimleri Dergisi %P 1308-8750-1308-8769 %V 31 %N 3 %R doi: 10.7161/omuanajas.269991 %U 10.7161/omuanajas.269991
ISNAD İzli, Nazmi . "Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi". Anadolu Tarım Bilimleri Dergisi 31 / 3 (Ekim 2016): 375-384 . https://doi.org/10.7161/omuanajas.269991
AMA İzli N . Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi. Anadolu Journal of Agricultural Sciences. 2016; 31(3): 375-384.
Vancouver İzli N . Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi. Anadolu Tarım Bilimleri Dergisi. 2016; 31(3): 384-375.