Araştırma Makalesi
BibTex RIS Kaynak Göster

Yumurta tavuğu kümeslerinin dış duvarları için optimum yalıtım kalınlığının belirlenmesi

Yıl 2019, Cilt: 34 Sayı: 3, 327 - 335, 15.10.2019
https://doi.org/10.7161/omuanajas.592579

Öz







Bir ülkenin enerji
stratejisinin temel hedeflerinden biri de enerji tasarrufudur. Isı yalıtımı
enerjinin korunumun da önemli bir yere sahiptir. Bu nedenle, bu çalışma da
Türkiye’de en fazla yumurta tavuğu yetiştiren on il için optimum yalıtım
kalınlığının belirlenmesi amaçlanmıştır. Derece gün yöntemi kullanılarak yıllık
ısıtma ve soğutma yükleri belirlendikten sonra taş yünü (RW) ve cam yünü (GW)
yalıtım malzemeleri için optimum yalıtım kalınlığı, enerji tasarrufu, geri
ödeme süreleri ve CO2 emisyonları hesaplanmıştır. Sonuç olarak şehir
ve yakıt türüne bağlı olarak RW yalıtım malzemesi için optimum yalıtım
kalınlığının 0.046 ile 0.165 m arasında, enerji tasarrufunun %35.42 ile %74.56
arasında ve geri ödeme süresinin 0.67 ile 2.00 yıl arasında olduğu, GW yalıtım
malzemesi içinse optimum yalıtım kalınlığının 0.045 ile 0.150 m arasında,
enerji tasarrufunun %42.17 ile %77.72 arasında ve geri ödeme süresinin 0.61 ile
1.72 yıl arasında değiştiği belirlenmiştir. CO2 emisyonundaki en
düşük azalma oranı (%64.79) İzmir ili için doğalgaz ve RW yalıtım malzemesi
kullanıldığı zaman, en yüksek azalma oranı ise 
(%88.76) LPG ve GW yalıtım malzemesi ile Kayseri'de elde edilmiştir.

Kaynakça

  • Agra, Ö., Özgür Atayilmaz, S., Demir, H., Teke, I., 2011. Environmental impact of optimum insulation thickness in buildings, World Renewable Energy Congress-Sweden, Linköping University Electronic Press, 8-13 May, Sweden, pp. 1813-1820.
  • Anastaselos, D., Oxizidis, S., Papadopoulos, A.M., 2017. Suitable thermal insulation solutions for Mediterranean climatic conditions: a case study for four Greek cities. Energy Efficiency, 10: 1081-1098.
  • Ashouri, M., Astaraei, F.R., Ghasempour, R., Ahmadi, M.H., Feidt, M., 2016. Optimum insulation thickness determination of a building wall using exergetic life cycle assessment. Applied Thermal Engineering, 106: 307-315.
  • Barrau, J., Ibanez, M., Badia, F., 2014. Impact of the optimization criteria on the determination of the insulation thickness. Energy and Buildings, 76: 459-469.
  • Blokhuis, H., Veissier, I., Jones, B., Miele, M., 2013. The welfare quality® vision, Improving farm animal welfare. Springer, pp. 71-89.
  • Bolattürk, A., 2008. Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment, 43: 1055-1064.
  • Cengel, Y., 2014. Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.
  • Çetintaş, K.F., Yılmaz, Z., 2018. A new approach to determine insulation material and thickness from a life-cycle perspective. Proceedings of the Institution of Civil Engineers-Energy, 171: 171-181.
  • Daouas, N., 2011. A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads. Applied Energy, 88: 156-164.
