Araştırma Makalesi
BibTex RIS Kaynak Göster

Sülfonilüre Grubu Herbisit Kullanılan Tekirdağ Tarım Alanlarından İzole Edilen Pseudomonas Türlerinin Karakterizasyonu

Yıl 2021, Cilt: 36 Sayı: 1, 10 - 19, 15.02.2021
https://doi.org/10.7161/omuanajas.670435

Öz

Toksik kirleticilerin biyolojik parçalanma ve toksik özelliklerinin gideriminde bakterilerin rolü çeşitli araştırmalarda ortaya konmuştur. Birçok toksik kimyasal gibi sülfonilüre grubu herbisitlerin de biyolojik olarak yıkımı konusu son yıllarda artan bir ilgiyle çalışılmaktadır. Bu çalışmada herbisitlerin yoğun olarak kullanıldığı buğday ve mısırın rotasyonlu ekildiği Tekirdağ tarım alanlarından Pseudomonas cinsinin temel özellikleri ile uyumlu 134 izolat saflaştırılmıştır. Bunların içinden yüksek herbisit konsantrasyonunda [500 mgL-1 (w/v)] hayatta kalan 45 izolat seçilmiştir. Seçilen izolatlar azotu fikse etme (42 izolat) ve fosfatı çözebilme (31 izolat), nitratı indirgeme (37 izolat), lipolitik (45 izolat) ve proteolitik (7 izolat) aktivite göstermiştir. Bunun yanında izolatların klasik biyokimyasal ve fizyolojik testler ile cins seviyesinde karakterizasyonu yapılmıştır. Bu izolatlardan 5 tanesi ise moleküler biyolojik yöntemler (16S rDNA dizi analizi) ile NCBI veri bankasındaki veriler ile karşılaştırılarak tür seviyesinde de tanımlanmıştır. Tanımlama sonuçları en yüksek benzerliğe (%100-99) sahip ilk üç eşleşmeye göre değerlendirilmiş ve izolatlar Pseudomonas cremicolorata, Pseudomonas parafulva; Pseudomonas putida (izolat 13); Pseudomonas baetica, Pseudomonas koreensis ve Pseudomonas helmanticensis (izolat 18); Pseudomonas plecoglossicida, Pseudomonas cremicolorata; Pseudomonas parafulva (izolat 28); Pseudomonas reidholzensis, Pseudomonas putida (izolat 38 ve 42) olarak tanımlanmıştır.nas cremicolorata; Pseudomonas parafulva (izolat 28); Pseudomonas reidholzensis, Pseudomonas putida (izolat 38 ve 42) olarak tanımlanmıştır.

Destekleyen Kurum

Gebze Teknik Üniversitesi

Proje Numarası

GTÜ BAP 2018 A-105-A-4

Teşekkür

Bu araştırma Gebze Teknik Üniversitesi Bilimsel Araştırmalar Birimi tarafından GTÜ BAP 2018 A-105-A-4 no’lu proje ile desteklenmiştir.

