Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Çözünürlüklü İnsansız Hava Aracı Görüntülerinde Bitki Gölgelerinin Tespit Edilmesi

Yıl 2021, Cilt: 36 Sayı: 2, 189 - 199, 15.06.2021
https://doi.org/10.7161/omuanajas.826960

Öz

Yüksek çözünürlüklü multispektral görüntüler tarım alanlarının izlenmesinde oldukça yararlı bilgiler sunmaktadır. Fakat bu görüntülerdeki gölge alanları spektral yansıma oranı ve termal verileri direk olarak etkilemektedir. Bu nedenle gölge alanlarının tespit edilmesi ve filtrelenmesi, yüksek çözünürlüklü görüntülere dayalı olarak gerçekleştirilen çalışmalardaki başarı oranını arttıracaktır. Görüntülerde bulunan gölge alanları sınıflandırma yöntemleri ile tespit edilmektedir. Fakat, bu yöntemlerin insansız hava aracından (İHA) elde edilen yüksek çözünürlüklü multispektral görüntülerde kullanımı üzerine gerçekleştirilmiş araştırma sayısı oldukça azdır. Bu çalışmanın amacı üç farklı görüntü sınıflandırma yönteminin (eğitimli sınıflandırma, multispektral görüntü ile sınıflandırma ve sınıf olasılığı) İHA’ dan elde edilen multispektral görüntülerdeki gölge alanlarını tespit etmedeki başarısının değerlendirilmesidir. Her bir sınıflandırma yönteminin başarısı, görüntüde manuel yöntem ile belirlenen gölge alanları ile değerlendirilmiştir. Çalışma sonucunda bitki gölgeleri en hassas (%94) kırmızı kenar multispektral görüntüsü kullanılarak gerçekleştirilen sınıflandırma ile elde edilirken, en düşük hassasiyet (%74) ise eğitimli sınıflandırma yöntemi ile hesaplanmıştır.

Destekleyen Kurum

Ondokuz Mayıs Üniversitesi

Proje Numarası

PYO.ZRT.1904.19.001

Teşekkür

Bu çalışma Ondokuz Mayıs Üniversitesi tarafından desteklenmiştir (PYO.ZRT.1904.19.001).