  • Evin, D., Ucar, A., 2019. Energy impact and eco-efficiency of the envelope insulation in residential buildings in Turkey. Applied Thermal Engineering, 154: 573-584.Gelegenis, J., Axaopoulos, P., 2017. A Multi-Parametric Mathematical Approach on the Selection of Optimum Insulation Thicknesses in Buildings. Buildings, 7 (15): 1-26.Gürel, A.E., Daşdemir, A., 2011. Economical and enviromental effects of thermal insulation thicness in four different climatic regions of Turkey. International Journal of Renewable Energy Research, 1: 1-10.
  • Hasan, A., 1999. Optimizing insulation thickness for buildings using life cycle cost. Applied energy, 63: 115-124.
  • Holik, V., 2009. Management of laying hens to minimize heat stress. Lohmann Information, 44: 16-29.
  • Indraganti, M., Boussaa, D., 2017. A method to estimate the heating and cooling degree-days for different climatic zones of Saudi Arabia. Building Services Engineering Research and Technology, 38: 327-350.
  • Kurekci, N.A., 2016. Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings, 118: 197-213.
  • Legrand, A., Von Keyserlingk, M., Weary, D., 2009. Preference and usage of pasture versus free-stall housing by lactating dairy cattle. Journal of Dairy Science, 92: 3651-3658.
  • Liu, X., Chen, Y., Ge, H., Fazio, P., Chen, G., Guo, X., 2015. Determination of optimum insulation thickness for building walls with moisture transfer in hot summer and cold winter zone of China. Energy and Buildings, 109: 361-368.
  • Ozel, M., 2011. Effect of wall orientation on the optimum insulation thickness by using a dynamic method. Applied Energy, 88: 2429-2435.
  • Petrecca, G., 2014. Energy Conversion and Management. Springer.
  • Ramin, H., Hanafizadeh, P., Akhavan-Behabadi, M.A., 2016. Determination of optimum insulation thickness in different wall orientations and locations in Iran. Advances in Building Energy Research, 10: 149-171.
  • Roshan, G.R., Ghanghermeh, A., Attia, S., 2017. Determining new threshold temperatures for cooling and heating degree day index of different climatic zones of Iran. Renewable Energy, 101: 156-167.
  • USDA, F., 2016. Livestock and Poultry: World Markets and Trade. United States Department of Agriculture. Foreign Agriculture Service.
  • Vincelas, F.F.C., Ghislain, T., 2017. The determination of the most economical combination between external wall and the optimum insulation material in Cameroonian's buildings. Journal of Building Engineering, 9: 155-163.
  • Yildiz, A., Gurlek, G., Erkek, M., Ozbalta, N., 2008. Economical and environmental analyses of thermal insulation thickness in buildings. Journal of Thermal Science and Technology, 28: 25-34.
  • Yu, J., Yang, C., Tian, L., Liao, D., 2009. A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China. Applied Energy, 86: 2520-2529.
  • Yuan, J., Farnham, C., Emura, K., Alam, M.A., 2016. Proposal for optimum combination of reflectivity and insulation thickness of building exterior walls for annual thermal load in Japan. Building and Environment, 103: 228-237.
  • Zhu, P., Huckemann, V., Fisch, M.N., 2011. The optimum thickness and energy saving potential of external wall insulation in different climate zones of China. Procedia Engineering, 21: 608-616.