Kaynakça

  • Alexander, SK., Strete, D. 2001. Microbiology: a photographic atlas for the laboratory, New York: Benjamin Cumings Publication.
  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25(17), 3389-3402.
  • Atlas, RM. 2004. Parks L.C. (Eds.), Handbook of microbiological media, Second Edition, New York, CRC Press.
  • Başaran, M.S. 2010. Hububat Alanlarında Uygulanan Sulfonylurea Grubu Bazı Herbisitlerin Minimum Dozlarının Saptanması (Doktora Tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma ABD, Ankara.
  • Bellinder, R. R., Gummesson, G., Karlsson, C. 1994. Percentage driven government mandates for pesticide reduction the Swedish model. Weed Technology 8, 350–359.
  • Blair, A. M., Martin, T. D. 1988. A review of the activity, fate and mode of action of sulfonylurea herbicides. Pesticide Science, 22(3), 195-219.
  • Bolton, E. E., Hepworth, H. M., 1972. Tillage Research in Turkey, Proceedings of Regional Wheat Workshop Beirut, Lebanon.
  • Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides, Pesticide Science, 29, 263-281
  • Donald, C. M., 1963. Advances in Agronomy in Competition among crop and pasture plants. 15, NewYork, Academic Press.
  • Höfte, M., De Vos, 2006. Samuel S. And P.Gnanamanickam (Eds.)Plant pathogenic Pseudomonas species in Plant-associated bacteria, , Vol. 1. Dordrecht: Springer,.
  • Crimson™ Taq DNA Polymerase retrieved from: https://www.uoftmedstore.com/pdfs/CrimsonTaq_MedStore.pdf (2019) (Erişim tarihi: 12.12.2019).
  • ISO/TS 11059. 2009. (IDF/RM 225: 2009) Milk and milk products – Method for the enumeration of Pseudomonas spp
  • Johri, A.K., Dua, M., Tuteja, D., Saxena, R., Saxena, D.M., Lal, R. 1996. Genetic manipulations of microorganisms for the degradation of hexachlorocyclohexane, FEMS Microbiology Reviews, 19, 69–84.
  • Kaur, T., Brar, L. S. 2014. Residual effect of sulfonylurea herbicides applied to wheat on succeeding maize. Indian Journal of Weed Science, 46(2), 129-131.
  • Kuzmanović, N., Eltlbany, N., Ding, G., Baklawa, M., Min, L., Wei, L., Smalla, K. 2018. Analysis of the genome sequence of plant beneficial strain Pseudomonas sp. RU47. Journal of biotechnology, 281, 183-192.
  • Kwon, S. W., Kim, J. S., Park, I. C., Yoon, S. H., Park, D. H., Lim, C. K., Go, S. J. 2003. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. International journal of systematic and evolutionary microbiology, 53(1), 2.
  • Lane, D. J. 1991. Stackebrandt E .(Ed) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics, Goodfellow, M., New York, Wiley.
  • Lopez, J. R., Dieguez, A. L., Doce, A., De la Roca, E., De la Herran, R., Navas, J. I., ... Romalde, J. L. 2012. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). International journal of systematic and evolutionary microbiology, 62(4), 874-882.
  • Ma J.P., Wang Z., Lu P., Wang H.J., Waseem Ali S., Li S.P., Huang X. 2009. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiology Letters. 296, 203–20.
  • Marcelletti, S., Scortichini, M. 2014. Definition of plant-pathogenic Pseudomonas genomospecies of the Pseudomonas syringae complex through multiple comparative approaches. Phytopathology, 104(12), 1274-1282.
  • Matsumura, F., Benzet, H. J., Patil, K. C. 1976. Factors affecting microbial metabolism of y-BHC. Journal of Pesticide Science, 1, 3–8.
  • Mitsutomi, Shuhei; Sekimizu, Kazuhisa; Kaito, Chikara 2017. Isolation of antibiotic-producing Pseudomonas species with low-temperature cultivation of temperate soil. Drug discoveries & Therapeutics, , 11(5): 267-275.
  • Pachori P, Gothalwal R, Gandhi P. 2019. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. Apr 17;6(2):109-119.
  • Park, S. C., Shimamura, I., Fukunaga, M., Mori, K. I., Nakai, T. 2000. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol., 66(4), 1416-1422.
  • Peña, A., Busquets, A., Gomila, M., Mulet, M., Gomila, R. M., Reddy, T. B. K., ... ,García-Valdés, E. 2016. High quality draft genome sequences of Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonas cremoricolorata DSM 17059 T type strains. Standards in genomic sciences, 11(1):55.
  • Ramírez-Bahena, M. H., Cuesta, M. J., Flores-Félix, J. D., Mulas, R., Rivas, R., Castro-Pinto, J., ..., Peix, Á. 2014. Pseudomonas helmanticensis sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 64(7), 2338-2345.
  • Rutz, D., Frasson, D., Sievers, M., Blom, J., Rezzonico, F., Pothier, J. F., Smits, T. H. 2019. Comparative genomic analysis of the biotechnological potential of the novel species Pseudomonas wadenswilerensis CCOS 864T and Pseudomonas reidholzensis CCOS 865T. Diversity, 11(11), 204.
  • Sözeri, S., Solmaz, A. 1996. Effects of root, leaf and flower extracts of Oriental Lakspur (Consolida orientalis (Gay) Schröd.) on germination and seedling growth of wheat. The Journal of Turkish Phytopathology 25 (3) 89–92.
  • Uchino M, Shida O, Uchimura T, Komagata K. 2001. Recharacterization of Pseudomonas fulva Iizuka and Komagata, and proposals of Pseudomonas parafulva sp.nov. and Pseudomonas cremocricolorata sp. nov. J Gen Appl Microbiol. ;47:247–61.
  • Wada, H., Senoo, K., Takai Y. 1989. Rapid degradation of gamma-HCH in upland soil after multiple applications, Soil Science and Plant Nutrition, 35, 71–77.
  • Waller, G. R. 1989. Allelochemical action of some natural products, in Phytochemical Ecology: Allelochemicals, Mycotoxins and insect Pheromones and Allomones, Institute of Botany, Acedemia Sinica Monogroph Series No:9, Taipei, 129-153s.
  • Wasi, S., Tabrez, S., Ahmad, M. 2013. Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review, Environmental Monitoring and Assessment, 185, 8147-8155.
  • Wasi, S., Tabrez, S., Ahmad, M. 2011a. Suitability of Immobilized Pseudomonas fluorescens SM1 Strain for Remediation of Phenols, Heavy Metals, and Pesticides from Water, Water, Air, and Soil Pollution, 220 (1-4), 88-99.
  • Wasi, S., Tabrez, S., Ahmad, M. 2011b. Detoxification potential of Pseudomonas fluorescens SM1 strain for remediation of major toxicants in Indian water bodies, Water, Air, and Soil Pollution, 222(1–4), 39–51.
  • Williams, M. C. 1984. Poisonous plants part 3, Poisonous alkoloids in plants, Weeds Today, 15: 2, 1–2, (Weed abstr. 33 (6),1755).
  • Zhang, J.J., Chen, Y.F., Fang, T., Zhou, N.Y., 2013. Co-metabolic degredation of tribenuron methyl, a sulfonylurea herbicide, by Pseudomonas sp. Strain NyZ42. International Biodeterioration and Biodegradation. 76, 6-40.
  • Zhou, Q.Y., Liu, W.P., Zhang, Y.S., Liu, K.K. 2008. Action mechanisms of acetolactate synthase-inhibiting herbicides, Pesticide Biochemistry Physiology, 89, 89–96.
  • Zimdahl, R. L. 2007. Fundamentals of weed science. Elsevier Academic Press. ĠSBN: 978–0–12–372518–9.

