Araştırma Makalesi
BibTex RIS Kaynak Göster

Hasat zamanının Katran yoncasının (Bituminaria bituminosa) besin madde kompozisyonu, in vitro gaz ve metan üretimi üzerindeki etkisi

Yıl 2019, Cilt: 34 Sayı: 1, 102 - 106, 20.02.2019
https://doi.org/10.7161/omuanajas.440508

Öz

Bu çalışmanın
amacı, katran yoncası otunun besin madde kompozisyonu, gaz üretimi, metan
üretimi, organik madde sindirim derecesi (OMSD) ve metabolik enerjisi (ME)
üzerine hasat zamanının etkisini belirlemektir. 
Üç farklı dönemde hasat edilen katran yoncasının kompozisyonu
belirlendikten sonra in vitro gaz
üretim testine tabi tutulmuştur. Katran yoncasının yirmi dört saatlik gaz
üretim değerleri kullanılarak ME ve OMSD belirlenmiştir.  Katran yoncası otunun kuru madde (KM), nötral
deterjan lif (NDF) ve asit deterjan lif (ADF) içerikleri hasat zamanının ilerlemesiyle
birlikte artmasına rağmen ham kül (HK), ham protein (HP) içerikleri ve nispi
yem değerinde (NYD) önemli azalmalar meydana gelmiştir. Katran yoncası otunun
KM, NDF, ADF ve kondense tanin (KT) içerikleri ve NYD’leri farklı hasat
devrelerinde   % 20.1 ile 33.9, % 45.0
ile 66.1, % 25.8 ile 42.5, 0.96 ile 1.25 ve 78.3 ile 141.85 arasında
değişmiştir. Hasat zamanının ilerlemesiyle birlikte katran yoncası otunun in vitro gaz ve metan üretimi (ml), ME
ve OMSD değerleri sırasıyla 41.8 ile 50.4 ml, 6.95 ile 7.70 ml, 9.28 ile 11.0
MJ kg-1 KM ve % 63.6 ile 76.5 arasında değişmiştir. Hasat zamanının
ilerlemesiyle birlikte kaçınılmaz kayıplar olmasına rağmen katran yoncasının
tohum bağlama döneminde bile ruminant hayvanların besin maddeleri ihtiyacınının
karşılanması amacıyla rasyonlarda kullanılabileceği ileri sürülebilmekle
birlikte bu konuda daha detaylı çalışmalara ihtiyaç bulunmaktadır.  

Kaynakça

  • AOAC., 1990. Official Method of Analysis. Association of Official Analytical Chemists, 15th Edition, Washington, DC. USA.
  • Barry, T.N and Duncan S.J., 1984. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. I. Voluntary intake. British Journal of Nutrition, 51, 485-491
  • Barry, T.N., Blaney, B.J., 1987. Secondary compounds of forages. In: Hacker, J.B. and Ternouth, J.H. (eds) Nutrition of Herbiv¬ores. pp. 91–120. (Academic Press: Sydney).
  • Canbolat, O., 2012. Potential nutritive value of field bindweed (Convolvulus arvensis L) hay harvested at three different maturity stages. Journal of the Faculty of Veterinary Medicine, Kafkas University, 18 (2), 331-335.
  • Goel, G., Makkar, H.P.S., Becker, K., 2008. Effect of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89
  • Guven, I., 2012. Effect of species on nutritive value of mulberry leaves. Journal of the Faculty of Veterinary Medicine, Kafkas University, 18 (5), 865-869. Johnson, K.A., and D.E. Johnson. 1995. Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.
  • Kamalak, A., Atalay, A.I., Ozkan, C.O., Kaya, E., Tatliyer, A., 2011. Determination of potential nutritive value of Trigonella kotshi Fenzl hay harvested at three different maturity stages. Journal of the Faculty of Veterinary Medicine, Kafkas University, 17(4), 635-640.
  • Kamalak, A., Canbolat. O., 2010. Determination of nutritive value of wild narrow-leaved clover (Trifolium angustifolium) harvested at three maturity stages using chemical composition and in vitro gas production. Trop. Grassland, 44(2), 128-133.
  • Kaplan, M., Kamalak, A., Kasra., A.A., Guven, I., 2014a. Effect of maturity stages on potential nutritive value, methane production and condensed tannin content of Sanguisorba minor hay. Journal of the Faculty of Veterinary Medicine, Kafkas University, 20(3), 445-449.
  • Kaplan, M., Kamalak, A., Ozkan, C.O., Atalay. A.I., 2014b. Effect of vegetative stages on the potential nutritive value, methane production and condensed tannin content of Onobrychis caput-galli hay. Journal of the Faculty of Veterinary Medicine, Harran University. 3(1),1-5.
  • Kaya, E., Kamalak, A., 2012. Potential nutritive value and condensed tannin contents of acorns from different oak species. Journal of the Faculty of Veterinary Medicine, Kafkas University, 18(6), 1061-1066.
  • Lohan, O .P., Lall, D., Vaid, J., Negi, S. S., 1983. Utiliza¬tion of oak tree fodder in cattle ration and fate of oak leaf tannins in the ruminant system. Indian Journal of Animal Science, 53, 1057–1063.
  • Lopez, S., Makkar, H.P.S., Soliva, C.R., 2010. Screening plants and plant products for methane inhibitors. In: Vercoe PE, Makkar HPS, Schlink A, (Eds): In vitro screening of plant resources for extra nutritional attributes in ruminants: Nuclear and related methodologies. London, New York, pp. 191-231.
  • Makkar, H .P. S., Blummel, M., Becker, K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and their implication in gas production and true digestibility in vitro techniques. British Journal of Nutrition, 73, 897-913.
  • Makkar, H.P.S., Singh, B., Negi, S. S., 1989. Relation¬ship of rumen degradability with microbial colonization, cell wall constituents and tannin levels in some tree leaves. Animal Production, 49, 299–303.
  • Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D., Schneider, W., 1979. The estimation of digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they incubated with rumen liquor in vitro. Journal of Agricultural Science (Cambridge), 92, 217-222. Menke, H.H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
  • Singleton, V.L., 1981. Naturally occurring food toxicants: Phenolic substances of plant origin common in foods. Advances in Food Research, 27,149-242.
  • Stavarache, M., Samuil, C., Popovici, C.I., Tarcau, D., Vint, V., 2015. The productivity and quality of alfalfa (Medicago sativa L.) in Romanian forest stepe. Notulae Botanicae Horti Agrobotanici, 43(1), 179-185.
  • Rohweder, D.A., Barnes, R. F., Jorgensen, N., 1978. Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47, 747-759.
  • Ulger, I., Kamalak, A., Kurt, O., Kaya, E., Guven, I., 2017. Comparison of the chemical composition and anti-methanogenic potential of Liquidamber orientalis leaves with Laurus nobilis and Eucalyptus globulus using an in vitro gas production technique. Ciencia Investigacion Agraria, 44(1):75-82.
  • Van Soest, P.J., Robertson, J.B. Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597
  • Valente, M.E., Borreani, G., Peiretti., P.G., Tobacco, E., 2000. Codified morphological stage for predicting digestibility of Italian ryegrass during the spring cycle. Agronomy Journal, 92, 967–973.