The determination of optimum thermal insulation thickness for external walls of laying hens building

Yıl 2019, Cilt: 34 Sayı: 3, 327 - 335, 15.10.2019
https://doi.org/10.7161/omuanajas.592579

Öz

One of the main objectives of the energy strategy of any country is energy conservation. Thermal insulation is of utmost importance in the context of conservation energy. Therefore, this study aims to optimize insulation layer for the ten cities of Turkey which have the highest number of laying hens. The yearly heating and cooling loads were determined by using degree day method. Then optimum insulation thickness, energy savings, payback periods and CO2 emission were computed for Rock wool (RW) and Glass wool (GW) insulation materials. The study's results indicated that the optimum thickness of insulation for RW insulation material varies between 0.046 and 0.159 m, energy savings range between 35.42% and 74.56%, and payback periods were between 0.67 and 2.00 years, while for GW insulation material optimum insulation thickness varies from 0.450 and 0.150 m, energy savings vary in the range of 42.17% and 77.72%, and payback periods were between 0.61 and 1.72 years depending on the city, and type of fuel. The lowest CO2 emission reductions (64.79%) were obtained for İzmir with natural gas and RW insulation material are used, while the highest value (88.76%) was achieved for Kayseri with LPG and GW insulation material.

Kaynakça

  • Agra, Ö., Özgür Atayilmaz, S., Demir, H., Teke, I., 2011. Environmental impact of optimum insulation thickness in buildings, World Renewable Energy Congress-Sweden, Linköping University Electronic Press, 8-13 May, Sweden, pp. 1813-1820.
  • Anastaselos, D., Oxizidis, S., Papadopoulos, A.M., 2017. Suitable thermal insulation solutions for Mediterranean climatic conditions: a case study for four Greek cities. Energy Efficiency, 10: 1081-1098.
  • Ashouri, M., Astaraei, F.R., Ghasempour, R., Ahmadi, M.H., Feidt, M., 2016. Optimum insulation thickness determination of a building wall using exergetic life cycle assessment. Applied Thermal Engineering, 106: 307-315.
  • Barrau, J., Ibanez, M., Badia, F., 2014. Impact of the optimization criteria on the determination of the insulation thickness. Energy and Buildings, 76: 459-469.
  • Blokhuis, H., Veissier, I., Jones, B., Miele, M., 2013. The welfare quality® vision, Improving farm animal welfare. Springer, pp. 71-89.
  • Bolattürk, A., 2008. Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment, 43: 1055-1064.
  • Cengel, Y., 2014. Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.
  • Çetintaş, K.F., Yılmaz, Z., 2018. A new approach to determine insulation material and thickness from a life-cycle perspective. Proceedings of the Institution of Civil Engineers-Energy, 171: 171-181.
  • Daouas, N., 2011. A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads. Applied Energy, 88: 156-164.
  • Evin, D., Ucar, A., 2019. Energy impact and eco-efficiency of the envelope insulation in residential buildings in Turkey. Applied Thermal Engineering, 154: 573-584.Gelegenis, J., Axaopoulos, P., 2017. A Multi-Parametric Mathematical Approach on the Selection of Optimum Insulation Thicknesses in Buildings. Buildings, 7 (15): 1-26.Gürel, A.E., Daşdemir, A., 2011. Economical and enviromental effects of thermal insulation thicness in four different climatic regions of Turkey. International Journal of Renewable Energy Research, 1: 1-10.
  • Hasan, A., 1999. Optimizing insulation thickness for buildings using life cycle cost. Applied energy, 63: 115-124.
  • Holik, V., 2009. Management of laying hens to minimize heat stress. Lohmann Information, 44: 16-29.
  • Indraganti, M., Boussaa, D., 2017. A method to estimate the heating and cooling degree-days for different climatic zones of Saudi Arabia. Building Services Engineering Research and Technology, 38: 327-350.
  • Kurekci, N.A., 2016. Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings, 118: 197-213.
  • Legrand, A., Von Keyserlingk, M., Weary, D., 2009. Preference and usage of pasture versus free-stall housing by lactating dairy cattle. Journal of Dairy Science, 92: 3651-3658.
  • Liu, X., Chen, Y., Ge, H., Fazio, P., Chen, G., Guo, X., 2015. Determination of optimum insulation thickness for building walls with moisture transfer in hot summer and cold winter zone of China. Energy and Buildings, 109: 361-368.
  • Ozel, M., 2011. Effect of wall orientation on the optimum insulation thickness by using a dynamic method. Applied Energy, 88: 2429-2435.
  • Petrecca, G., 2014. Energy Conversion and Management. Springer.
  • Ramin, H., Hanafizadeh, P., Akhavan-Behabadi, M.A., 2016. Determination of optimum insulation thickness in different wall orientations and locations in Iran. Advances in Building Energy Research, 10: 149-171.
  • Roshan, G.R., Ghanghermeh, A., Attia, S., 2017. Determining new threshold temperatures for cooling and heating degree day index of different climatic zones of Iran. Renewable Energy, 101: 156-167.
  • USDA, F., 2016. Livestock and Poultry: World Markets and Trade. United States Department of Agriculture. Foreign Agriculture Service.
  • Vincelas, F.F.C., Ghislain, T., 2017. The determination of the most economical combination between external wall and the optimum insulation material in Cameroonian's buildings. Journal of Building Engineering, 9: 155-163.
  • Yildiz, A., Gurlek, G., Erkek, M., Ozbalta, N., 2008. Economical and environmental analyses of thermal insulation thickness in buildings. Journal of Thermal Science and Technology, 28: 25-34.
  • Yu, J., Yang, C., Tian, L., Liao, D., 2009. A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China. Applied Energy, 86: 2520-2529.
  • Yuan, J., Farnham, C., Emura, K., Alam, M.A., 2016. Proposal for optimum combination of reflectivity and insulation thickness of building exterior walls for annual thermal load in Japan. Building and Environment, 103: 228-237.
  • Zhu, P., Huckemann, V., Fisch, M.N., 2011. The optimum thickness and energy saving potential of external wall insulation in different climate zones of China. Procedia Engineering, 21: 608-616.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Tarımsal Yapılar ve Sulama
Yazarlar

Erdem Küçüktopçu

Bilal Cemek

Yayımlanma Tarihi 15 Ekim 2019
Kabul Tarihi 23 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 3

Kaynak Göster

APA Küçüktopçu, E., & Cemek, B. (2019). The determination of optimum thermal insulation thickness for external walls of laying hens building. Anadolu Tarım Bilimleri Dergisi, 34(3), 327-335. https://doi.org/10.7161/omuanajas.592579
Online ISSN: 1308-8769