Research Article
BibTex RIS Cite

Nem içeriği, parçacık boyutu ve basıncın fındık zurufu atığının bazı briket özellikleri üzerine etkisi

Year 2020, Volume: 35 Issue: 3, 330 - 338, 14.10.2020
https://doi.org/10.7161/omuanajas.736851

Abstract

Bu çalışmada, biyoyakıt kaynağı olarak fındık üretiminden kaynaklanan atıkların kullanımı incelenmiştir. Atıklar, yatay bir rotaya sahip bir hidrolik briketleme makinesi kullanılarak briketlenmiştir. Katı silindirik briketler iki farklı sıkıştırma basıncı (P: 80 MPa ve 160 MPa), nem içeriği (M:%8 -%10 ve %13 -%15) ve parçacık boyutları (PS: 2-5 mm ve 7-10 mm) ile üretildi. Briketlerin fiziksel özellikleri (kütle yoğunluğu, mekanik dayanıklılık ve kırılma indeksleri, su emme kapasitesi, nem ve eşdeğer nem içeriği) ve bazı ısısal özellikleri (yanma sonrası gaz emisyon değerleri, kül içeriği ve ısıl değerler) ölçüldü. Çalışma sonucunda fındık zurufu tarımsal atığı için en uygun briketleme basıncı 160 MPa, nem içeriği %8 -%10 ve parçacık boyutu 2-5 mm aralığında bulunmuştur. Çalışma umut verici sonuçlar vermiştir ve tarımdaki atıl atık potansiyelinin yeşil enerji için kullanılabileceğini kanıtlanmıştır.

Supporting Institution

TÜBİTAK

Project Number

112O454

Thanks

Yazarlar olarak bu çalışmanın yürütülmesi konusunda maddi destek sağlayan TÜBİTAK kurumuna çok teşekkür ederiz.