Characterization of Pseudomonas species isolated from agricultural areas applied with sulphonylurea group herbicides in Tekirdağ province

Yıl 2021, Cilt: 36 Sayı: 1, 10 - 19, 15.02.2021
https://doi.org/10.7161/omuanajas.670435

Öz

The role of bacteria in biological degradation and removal of toxic properties of pollutants has been set out in various studies. Like many toxic chemicals, biological degradation of sulphonylurea group herbicides has been studied with increasing interest in recent years. In this study, 134 isolates of Pseudomonas genus were isolated and purified from intense-herbicide applied agricultural areas, where wheat and corn were cultivated in rotation, in Tekirdağ province. Among these, 45 isolates which survived at high herbicide concentration [500 mgL-1 (w/v)] were selected. The selected isolates showed the ability of nitrogen fixation (42 isolates) and phosphate solubilization (31 isolates), nitrate reduction (37 isolates), lipolytic (45 isolates) and proteolytic (7 isolates) activity. In addition, genotypic characterization of the isolates was performed by classical biochemical and physiological tests. Five of these isolates were identified at the species level by comparison with the data in the NCBI database by molecular biological methods (16S rDNA sequence analysis). The identification results were evaluated according to the first three matches with the highest identity rate (100-99%) and isolates were identified as Pseudomonas cremicolorata, Pseudomonas parafulva, Pseudomonas putida (isolate 13); Pseudomonas baetica, Pseudomonas koreensis and Pseudomonas helmanticensis (isolate 18); Pseudomonas plecoglossicida, Pseudomonas cremicolorata; Pseudomonas parafulva (isolate 28); Pseudomonas reidholzensis and Pseudomonas putida (isolates 38 and 42) .

