Araştırma Makalesi
BibTex RIS Kaynak Göster

Toprakların tuzluluk ve sodikliliğinin alansal ve zamansal değişiminin jeoistatistiksel yöntemlerle değerlendirilmesi: Bafra ovası örneği

Yıl 2019, Cilt: 34 Sayı: 3, 336 - 350, 15.10.2019
https://doi.org/10.7161/omuanajas.557601

Öz

Sulu tarım alanlarında uygun sulama yönetiminin
seçimi ve sulama suyu kalitesine bağlı olarak tuzlulaşma problemleri ile
drenajın yönetimi sürdürülebilirliği etkileyen önemli faktörlerdir. Toprak
tuzluluğu ve sodiklik sulanan tarım alanlarındaki bitki üretimini sınırlayan
iki önemli özelliktir. Bu özelliklerin alansal ve zamansal değişimlerinin
bilinmesi bitki gelişimindeki negatif etkilerini engellemek için önemlidir. Bu
çalışma 2010 ve 2016 yıllarında Bafra ovası sağ sahil topraklarındaki tuzluluk
ve sodikliğin alansal değişimlerinin belirlenmesi ve sulamanın toprak tuzluluğu
ve sodikliği üzerine etkisinin değerlendirilmesi amacıyla yapılmıştır. Çalışma
alanından 2010 ve 2016 yıllarında dört derinlikten bozulmuş toprak örnekleri
alınmıştır. Toprakların tekstür, elektriksel iletkenlik (EC), toprak reaksiyonu
(pH), değişebilir sodyum yüzdesi (ESP) ve CaCO3 içerikleri
laboratuvar analizleri ile belirlenmiştir. Toprak özelliklerinin alansal
bağımlılığını belirlemek için deneysel semivariogramlar geliştirilmiş ve
örneklenmemiş noktalardaki özellikleri tahmin etmek için ordinary kriging
analizi yapılmıştır. Toprakların EC ve ESP değerleri tüm derinliklerde ve tüm
dönemlerde yüksek değişkenlik ve orta derecede alansal bağımlılık göstermiştir.
Çalışma alanında en düşük değişkenliğin pH parametresinde olduğu görülmüştür.
Çalışma alanı topraklarının tekstür içeriklerinin yüksek değişkenlik gösterdiği
belirlenmiştir. Tüm değişkenlerin jeoistatistiksel etki uzaklığı 3100 m’den
büyük bulunmuştur. Ayrıca toprakların EC ve ESP’sinin alansal dağılımı 2010
yılından 2016 yılına kadar önemli derecede azalmıştır. Bunun nedeni ise
topraktaki tuzların yıkanarak drenaj sistemi yardımıyla araziden
uzaklaştırılmasına bağlanmıştır. Çalışma alanının doğusunda tuzluluğun yüksek
olduğu alanlar ile sodik alanların varlığı belirlenmiştir. Bu durum ise bu
alanlarda yeraltı suyu seviyesinin yüksek olmasına bağlanmıştır. Bu alanlarda
sulama mevsiminde buharlaşma ile çözünebilir tuzların yukarı taşınmasının
takibi için yeraltı suyu tuzluluğu ve derinliğinin düzenli olarak izlenmesi
önerilmiştir. Özelliklerin alansal dağılım haritaları incelendiğinde tuzluluk
ve sodiklik değişkenlerinin yönetimi ile ilgili uygulamaların daha çok
doğu-batı yönünde planlanmasının yararlı olacağı düşünülmektedir.