References

  • Angın, D., Şensöz, S., 2006. Effect of Drifting Gas (N2) Flow on Prylosis of Safflower Seed Pulps and Characterization of Liquid Product (In Turkish), Fırat University, J Sci Eng 18 (4): 535-542.
  • ASAE S269.4, 2000. Cubes, Pellets, and Crumbles Definitions and Methods for Determining Density, Durability, and Moisture Content. American Society of Agricultural and Biological Engineers.
  • ASTM D 440-86, 1998. Standard Test Method of Drop Shatter Test for Coal. Annual Book of ASTM Standards, vol. 05.05. West Conshohochen, PA: American Society for Testing and Materials.
  • ASTM–D 5865–07A, 2009. Test Method for Gross Calorific Value of Coal and Coke, In Annual Book of ASTM Standards (Vol. 05.06), West Conshohocken, PA: American Society for Testing and Materials.
  • Bazargan, A., Rough, S.L., McKay, G., 2014. Compaction of Palm Kernel Husk Biochars Forapplication As Solid Fuel. Biomass Bioenerg 70, 489-497.
  • Bilgin, S., 2008. A Research on Briquetting Greenhouse Plant Based Residues and Determining Briquetting Parameters and Flue Gas Emissions. Akdeniz University, Institute of Science and Technology, Antalya, Turkey.
  • Chen, T., Wu, C., Liu, R., Fei, W., Liu, S., 2011. Effect of Hot Vapor Filtration on The Characterization of Bio-Oil From Rice-Husks With Fast Pyrolysis in A Fluidized-Bed Reactor. Bioresource Technol 102: 6178-6185.
  • Chinyere, D.C., Asoegwu, S.N., Nwandikom, G.I., 2014. An Evaluation of Briquettes From Sawdust and Corn Starch Binder. Int J Sci Technol 2: 149-157.
  • Coşereanu, C., Lica, D., Lunguleasa, A., 2015. Investigation on The Quality of Briquettes Made From Rarely Used Wood Species. Agro-Wastes And Forest Biomass 11(1): 32-39.
  • Dias, J., Costa, M., Azevedo, J.L.T., 2004. Test of A Small Domestic Boiler Using Different Pellets. Biomass Bioenerg 27: 531–540.
  • EN 14774-1, 2009. Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • EN ISO 17225-7, 2015. Solid biofuels -- Fuel specifications and classes -- Part 7: Graded non-woody briquettes. Reference European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • FAO, 2018. Food and Agriculture Organization of the United Nations, FAO Statistics Division.
  • Fournel, S., Palacios, J.H., Morissette, R., Villeneuve, J., Godbout, S., Savoie, P., 2015. Influence of Biomass Properties on Technical and Environmental Performance of A Multi-Fuel Boiler During on-Farm Combustion of Energy Crops. Appl Energ 141: 247–259.
  • Grover, P.D., Mishra, S.K., 1996. Biomass Briquetting: Technology and Practices. FAO Field Document No.46. Bankok April, 1996, Thailand.
  • Kaliyan, N., Morey, R., 2006. Densification Characteristics of Corn Stover and Switchgrass, Presented at the ASABE Annual International Meeting, USA. July 9-12.
  • Kaliyan, N., Morey, R.V., White, M.D., Doering, A., 2009. Roll Press Briquetting and Pelleting of Corn Stover And Switchgrass. American Society of Agricultural Engineers 52 (2): 543-555.
  • Kaur, A., Kumar, A., Singh, P., Kundu, K., 2017. Production, Analysis and Optimization of Low Cost Briquettes from Biomass Residues. Advan in Res 12(4): 1-10.
  • Kristensen, E.F., Kristensen, J.K., 2004. Development and Test of Small Scale Batch-Fired Straw Boilers in Denmark. Biomass Bioenerg 26: 561–570.
  • Križan, P., Šooš, L., Matúš, M., Beniak, J., Svátek, M., 2015. Research of Significant Densifcation Parameters Influence on Final Briquettes Quality. Wood Research 60 (2): 301-316.
  • Lindley, J., Vossoughi, M., 1989. Physical Properties of Biomass Briquettes. Transactions of the ASAE 32: 361–366.