Proje Numarası

GTÜ BAP 2018 A-105-A-4

Kaynakça

  • Alexander, SK., Strete, D. 2001. Microbiology: a photographic atlas for the laboratory, New York: Benjamin Cumings Publication.
  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25(17), 3389-3402.
  • Atlas, RM. 2004. Parks L.C. (Eds.), Handbook of microbiological media, Second Edition, New York, CRC Press.
  • Başaran, M.S. 2010. Hububat Alanlarında Uygulanan Sulfonylurea Grubu Bazı Herbisitlerin Minimum Dozlarının Saptanması (Doktora Tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma ABD, Ankara.
  • Bellinder, R. R., Gummesson, G., Karlsson, C. 1994. Percentage driven government mandates for pesticide reduction the Swedish model. Weed Technology 8, 350–359.
  • Blair, A. M., Martin, T. D. 1988. A review of the activity, fate and mode of action of sulfonylurea herbicides. Pesticide Science, 22(3), 195-219.
  • Bolton, E. E., Hepworth, H. M., 1972. Tillage Research in Turkey, Proceedings of Regional Wheat Workshop Beirut, Lebanon.
  • Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides, Pesticide Science, 29, 263-281
  • Donald, C. M., 1963. Advances in Agronomy in Competition among crop and pasture plants. 15, NewYork, Academic Press.
  • Höfte, M., De Vos, 2006. Samuel S. And P.Gnanamanickam (Eds.)Plant pathogenic Pseudomonas species in Plant-associated bacteria, , Vol. 1. Dordrecht: Springer,.
  • Crimson™ Taq DNA Polymerase retrieved from: https://www.uoftmedstore.com/pdfs/CrimsonTaq_MedStore.pdf (2019) (Erişim tarihi: 12.12.2019).
  • ISO/TS 11059. 2009. (IDF/RM 225: 2009) Milk and milk products – Method for the enumeration of Pseudomonas spp
  • Johri, A.K., Dua, M., Tuteja, D., Saxena, R., Saxena, D.M., Lal, R. 1996. Genetic manipulations of microorganisms for the degradation of hexachlorocyclohexane, FEMS Microbiology Reviews, 19, 69–84.
  • Kaur, T., Brar, L. S. 2014. Residual effect of sulfonylurea herbicides applied to wheat on succeeding maize. Indian Journal of Weed Science, 46(2), 129-131.
  • Kuzmanović, N., Eltlbany, N., Ding, G., Baklawa, M., Min, L., Wei, L., Smalla, K. 2018. Analysis of the genome sequence of plant beneficial strain Pseudomonas sp. RU47. Journal of biotechnology, 281, 183-192.
  • Kwon, S. W., Kim, J. S., Park, I. C., Yoon, S. H., Park, D. H., Lim, C. K., Go, S. J. 2003. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. International journal of systematic and evolutionary microbiology, 53(1), 2.
  • Lane, D. J. 1991. Stackebrandt E .(Ed) 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics, Goodfellow, M., New York, Wiley.
  • Lopez, J. R., Dieguez, A. L., Doce, A., De la Roca, E., De la Herran, R., Navas, J. I., ... Romalde, J. L. 2012. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). International journal of systematic and evolutionary microbiology, 62(4), 874-882.
  • Ma J.P., Wang Z., Lu P., Wang H.J., Waseem Ali S., Li S.P., Huang X. 2009. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiology Letters. 296, 203–20.
  • Marcelletti, S., Scortichini, M. 2014. Definition of plant-pathogenic Pseudomonas genomospecies of the Pseudomonas syringae complex through multiple comparative approaches. Phytopathology, 104(12), 1274-1282.
  • Matsumura, F., Benzet, H. J., Patil, K. C. 1976. Factors affecting microbial metabolism of y-BHC. Journal of Pesticide Science, 1, 3–8.
  • Mitsutomi, Shuhei; Sekimizu, Kazuhisa; Kaito, Chikara 2017. Isolation of antibiotic-producing Pseudomonas species with low-temperature cultivation of temperate soil. Drug discoveries & Therapeutics, , 11(5): 267-275.