Effect of harvest stage on the chemical composition, in vitro gas and methane production of Bituminaria bituminosa

Yıl 2019, Cilt: 34 Sayı: 1, 102 - 106, 20.02.2019
https://doi.org/10.7161/omuanajas.440508

Öz

The aim of the current experiment was to determine the
effect of harvest stage on the chemical composition, in vitro gas and methane production, organic matter digestibility
and metabolisable energy of Bituminaria
bituminosa.
After determination of chemical composition, Bituminaria bituminosa hay was subjected
to the test of  in vitro gas production. The metabolisable energy and organic
matter digestibility of Bituminaria
bituminosa
hay were determined using the gas production at 24 h incubation.
Harvest stage had a significant effect on the chemical composition of Bituminaria bituminosa hay.  Dry matter, neutral detergent fiber and acid
detergent fiber contents of Bituminaria
bituminosa
hay increased while crude ash, crude protein contents and
relative feed value decreased with advancing maturity. Dry matter, neutral
detergent fiber, acid detergent fiber, condensed tannin and relative feed value
of Bituminaria bituminosa hay ranged
from 20.1 to 33.9 %, 45.0 to 66.1 %, 25.8 to 42.5 %, 0.96 to 1.25 % and 78.3 to
141.85 respectively. On the other hand, crude ash and crude protein of Bituminaria bituminosa hay ranged from
7.96 to 9.51 and 14.2 to 23.6% respectively. 
In vitro gas production,
methane production (as ml), metabolizable energy and organic matter
digestibility of Bituminaria bituminosa
hay ranged from 41.8 to 50.4 ml, 6.95 to7.70 ml, 9.28 to 11.0 MJ kg-1
DM and 63.6 to76.5 % respectively and decreased with increasing maturity
whereas the percentage of methane increased with increasing maturity. Although
the inevitable loss in nutritive value of Bituminaria
bituminosa
plant with advancing maturity, even at the seeding stage, Bituminaria bituminosa plant could
provide hay of acceptable quality for ruminant animals to meet their
requirements.  In addition, low level of
condensed tannin in Bituminaria
bituminosa
offers an opportunity to decrease the risk of bloat for grazing
ruminant animals. But this needs verification with further testing.