  • Muazu, R.I., Stegemann, J.A., 2015. Effects of Oprerating Variables on Durability of Fuel Briquettes From Rice Husks and Corn Cobs. Fuel Processing Technol 133: 137-145.
  • Niedziołka, I., Szpryngiel, M., Jakubowska, M.K., Kraszkiewicz, A., Zawislak, K., Sobczak, P., Nadulski, R., 2015. Assessment of The Energetic and Mechanical Properties of Pellets Produced From Agricultural Biomass. Renew Energ 76: 312-317.
  • Oladeji, J.T., 2015. Theoretical Aspects of Biomass Briquetting: A Review Study. J Energ Technol Pol 5(3): 72-81.
  • Ölçüm, T., 2006. Biodiesel Technology, MSc. Thesis (In Turkish), Yıldız Technical University, Institute of Science and Technology, Istanbul, Turkey.
  • Olugbade, T.O., Mohammed, T.I., 2015. Fuel Developed from Rice Bran Briquettes and Palm Kernel Husks. Int J Energ Eng 5(2): 9-15.
  • Prakash, N., Karunanithi, T., 2008. Kinetic Modeling in Biomass Pyrolysis- A Review. J Appl Sci Res 4(12): 1627-1636.
  • Ross, A.B., Jones, J.M., Chaiklangmuang, S., Pourkashanian, M., Williams, A., Kubica, K., Andersson, J.T., Kerst, M., Danihelka, P., Bartle, K.D., 2002. Measurement and Predictioan of The Emission of Pollutants From The Combustion of Coal and Biomass in A Fixed Bed Furnace. Fuel 81: 571-582.
  • Roy, M.M., Corscadden, K.W., 2012. An Experimental Study of Combustion and Emissions of Biomass Briquettes in A Domestic Wood Stove. Appl Energ 99: 206–212.
  • Shuma, M.R., Madyira, D.M., Makonese, T.N., Oosthuizen, G.A., 2015. Energy Content and Combustion Behaviour of Loose Biomass Available in Limpopo. In: Beute N et al., editors. Proceedings of the DUE 23rd Conference on the Domestic Use of Energy 30 March-1 April 2015; Cape Town, South Africa, pp. 93 – 100.
  • Sohni, S., Norulaini, N.A.N., Hashim, R., Khan, S.B., Fadhullah, W., Omar, A.K.M., 2018. Physicochemical Characterization of Malaysian Crop and Agro-Industrial Biomass Residues As Renewable Energy Resources. Industrial Crops & Products 111: 642–650.
  • Sun, B., Yu, J., Tahmasebi, A., Han, Y., 2014. An Experimental Study on Binderless Briquetting of Chinese Lignite: Effects of Briquetting Conditions. Fuel Process Technol 124: 243–248.
  • Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., Goud, V.V., 2015. Optimization of Dilute Acid and Hot Water Pretreatment of Different Lignocellulosic Biomass: A Comparative Study. Biomass Bioenerg 81: 9-18.
  • Tumuluru, J.S., Wright, C.T., Hess, J.R., Kenney, K.L., 2011. A Review of Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application. Biofuels Bioprod Bior 5(6): 683-707.
  • Ültanır, M.O., 1996. Solar Energy and Technique at the Edge of Century (In Turkish) (TÜBİTAK) 340: 50-55.
  • Vyas, D.K., Sayyad, F.G., Khardiwar, M.S., Kumar, S., 2015. Physicochemical Properties of Briquettes from Different Feed Stock. Curr World Env 10(1): 263-269.
  • Wachira, G.G., Gitau, A.N., Kimani, M.W., Njoroge, B.N.K., 2015. Mechanical Properties of Saw Dust Briquettes of Eucalyptus Tree Species of Different Binders and Press Machines. Int J Emerg Technol Adv Eng 5(4): 532-538.
  • Wang, Q., Sarkar, J., 2018. Pyrolysis Behaviours of Waste Coconut Shell and Husk Biomasses. Int. J. of Energy Prod. & Mgmt. 3(1): 34-43.
  • Wilaipon, P., 2009. The Effects of Briquetting Pressure on Banana-Peel Briquette and the Banana Waste in Northern Thailand. Am J Appl Sci 6 (1): 167-171.
  • Zhang, J., Guo, Y., 2014. Physical Properties of Solid Fuel Briquettes Made from Caragana Korshinskii Kom. Powder Technol 256: 293–299.