Kaynakça

  • Aboutalebi, M., Torres-Rua, A.F., Kustas, W.P., Nieto, H., Coopmans, C., McKee, M., 2019. Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration. Irrigation Sci. 37(3), 407-429.
  • Berni, J., Zarco-Tejada, P., Suárez, L., González-Dugo, V., Fereres, E., 2009. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci. 38(6), 6.
  • Bethsda, M., 1997. Manual of photographic interpretation. 2nd edition. American Society Photogrammetry and remote sensing (ASPRS), American Society Photogrammetry and remote sensing (ASPRS).
  • Boursianis, A.D., Papadopoulou, M.S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., Goudos, S.K., 2020. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet of Things. 100187.
  • Choi, H., Bindschadler, R., 2004. Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sens Environ. 91(2), 237-242.
  • Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 37(1), 35-46.
  • Hsieh, Y.-T., Wu, S.-T., Chen, C.-T., Chen, J.-C., 2016. Analyzing Spectral Characteristics of Shadow Area From High Radiometric Resolution Aerial Images. International Archives of the Photogrammetry, Remote Sensing Spatial Information Sciences. 41.
  • Huang, J.-B., Chen, C.-S., 2009. A physical approach to moving cast shadow detection, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, pp. 769-772.
  • Kaivosoja, J., Pesonen, L., Kleemola, J., Pölönen, I., Salo, H., Honkavaara, E., Saari, H., Mäkynen, J., Rajala, A., 2013. A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data, Remote Sensing for Agriculture, Ecosystems, and Hydrology XV. International Society for Optics and Photonics, p. 88870H.
  • Koksal, E.S., Tasan, M., Artik, C., Gowda, P., 2017. Evaluation of financial efficiency of drip-irrigation of red pepper based on evapotranspiration calculated using an iterative soil water-budget approach. Scientia horticulturae. 226, 398-405.
  • Kumar, P., Sengupta, K., Lee, A., 2002. A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system, Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems. IEEE, pp. 100-105.
  • Lillesand, T., Kiefer, R., 2000. Remote Sensing and Image Interpretation, 4th edition (New York: Johy Wiley & Sons). New York, Wiley.
  • Marques Junior, A., Maria De Castro, D., Guimarães, T.T., Inocencio, L.C., Veronez, M.R., Mauad, F.F., Gonzaga Jr, L., 2020. Statistical assessment of cartographic product from photogrammetry and fixed-wing UAV acquisition. European Journal of Remote Sensing. 53(1), 27-39.
  • MGM, 2020. https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx=BAFRA. (Erişim tarihi: 15/05/2020).
  • Nieto, H., Kustas, W.P., Torres-Rúa, A., Alfieri, J.G., Gao, F., Anderson, M.C., White, W.A., Song, L., del Mar Alsina, M., Prueger, J.H., 2019. Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery. Irrigation Sci. 37(3), 389-406.
  • Novák, V., Křížová, K., Napitupulu, R., 2018. Influence of North Sumatra Maize (Zea mays L.) monocultuure on soil properties using free Sentinel 2 imagery, 2nd Nommensen International Conference on Technology and Engineering 19–20 July 2018. Medan, Indonesia, p. 012076.
  • Ortega-Farías, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría, C., Ahumada-Orellana, L., Zuñiga, M., Sepúlveda, D., 2016. Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sens-Basel. 8(8), 638.
  • Peña, J.M., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A.I., López-Granados, F., 2015. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors. 15(3), 5609-5626.
  • Poblete, T., Ortega-Farías, S., Ryu, D., 2018. Automatic coregistration algorithm to remove canopy shaded pixels in UAV-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated Cabernet Sauvignon vineyard. Sensors. 18(2), 397.
  • Qiao, X., Yuan, D., Li, H., 2017. Urban shadow detection and classification using hyperspectral image. Journal of the Indian Society of Remote Sensing. 45(6), 945-952.
  • Review, M.T., 2020. 10 Breakthrough Technologies 2014. https://www.technologyreview.com/10-breakthrough-technologies/2014/. (Erişim tarihi: 5 Mayıs, 2020).
  • Rosin, P.L., Ellis, T.J., 1995. Image difference threshold strategies and shadow detection, BMVC. Citeseer, pp. 347-356.
  • Sandnes, F.E., 2011. Determining the geographical location of image scenes based on object shadow lengths. Journal of Signal Processing Systems. 65(1), 35-47.
  • Shin, J.-i., Seo, W.-w., Kim, T., Park, J., Woo, C.-s., 2019. Using UAV multispectral images for classification of forest burn severity—A case study of the 2019 Gangneung forest fire. Forests. 10(11), 1025.
  • Shiting, W., Hong, Z., 2013. Clustering-based shadow edge detection in a single color image, Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). IEEE, pp. 1038-1041.
  • Siala, K., Chakchouk, M., Chaieb, F., Besbes, O., 2004. Moving shadow detection with support vector domain description in the color ratios space, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, pp. 384-387.
  • Sirmacek, B., Unsalan, C., 2008. Building detection from aerial images using invariant color features and shadow information, 2008 23rd International Symposium on Computer and Information Sciences. IEEE, pp. 1-5.
  • Sona, G., Passoni, D., Pinto, L., Pagliari, D., Masseroni, D., Ortuani, B., Facchi, A., 2016. UAV multispectral survey to map soil and crop for precision farming applications, Remote Sensing and Spatial Information Sciences Congress: International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences Congress: 19 July. International Society for Photogrammetry and Remote Sensing (ISPRS), pp. 1023-1029.
  • Tolt, G., Shimoni, M., Ahlberg, J., 2011. A shadow detection method for remote sensing images using VHR hyperspectral and LIDAR data, 2011 IEEE international geoscience and remote sensing symposium. IEEE, pp. 4423-4426.
  • Tunca, E., Köksal, E.S., Çetin, S., Ekiz, N.M., Balde, H., 2018. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environmental Monitoring and Assessment. 190(11). https://doi.org/10.1007/s10661-018-7064-x.
  • Werner, T., Bebbington, A., Gregory, G., 2019. Assessing impacts of mining: Recent contributions from GIS and remote sensing. The Extractive Industries Society. 6(3), 993-1012.
  • Xia, H., Chen, X., Guo, P., 2009. A shadow detection method for remote sensing images using affinity propagation algorithm, 2009 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp. 3116-3121.
  • Xu, N., Tian, J., Tian, Q., Xu, K., Tang, S., 2019. Analysis of Vegetation Red Edge with Different Illuminated/Shaded Canopy Proportions and to Construct Normalized Difference Canopy Shadow Index. Remote Sens-Basel. 11(10), 1192.
  • Zheng, H., Cheng, T., Li, D., Yao, X., Tian, Y., Cao, W., Zhu, Y., 2018. Combining unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice. Frontiers in plant science. 9, 936.
  • Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ. 118, 83-94.