Kaynakça

  • Ahmad, S., Ghafoor, A., Qadir, M., Aziz, M.A., 2011. Amelioration of a calcareous saline-sodic soil by gypsum application and different crop rotations. International Journal of Agriculture & Biology. 8(2)142-146.
  • Akbas, F., 2011. Tokat Kazova topraklarinin yarayişli fosfor düzeyinin jeoistatistik tahmin ve simulasyon metodlarıyla modellenmesi ve haritalanması. Tarım Bilimleri Dergisi, 18: 63-76.
  • Akramkhanov, A., Brus, D., Walvoort, D., 2014. Geostatistical monitoring of soil salinity in Uzbekistan by repeated EMI surveys. Geoderma, 213, 600-607.
  • Allbed, A., Kumar, L., 2013. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Advances in remote sensing, 2(04), 373.
  • Ardahanlioglu, O., Oztas, T., Evren, S., Yilmaz, H., Yildirim, Z. N., 2003. Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt-and sodium-affected areas of the Igdir plain (Turkey). Journal of Arid Environments, 54(3), 495-503.
  • Başbozkurt, H., Öztaş, T., Karaibrahimoğlu, A., Gündoğan, R., Genç, A., 2013. Toprak özelliklerinin mekansal değişim desenlerinin jeoistatistiksel yöntemlerle belirlenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 44(2), 169-181.
  • Bilgili, A. V., 2013. Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques. Environmental monitoring and assessment, 185(1), 777-795.
  • Cambardella, C., Moorman, T., Parkin, T., Karlen, D., Novak, J., Turco, R., Konopka, A., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501-1511.
  • Cemek, B., GüLer, M., Kiliç, K., Demir, Y., Arslan, H., 2007. Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey. Environmental monitoring and assessment, 124(1-3), 223-234.
  • Dai, F., Zhou, Q., Lv, Z., Wang, X., Liu, G., 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45, 184-194.
  • Dinh, Q. T., Liang, D., Thi Anh Thu, T., Le, T. D. H., Dinh Vuong, N., Pham, V. T., 2018. Spatial prediction of saline and sodic soils in rice‒shrimp farming land by using integrated artificial neural network/regression model and kriging. Archives of Agronomy and Soil Science, 64(3), 371-383.
  • Elbashier, M. M., Xiaohou, S., Ali, A. A., Osman, B. H., 2016. Modeling of Soil Exchangeable Sodium Percentage Function to Soil Adsorption Ratio on Sandy Clay Loam Soil, International Journal of Plant & Soil Science. 10(5): 1-6.
  • Emadi, M., Baghernejad, M., 2014. Comparison of spatial interpolation techniques for mapping soil pH and salinity in agricultural coastal areas, northern Iran. Archives of Agronomy and Soil Science, 60(9), 1315-1327.
  • Emadi, M., Baghernejad, M., Maftoun, M., 2008. Assessment of some soil properties by spatial variability in saline and sodic soils in Arsanjan plain, Southern Iran. Pakistan journal of biological sciences: PJBS, 11(2), 238-243.
  • Goovaerts, P., 1998. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of soils, 27(4), 315-334.
  • Joseph, E.A., 2016. Rice cultivation in saline tracts of Kerala: an overview. Int J Fish Aquat Stud. 4:355–358.
  • Journel, A. G., Huijbregts, C. J., 1978. Mining geostatistics (Vol. 600): Academic press London.
  • Juan, P., Mateu, J., Jordan, M., Mataix-Solera, J., Meléndez-Pastor, I., Navarro-Pedreño, J., 2011. Geostatistical methods to identify and map spatial variations of soil salinity. Journal of Geochemical Exploration, 108(1), 62-72.
  • Kılıç, K., Kılıç, S., 2007. Spatial variability of salinity and alkalinity of a field having salination risk in semi-arid climate in northern Turkey. Environmental monitoring and assessment, 127(1-3), 55-65.
  • Li, X.-b., Kang, Y.-h., Wan, S.-q., Chen, X.-l., Chu, L.-l., Xu, J.-c., 2015. First and second-year assessments of the rapid reconstruction and re-vegetation method for reclaiming two saline–sodic, coastal soils with drip-irrigation. Ecological Engineering, 84, 496-505.