Effect of moisture content, particle size and pressure on some briquetting properties of hazelnut residues

Year 2020, Volume: 35 Issue: 3, 330 - 338, 14.10.2020
https://doi.org/10.7161/omuanajas.736851

Abstract

This
study examined the utilization of residues from the production of hazelnuts as
a source of biofuel. The residues were briquetted using a hydraulic briquetting
machine with a horizontal course. Solid cylindrical briquettes were produced
with two different compression pressures (P: 80 MPa and 160 MPa), moisture
contents (M: 8%-10% and 13%-15%) and particle sizes (PS: 2-5 mm and 7-10 mm).
Physical properties (bulk density, tumbler and shatter indexes, water
absorption capacity, moisture and equivalent humidity contents) and thermal
properties (gas emission values after combustion, ash content and calorific
values) of the briquettes were measured. The study found an optimum briquetting
pressure of 160 MPa, optimum moisture content of 8%-10%, and optimum particle
size of 2-5 mm for hazelnut husk agricultural residues. The study gave
promising results and proved that the idle residue potential in agriculture
could be utilized for green energy.

Project Number

112O454

References

  • Angın, D., Şensöz, S., 2006. Effect of Drifting Gas (N2) Flow on Prylosis of Safflower Seed Pulps and Characterization of Liquid Product (In Turkish), Fırat University, J Sci Eng 18 (4): 535-542.
  • ASAE S269.4, 2000. Cubes, Pellets, and Crumbles Definitions and Methods for Determining Density, Durability, and Moisture Content. American Society of Agricultural and Biological Engineers.
  • ASTM D 440-86, 1998. Standard Test Method of Drop Shatter Test for Coal. Annual Book of ASTM Standards, vol. 05.05. West Conshohochen, PA: American Society for Testing and Materials.
  • ASTM–D 5865–07A, 2009. Test Method for Gross Calorific Value of Coal and Coke, In Annual Book of ASTM Standards (Vol. 05.06), West Conshohocken, PA: American Society for Testing and Materials.
  • Bazargan, A., Rough, S.L., McKay, G., 2014. Compaction of Palm Kernel Husk Biochars Forapplication As Solid Fuel. Biomass Bioenerg 70, 489-497.
  • Bilgin, S., 2008. A Research on Briquetting Greenhouse Plant Based Residues and Determining Briquetting Parameters and Flue Gas Emissions. Akdeniz University, Institute of Science and Technology, Antalya, Turkey.
  • Chen, T., Wu, C., Liu, R., Fei, W., Liu, S., 2011. Effect of Hot Vapor Filtration on The Characterization of Bio-Oil From Rice-Husks With Fast Pyrolysis in A Fluidized-Bed Reactor. Bioresource Technol 102: 6178-6185.
  • Chinyere, D.C., Asoegwu, S.N., Nwandikom, G.I., 2014. An Evaluation of Briquettes From Sawdust and Corn Starch Binder. Int J Sci Technol 2: 149-157.
  • Coşereanu, C., Lica, D., Lunguleasa, A., 2015. Investigation on The Quality of Briquettes Made From Rarely Used Wood Species. Agro-Wastes And Forest Biomass 11(1): 32-39.
  • Dias, J., Costa, M., Azevedo, J.L.T., 2004. Test of A Small Domestic Boiler Using Different Pellets. Biomass Bioenerg 27: 531–540.
  • EN 14774-1, 2009. Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • EN ISO 17225-7, 2015. Solid biofuels -- Fuel specifications and classes -- Part 7: Graded non-woody briquettes. Reference European Committee for Standardization: Management Centre, Avenue Marnix 17, B-1000 Brussels.
  • FAO, 2018. Food and Agriculture Organization of the United Nations, FAO Statistics Division.
  • Fournel, S., Palacios, J.H., Morissette, R., Villeneuve, J., Godbout, S., Savoie, P., 2015. Influence of Biomass Properties on Technical and Environmental Performance of A Multi-Fuel Boiler During on-Farm Combustion of Energy Crops. Appl Energ 141: 247–259.
  • Grover, P.D., Mishra, S.K., 1996. Biomass Briquetting: Technology and Practices. FAO Field Document No.46. Bankok April, 1996, Thailand.
  • Kaliyan, N., Morey, R., 2006. Densification Characteristics of Corn Stover and Switchgrass, Presented at the ASABE Annual International Meeting, USA. July 9-12.
  • Kaliyan, N., Morey, R.V., White, M.D., Doering, A., 2009. Roll Press Briquetting and Pelleting of Corn Stover And Switchgrass. American Society of Agricultural Engineers 52 (2): 543-555.
  • Kaur, A., Kumar, A., Singh, P., Kundu, K., 2017. Production, Analysis and Optimization of Low Cost Briquettes from Biomass Residues. Advan in Res 12(4): 1-10.
  • Kristensen, E.F., Kristensen, J.K., 2004. Development and Test of Small Scale Batch-Fired Straw Boilers in Denmark. Biomass Bioenerg 26: 561–570.