  • Pachori P, Gothalwal R, Gandhi P. 2019. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. Apr 17;6(2):109-119.
  • Park, S. C., Shimamura, I., Fukunaga, M., Mori, K. I., Nakai, T. 2000. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol., 66(4), 1416-1422.
  • Peña, A., Busquets, A., Gomila, M., Mulet, M., Gomila, R. M., Reddy, T. B. K., ... ,García-Valdés, E. 2016. High quality draft genome sequences of Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonas cremoricolorata DSM 17059 T type strains. Standards in genomic sciences, 11(1):55.
  • Ramírez-Bahena, M. H., Cuesta, M. J., Flores-Félix, J. D., Mulas, R., Rivas, R., Castro-Pinto, J., ..., Peix, Á. 2014. Pseudomonas helmanticensis sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 64(7), 2338-2345.
  • Rutz, D., Frasson, D., Sievers, M., Blom, J., Rezzonico, F., Pothier, J. F., Smits, T. H. 2019. Comparative genomic analysis of the biotechnological potential of the novel species Pseudomonas wadenswilerensis CCOS 864T and Pseudomonas reidholzensis CCOS 865T. Diversity, 11(11), 204.
  • Sözeri, S., Solmaz, A. 1996. Effects of root, leaf and flower extracts of Oriental Lakspur (Consolida orientalis (Gay) Schröd.) on germination and seedling growth of wheat. The Journal of Turkish Phytopathology 25 (3) 89–92.
  • Uchino M, Shida O, Uchimura T, Komagata K. 2001. Recharacterization of Pseudomonas fulva Iizuka and Komagata, and proposals of Pseudomonas parafulva sp.nov. and Pseudomonas cremocricolorata sp. nov. J Gen Appl Microbiol. ;47:247–61.
  • Wada, H., Senoo, K., Takai Y. 1989. Rapid degradation of gamma-HCH in upland soil after multiple applications, Soil Science and Plant Nutrition, 35, 71–77.
  • Waller, G. R. 1989. Allelochemical action of some natural products, in Phytochemical Ecology: Allelochemicals, Mycotoxins and insect Pheromones and Allomones, Institute of Botany, Acedemia Sinica Monogroph Series No:9, Taipei, 129-153s.
  • Wasi, S., Tabrez, S., Ahmad, M. 2013. Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review, Environmental Monitoring and Assessment, 185, 8147-8155.
  • Wasi, S., Tabrez, S., Ahmad, M. 2011a. Suitability of Immobilized Pseudomonas fluorescens SM1 Strain for Remediation of Phenols, Heavy Metals, and Pesticides from Water, Water, Air, and Soil Pollution, 220 (1-4), 88-99.
  • Wasi, S., Tabrez, S., Ahmad, M. 2011b. Detoxification potential of Pseudomonas fluorescens SM1 strain for remediation of major toxicants in Indian water bodies, Water, Air, and Soil Pollution, 222(1–4), 39–51.
  • Williams, M. C. 1984. Poisonous plants part 3, Poisonous alkoloids in plants, Weeds Today, 15: 2, 1–2, (Weed abstr. 33 (6),1755).
  • Zhang, J.J., Chen, Y.F., Fang, T., Zhou, N.Y., 2013. Co-metabolic degredation of tribenuron methyl, a sulfonylurea herbicide, by Pseudomonas sp. Strain NyZ42. International Biodeterioration and Biodegradation. 76, 6-40.
  • Zhou, Q.Y., Liu, W.P., Zhang, Y.S., Liu, K.K. 2008. Action mechanisms of acetolactate synthase-inhibiting herbicides, Pesticide Biochemistry Physiology, 89, 89–96.
  • Zimdahl, R. L. 2007. Fundamentals of weed science. Elsevier Academic Press. ĠSBN: 978–0–12–372518–9.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Mine Gül Şeker 0000-0002-6226-7507

Proje Numarası GTÜ BAP 2018 A-105-A-4
Yayımlanma Tarihi 15 Şubat 2021
Kabul Tarihi 24 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 1

Kaynak Göster

APA Gül Şeker, M. (2021). Sülfonilüre Grubu Herbisit Kullanılan Tekirdağ Tarım Alanlarından İzole Edilen Pseudomonas Türlerinin Karakterizasyonu. Anadolu Tarım Bilimleri Dergisi, 36(1), 10-19. https://doi.org/10.7161/omuanajas.670435
Online ISSN: 1308-8769