  • Liu, G., Li, J., Zhang, X., Wang, X., Lv, Z., Yang, J., Shao, H., Yu, S., 2016. GIS-mapping spatial distribution of soil salinity for Eco-restoring the Yellow River Delta in combination with Electromagnetic Induction. Ecological Engineering, 94, 306-314.
  • Malicki, M., Walczak, R., 1999. Evaluating soil salinity status from bulk electrical conductivity and permittivity. European journal of soil science, 50(3), 505-514.
  • Moasheri, S. A., Foroughifar, H., 2013. Estimation of the values of soil absorption ratio using integrated geostatistical and artificial neural network methods. International Journal of Agriculture and Crop Sciences (IJACS), 5(20), 2423-2433.
  • Mulla, D., McBratney, A., 2000. Soil Spatial Variability. In Handbook of Soil Science: CRC Press.
  • Poshtmasari, H. K., Sarvestani, Z. T., Kamkar, B., Shataei, S., Sadeghi, S., 2012. Comparison of interpolation methods for estimating pH and EC in agricultural fields of Golestan province (north of Iran). International Journal of Agriculture and Crop Sciences, 4(4), 157-167.
  • Richards, L., 1954. Diagnosis and improvement of saline and alkali soils. Handbook No. 60. US Department of Agriculture, Washington, DC.
  • Robbins, C., W., 1984. Sodium adsorption ratio-exchangeable sodium percentage relationships in a high potassium saline-sodic soil. Irrigation Science, 5(3), 173-179.
  • Rodrigues, M. S., Alves, D. C., Cunha, J. C., Lima, A. M. N., Cavalcante, I. H. L., da Silva, K. A., de Melo Junior, J. C. F., 2018. Spatial analysis of soil salinity in a mango irrigated area in semi-arid climate region. Australian Journal of Crop Science, 12(8), 1288.
  • Scudiero, E., Skaggs, T. H., Corwin, D. L., 2017. Simplifying field-scale assessment of spatiotemporal changes of soil salinity. Science of the Total Environment, 587, 273-281.
  • Shahabi, M., Jafarzadeh, A. A., Neyshabouri, M. R., Ghorbani, M. A., Valizadeh Kamran, K., 2017. Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods. Archives of Agronomy and Soil Science, 63(2), 151-160.
  • Taşan, S., 2018. Bafra ovası sağ sahil topraklarının sulama açısından bazı fiziksel ve kimyasal özelliklerindeki değişimin modeller ile tahmini. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 346.
  • Tekin, A. B., Gunal, H., Sindir, K., Balci, Y., 2011. Spatial structure of available micronutrient contents and their relationships with other soil characteristics and corn yield. Fresenius Environmental Bulletin, 20(3), 783-792.
  • Trangmar, B. B., Yost, R. S., Uehara, G., 1986. Application of geostatistics to spatial studies of soil properties. In Advances in agronomy (Vol. 38, pp. 45-94): Elsevier.
  • Webster, R., 2001. Statistics to support soil research and their presentation. European journal of soil science, 52(2), 331-340.
  • Webster, R., Oliver, M. A., 2001. Geostatistics for environmental scientists (Statistics in Practice).
  • Wichelns, D., Qadir, M., 2015. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agricultural Water Management, 157, 31-38.
  • Yurtseven, E., Güngör, Y., 1990. Değişik Tuzluluk Düzeylerindeki Sulama Sularının Toprak Tuzlulaşmasına Etkisi. Doğa Tr. J. Of Agriculture and Forestry, 14, 555-561.
  • Yurtseven, E., Öztürk, H.S., Avcı, S., Altınok, S., Selenay, M.F., 2012. Farklı Sulama suyu kalitesi ve yıkama oranı uygulamalarında profil tuzluluğunun değişimi. Toprak Su Dergisi, 1(1).
  • Yurtseven, E., Sönmez, B., 1996. Sulama suyu tuzluluğunun domates verimine ve toprak tuzluluğuna etkisi. Tr. J. of Agriculture and Forestry, 20(1), 27-33.
  • Zare-Mehrjardi, M., Taghizadeh-Mehrjardi, R., Akbarzadeh, A., 2010. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. Not Sci Biol. 2:92-103.
  • Zhang, X.-Y., Yue-Yu, S., Zhang, X.-D., Kai, M., Herbert, S., 2007. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 17(1), 19-29.