  • Križan, P., Šooš, L., Matúš, M., Beniak, J., Svátek, M., 2015. Research of Significant Densifcation Parameters Influence on Final Briquettes Quality. Wood Research 60 (2): 301-316.
  • Lindley, J., Vossoughi, M., 1989. Physical Properties of Biomass Briquettes. Transactions of the ASAE 32: 361–366.
  • Muazu, R.I., Stegemann, J.A., 2015. Effects of Oprerating Variables on Durability of Fuel Briquettes From Rice Husks and Corn Cobs. Fuel Processing Technol 133: 137-145.
  • Niedziołka, I., Szpryngiel, M., Jakubowska, M.K., Kraszkiewicz, A., Zawislak, K., Sobczak, P., Nadulski, R., 2015. Assessment of The Energetic and Mechanical Properties of Pellets Produced From Agricultural Biomass. Renew Energ 76: 312-317.
  • Oladeji, J.T., 2015. Theoretical Aspects of Biomass Briquetting: A Review Study. J Energ Technol Pol 5(3): 72-81.
  • Ölçüm, T., 2006. Biodiesel Technology, MSc. Thesis (In Turkish), Yıldız Technical University, Institute of Science and Technology, Istanbul, Turkey.
  • Olugbade, T.O., Mohammed, T.I., 2015. Fuel Developed from Rice Bran Briquettes and Palm Kernel Husks. Int J Energ Eng 5(2): 9-15.
  • Prakash, N., Karunanithi, T., 2008. Kinetic Modeling in Biomass Pyrolysis- A Review. J Appl Sci Res 4(12): 1627-1636.
  • Ross, A.B., Jones, J.M., Chaiklangmuang, S., Pourkashanian, M., Williams, A., Kubica, K., Andersson, J.T., Kerst, M., Danihelka, P., Bartle, K.D., 2002. Measurement and Predictioan of The Emission of Pollutants From The Combustion of Coal and Biomass in A Fixed Bed Furnace. Fuel 81: 571-582.
  • Roy, M.M., Corscadden, K.W., 2012. An Experimental Study of Combustion and Emissions of Biomass Briquettes in A Domestic Wood Stove. Appl Energ 99: 206–212.
  • Shuma, M.R., Madyira, D.M., Makonese, T.N., Oosthuizen, G.A., 2015. Energy Content and Combustion Behaviour of Loose Biomass Available in Limpopo. In: Beute N et al., editors. Proceedings of the DUE 23rd Conference on the Domestic Use of Energy 30 March-1 April 2015; Cape Town, South Africa, pp. 93 – 100.
  • Sohni, S., Norulaini, N.A.N., Hashim, R., Khan, S.B., Fadhullah, W., Omar, A.K.M., 2018. Physicochemical Characterization of Malaysian Crop and Agro-Industrial Biomass Residues As Renewable Energy Resources. Industrial Crops & Products 111: 642–650.
  • Sun, B., Yu, J., Tahmasebi, A., Han, Y., 2014. An Experimental Study on Binderless Briquetting of Chinese Lignite: Effects of Briquetting Conditions. Fuel Process Technol 124: 243–248.
  • Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., Goud, V.V., 2015. Optimization of Dilute Acid and Hot Water Pretreatment of Different Lignocellulosic Biomass: A Comparative Study. Biomass Bioenerg 81: 9-18.
  • Tumuluru, J.S., Wright, C.T., Hess, J.R., Kenney, K.L., 2011. A Review of Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application. Biofuels Bioprod Bior 5(6): 683-707.
  • Ültanır, M.O., 1996. Solar Energy and Technique at the Edge of Century (In Turkish) (TÜBİTAK) 340: 50-55.
  • Vyas, D.K., Sayyad, F.G., Khardiwar, M.S., Kumar, S., 2015. Physicochemical Properties of Briquettes from Different Feed Stock. Curr World Env 10(1): 263-269.
  • Wachira, G.G., Gitau, A.N., Kimani, M.W., Njoroge, B.N.K., 2015. Mechanical Properties of Saw Dust Briquettes of Eucalyptus Tree Species of Different Binders and Press Machines. Int J Emerg Technol Adv Eng 5(4): 532-538.
  • Wang, Q., Sarkar, J., 2018. Pyrolysis Behaviours of Waste Coconut Shell and Husk Biomasses. Int. J. of Energy Prod. & Mgmt. 3(1): 34-43.
  • Wilaipon, P., 2009. The Effects of Briquetting Pressure on Banana-Peel Briquette and the Banana Waste in Northern Thailand. Am J Appl Sci 6 (1): 167-171.
  • Zhang, J., Guo, Y., 2014. Physical Properties of Solid Fuel Briquettes Made from Caragana Korshinskii Kom. Powder Technol 256: 293–299.
There are 40 citations in total.

Details

Primary Language English
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Gürkan Gürdil 0000-0001-7764-3977

Bahadır Demirel 0000-0002-2650-1167

Project Number 112O454
Publication Date October 14, 2020
Acceptance Date August 30, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Gürdil, G., & Demirel, B. (2020). Effect of moisture content, particle size and pressure on some briquetting properties of hazelnut residues. Anadolu Tarım Bilimleri Dergisi, 35(3), 330-338. https://doi.org/10.7161/omuanajas.736851
Online ISSN: 1308-8769