Kaynakça

  • AOAC., 1990. Official Method of Analysis. Association of Official Analytical Chemists, 15th Edition, Washington, DC. USA.
  • Barry, T.N and Duncan S.J., 1984. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. I. Voluntary intake. British Journal of Nutrition, 51, 485-491
  • Barry, T.N., Blaney, B.J., 1987. Secondary compounds of forages. In: Hacker, J.B. and Ternouth, J.H. (eds) Nutrition of Herbiv¬ores. pp. 91–120. (Academic Press: Sydney).
  • Canbolat, O., 2012. Potential nutritive value of field bindweed (Convolvulus arvensis L) hay harvested at three different maturity stages. Journal of the Faculty of Veterinary Medicine, Kafkas University, 18 (2), 331-335.
  • Goel, G., Makkar, H.P.S., Becker, K., 2008. Effect of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89
  • Guven, I., 2012. Effect of species on nutritive value of mulberry leaves. Journal of the Faculty of Veterinary Medicine, Kafkas University, 18 (5), 865-869. Johnson, K.A., and D.E. Johnson. 1995. Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.
  • Kamalak, A., Atalay, A.I., Ozkan, C.O., Kaya, E., Tatliyer, A., 2011. Determination of potential nutritive value of Trigonella kotshi Fenzl hay harvested at three different maturity stages. Journal of the Faculty of Veterinary Medicine, Kafkas University, 17(4), 635-640.
  • Kamalak, A., Canbolat. O., 2010. Determination of nutritive value of wild narrow-leaved clover (Trifolium angustifolium) harvested at three maturity stages using chemical composition and in vitro gas production. Trop. Grassland, 44(2), 128-133.
  • Kaplan, M., Kamalak, A., Kasra., A.A., Guven, I., 2014a. Effect of maturity stages on potential nutritive value, methane production and condensed tannin content of Sanguisorba minor hay. Journal of the Faculty of Veterinary Medicine, Kafkas University, 20(3), 445-449.
  • Kaplan, M., Kamalak, A., Ozkan, C.O., Atalay. A.I., 2014b. Effect of vegetative stages on the potential nutritive value, methane production and condensed tannin content of Onobrychis caput-galli hay. Journal of the Faculty of Veterinary Medicine, Harran University. 3(1),1-5.
  • Kaya, E., Kamalak, A., 2012. Potential nutritive value and condensed tannin contents of acorns from different oak species. Journal of the Faculty of Veterinary Medicine, Kafkas University, 18(6), 1061-1066.
  • Lohan, O .P., Lall, D., Vaid, J., Negi, S. S., 1983. Utiliza¬tion of oak tree fodder in cattle ration and fate of oak leaf tannins in the ruminant system. Indian Journal of Animal Science, 53, 1057–1063.
  • Lopez, S., Makkar, H.P.S., Soliva, C.R., 2010. Screening plants and plant products for methane inhibitors. In: Vercoe PE, Makkar HPS, Schlink A, (Eds): In vitro screening of plant resources for extra nutritional attributes in ruminants: Nuclear and related methodologies. London, New York, pp. 191-231.
  • Makkar, H .P. S., Blummel, M., Becker, K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and their implication in gas production and true digestibility in vitro techniques. British Journal of Nutrition, 73, 897-913.
  • Makkar, H.P.S., Singh, B., Negi, S. S., 1989. Relation¬ship of rumen degradability with microbial colonization, cell wall constituents and tannin levels in some tree leaves. Animal Production, 49, 299–303.
  • Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D., Schneider, W., 1979. The estimation of digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they incubated with rumen liquor in vitro. Journal of Agricultural Science (Cambridge), 92, 217-222. Menke, H.H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
  • Singleton, V.L., 1981. Naturally occurring food toxicants: Phenolic substances of plant origin common in foods. Advances in Food Research, 27,149-242.
  • Stavarache, M., Samuil, C., Popovici, C.I., Tarcau, D., Vint, V., 2015. The productivity and quality of alfalfa (Medicago sativa L.) in Romanian forest stepe. Notulae Botanicae Horti Agrobotanici, 43(1), 179-185.
  • Rohweder, D.A., Barnes, R. F., Jorgensen, N., 1978. Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47, 747-759.
  • Ulger, I., Kamalak, A., Kurt, O., Kaya, E., Guven, I., 2017. Comparison of the chemical composition and anti-methanogenic potential of Liquidamber orientalis leaves with Laurus nobilis and Eucalyptus globulus using an in vitro gas production technique. Ciencia Investigacion Agraria, 44(1):75-82.
  • Van Soest, P.J., Robertson, J.B. Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597
  • Valente, M.E., Borreani, G., Peiretti., P.G., Tobacco, E., 2000. Codified morphological stage for predicting digestibility of Italian ryegrass during the spring cycle. Agronomy Journal, 92, 967–973.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Zootekni
Yazarlar

Adem Kamalak

Kevser Durmaz Bu kişi benim

Yayımlanma Tarihi 20 Şubat 2019
Kabul Tarihi 18 Kasım 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 1

Kaynak Göster

APA Kamalak, A., & Durmaz, K. (2019). Hasat zamanının Katran yoncasının (Bituminaria bituminosa) besin madde kompozisyonu, in vitro gaz ve metan üretimi üzerindeki etkisi. Anadolu Tarım Bilimleri Dergisi, 34(1), 102-106. https://doi.org/10.7161/omuanajas.440508
Online ISSN: 1308-8769