Evaluation of spatial and temporal changes of soil salinity and sodicity using geostatistic methods: the case of Bafra plain

Yıl 2019, Cilt: 34 Sayı: 3, 336 - 350, 15.10.2019
https://doi.org/10.7161/omuanajas.557601

Öz

Selection of
appropriate irrigation management in irrigated agricultural areas and drainage
management with salinization problems depending on the quality of irrigation
water are important factors affecting sustainability. Soil salinity and
sodicity are two important features that limit plant production in irrigated
agricultural areas. It is important to know the spatial and temporal changes of
these properties in order to prevent negative effects on plant development.
This study was carried out to determine the spatial changes of salinity and
sodicity and to evaluate the effect of irrigation on soil salinity and sodicity
in the right coastal areas of Bafra plain in 2010 and 2016. Soil samples were
taken from the study area with four different depth in 2010 and 2016. Soil
texture, electrical conductivity (EC), soil reaction (pH), exchangeable sodium
percentage (ESP) and CaCO3 contents were determined by laboratory
analysis. In order to determine the spatial dependence of soil properties,
experimental semivariograms were developed and ordinary kriging analysis was
performed to estimate the properties at non-sampled points. The EC and ESP
values of the soils showed high variability and moderately spatial dependence
at all depths and in all periods. The lowest variability was observed in the pH
parameter in the study area. Texture contents of the study area soils showed
high variability. Geostatistical range values of all variables was found to be
greater than 3100 m. Furthermore, the spatial distribution of the EC and ESP of
soils has decreased significantly from 2010 to 2016. The reason for this is due
to the removal of the salts in the soil from the field by means of the drainage
system. High salinity areas and the presence of sodic areas were determined at
the east of the study area. This is due to the high groundwater level in these
areas. Monitoring of groundwater salinity and depth has been proposed regularly
in order to follow the uptake of soluble salts by evaporation during irrigation
season in these areas. When the spatial distribution maps of the properties are
examined, it is considered that it would be beneficial to plan the applications
related to salinity and sodicity variables in the east-west direction.

Kaynakça

  • Ahmad, S., Ghafoor, A., Qadir, M., Aziz, M.A., 2011. Amelioration of a calcareous saline-sodic soil by gypsum application and different crop rotations. International Journal of Agriculture & Biology. 8(2)142-146.
  • Akbas, F., 2011. Tokat Kazova topraklarinin yarayişli fosfor düzeyinin jeoistatistik tahmin ve simulasyon metodlarıyla modellenmesi ve haritalanması. Tarım Bilimleri Dergisi, 18: 63-76.
  • Akramkhanov, A., Brus, D., Walvoort, D., 2014. Geostatistical monitoring of soil salinity in Uzbekistan by repeated EMI surveys. Geoderma, 213, 600-607.
  • Allbed, A., Kumar, L., 2013. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Advances in remote sensing, 2(04), 373.
  • Ardahanlioglu, O., Oztas, T., Evren, S., Yilmaz, H., Yildirim, Z. N., 2003. Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt-and sodium-affected areas of the Igdir plain (Turkey). Journal of Arid Environments, 54(3), 495-503.
  • Başbozkurt, H., Öztaş, T., Karaibrahimoğlu, A., Gündoğan, R., Genç, A., 2013. Toprak özelliklerinin mekansal değişim desenlerinin jeoistatistiksel yöntemlerle belirlenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 44(2), 169-181.
  • Bilgili, A. V., 2013. Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques. Environmental monitoring and assessment, 185(1), 777-795.
  • Cambardella, C., Moorman, T., Parkin, T., Karlen, D., Novak, J., Turco, R., Konopka, A., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501-1511.
  • Cemek, B., GüLer, M., Kiliç, K., Demir, Y., Arslan, H., 2007. Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey. Environmental monitoring and assessment, 124(1-3), 223-234.
  • Dai, F., Zhou, Q., Lv, Z., Wang, X., Liu, G., 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45, 184-194.
  • Dinh, Q. T., Liang, D., Thi Anh Thu, T., Le, T. D. H., Dinh Vuong, N., Pham, V. T., 2018. Spatial prediction of saline and sodic soils in rice‒shrimp farming land by using integrated artificial neural network/regression model and kriging. Archives of Agronomy and Soil Science, 64(3), 371-383.
  • Elbashier, M. M., Xiaohou, S., Ali, A. A., Osman, B. H., 2016. Modeling of Soil Exchangeable Sodium Percentage Function to Soil Adsorption Ratio on Sandy Clay Loam Soil, International Journal of Plant & Soil Science. 10(5): 1-6.
  • Emadi, M., Baghernejad, M., 2014. Comparison of spatial interpolation techniques for mapping soil pH and salinity in agricultural coastal areas, northern Iran. Archives of Agronomy and Soil Science, 60(9), 1315-1327.
  • Emadi, M., Baghernejad, M., Maftoun, M., 2008. Assessment of some soil properties by spatial variability in saline and sodic soils in Arsanjan plain, Southern Iran. Pakistan journal of biological sciences: PJBS, 11(2), 238-243.
  • Goovaerts, P., 1998. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of soils, 27(4), 315-334.
  • Joseph, E.A., 2016. Rice cultivation in saline tracts of Kerala: an overview. Int J Fish Aquat Stud. 4:355–358.
  • Journel, A. G., Huijbregts, C. J., 1978. Mining geostatistics (Vol. 600): Academic press London.
  • Juan, P., Mateu, J., Jordan, M., Mataix-Solera, J., Meléndez-Pastor, I., Navarro-Pedreño, J., 2011. Geostatistical methods to identify and map spatial variations of soil salinity. Journal of Geochemical Exploration, 108(1), 62-72.
  • Kılıç, K., Kılıç, S., 2007. Spatial variability of salinity and alkalinity of a field having salination risk in semi-arid climate in northern Turkey. Environmental monitoring and assessment, 127(1-3), 55-65.
  • Li, X.-b., Kang, Y.-h., Wan, S.-q., Chen, X.-l., Chu, L.-l., Xu, J.-c., 2015. First and second-year assessments of the rapid reconstruction and re-vegetation method for reclaiming two saline–sodic, coastal soils with drip-irrigation. Ecological Engineering, 84, 496-505.
  • Liu, G., Li, J., Zhang, X., Wang, X., Lv, Z., Yang, J., Shao, H., Yu, S., 2016. GIS-mapping spatial distribution of soil salinity for Eco-restoring the Yellow River Delta in combination with Electromagnetic Induction. Ecological Engineering, 94, 306-314.
  • Malicki, M., Walczak, R., 1999. Evaluating soil salinity status from bulk electrical conductivity and permittivity. European journal of soil science, 50(3), 505-514.
  • Moasheri, S. A., Foroughifar, H., 2013. Estimation of the values of soil absorption ratio using integrated geostatistical and artificial neural network methods. International Journal of Agriculture and Crop Sciences (IJACS), 5(20), 2423-2433.
  • Mulla, D., McBratney, A., 2000. Soil Spatial Variability. In Handbook of Soil Science: CRC Press.
  • Poshtmasari, H. K., Sarvestani, Z. T., Kamkar, B., Shataei, S., Sadeghi, S., 2012. Comparison of interpolation methods for estimating pH and EC in agricultural fields of Golestan province (north of Iran). International Journal of Agriculture and Crop Sciences, 4(4), 157-167.
  • Richards, L., 1954. Diagnosis and improvement of saline and alkali soils. Handbook No. 60. US Department of Agriculture, Washington, DC.
  • Robbins, C., W., 1984. Sodium adsorption ratio-exchangeable sodium percentage relationships in a high potassium saline-sodic soil. Irrigation Science, 5(3), 173-179.
  • Rodrigues, M. S., Alves, D. C., Cunha, J. C., Lima, A. M. N., Cavalcante, I. H. L., da Silva, K. A., de Melo Junior, J. C. F., 2018. Spatial analysis of soil salinity in a mango irrigated area in semi-arid climate region. Australian Journal of Crop Science, 12(8), 1288.
  • Scudiero, E., Skaggs, T. H., Corwin, D. L., 2017. Simplifying field-scale assessment of spatiotemporal changes of soil salinity. Science of the Total Environment, 587, 273-281.
  • Shahabi, M., Jafarzadeh, A. A., Neyshabouri, M. R., Ghorbani, M. A., Valizadeh Kamran, K., 2017. Spatial modeling of soil salinity using multiple linear regression, ordinary kriging and artificial neural network methods. Archives of Agronomy and Soil Science, 63(2), 151-160.
  • Taşan, S., 2018. Bafra ovası sağ sahil topraklarının sulama açısından bazı fiziksel ve kimyasal özelliklerindeki değişimin modeller ile tahmini. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 346.
  • Tekin, A. B., Gunal, H., Sindir, K., Balci, Y., 2011. Spatial structure of available micronutrient contents and their relationships with other soil characteristics and corn yield. Fresenius Environmental Bulletin, 20(3), 783-792.
  • Trangmar, B. B., Yost, R. S., Uehara, G., 1986. Application of geostatistics to spatial studies of soil properties. In Advances in agronomy (Vol. 38, pp. 45-94): Elsevier.
  • Webster, R., 2001. Statistics to support soil research and their presentation. European journal of soil science, 52(2), 331-340.
  • Webster, R., Oliver, M. A., 2001. Geostatistics for environmental scientists (Statistics in Practice).
  • Wichelns, D., Qadir, M., 2015. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agricultural Water Management, 157, 31-38.
  • Yurtseven, E., Güngör, Y., 1990. Değişik Tuzluluk Düzeylerindeki Sulama Sularının Toprak Tuzlulaşmasına Etkisi. Doğa Tr. J. Of Agriculture and Forestry, 14, 555-561.
  • Yurtseven, E., Öztürk, H.S., Avcı, S., Altınok, S., Selenay, M.F., 2012. Farklı Sulama suyu kalitesi ve yıkama oranı uygulamalarında profil tuzluluğunun değişimi. Toprak Su Dergisi, 1(1).
  • Yurtseven, E., Sönmez, B., 1996. Sulama suyu tuzluluğunun domates verimine ve toprak tuzluluğuna etkisi. Tr. J. of Agriculture and Forestry, 20(1), 27-33.
  • Zare-Mehrjardi, M., Taghizadeh-Mehrjardi, R., Akbarzadeh, A., 2010. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. Not Sci Biol. 2:92-103.
  • Zhang, X.-Y., Yue-Yu, S., Zhang, X.-D., Kai, M., Herbert, S., 2007. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 17(1), 19-29.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tarımsal Yapılar ve Sulama
Yazarlar

Sevda Taşan 0000-0002-4335-4074

Yusuf Demir

Yayımlanma Tarihi 15 Ekim 2019
Kabul Tarihi 30 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 3

Kaynak Göster

APA Taşan, S., & Demir, Y. (2019). Toprakların tuzluluk ve sodikliliğinin alansal ve zamansal değişiminin jeoistatistiksel yöntemlerle değerlendirilmesi: Bafra ovası örneği. Anadolu Tarım Bilimleri Dergisi, 34(3), 336-350. https://doi.org/10.7161/omuanajas.557601
Online ISSN: 1308-8769