Crop Shadow Detection in High Resolution Un-Manned Air Vehicle Images

Yıl 2021, Cilt: 36 Sayı: 2, 189 - 199, 15.06.2021
https://doi.org/10.7161/omuanajas.826960

Öz

High-resolution multispectral image provides useful information for monitoring agricultural areas. However, shadow areas in these images directly affect spectral reflectance and thermal data. For this reason, detecting and removing of shadow areas will increase the success rate of studies that performed based on high resolution images. Shadows can be detected by using image classification methods. However, researches related to use of these methods in high resolution images obtained from un-manned air vehicles are quite limited. Therefore, the aim of this study is evaluation of three different image classification methods (supervised classification, multispectral image classification and class probability) for detecting shadows of bell pepper plant. Each classification method was compared with the shadow areas which manually determined in the image. The results show that, while the most accurately bell pepper shadows detected by using Red Edge multispectral image (94%), the lowest with supervised classification (74%).

Proje Numarası

PYO.ZRT.1904.19.001

Kaynakça

  • Aboutalebi, M., Torres-Rua, A.F., Kustas, W.P., Nieto, H., Coopmans, C., McKee, M., 2019. Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration. Irrigation Sci. 37(3), 407-429.
  • Berni, J., Zarco-Tejada, P., Suárez, L., González-Dugo, V., Fereres, E., 2009. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci. 38(6), 6.
  • Bethsda, M., 1997. Manual of photographic interpretation. 2nd edition. American Society Photogrammetry and remote sensing (ASPRS), American Society Photogrammetry and remote sensing (ASPRS).
  • Boursianis, A.D., Papadopoulou, M.S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., Goudos, S.K., 2020. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet of Things. 100187.
  • Choi, H., Bindschadler, R., 2004. Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sens Environ. 91(2), 237-242.
  • Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 37(1), 35-46.
  • Hsieh, Y.-T., Wu, S.-T., Chen, C.-T., Chen, J.-C., 2016. Analyzing Spectral Characteristics of Shadow Area From High Radiometric Resolution Aerial Images. International Archives of the Photogrammetry, Remote Sensing Spatial Information Sciences. 41.
  • Huang, J.-B., Chen, C.-S., 2009. A physical approach to moving cast shadow detection, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, pp. 769-772.
  • Kaivosoja, J., Pesonen, L., Kleemola, J., Pölönen, I., Salo, H., Honkavaara, E., Saari, H., Mäkynen, J., Rajala, A., 2013. A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data, Remote Sensing for Agriculture, Ecosystems, and Hydrology XV. International Society for Optics and Photonics, p. 88870H.
  • Koksal, E.S., Tasan, M., Artik, C., Gowda, P., 2017. Evaluation of financial efficiency of drip-irrigation of red pepper based on evapotranspiration calculated using an iterative soil water-budget approach. Scientia horticulturae. 226, 398-405.
  • Kumar, P., Sengupta, K., Lee, A., 2002. A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system, Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems. IEEE, pp. 100-105.
  • Lillesand, T., Kiefer, R., 2000. Remote Sensing and Image Interpretation, 4th edition (New York: Johy Wiley & Sons). New York, Wiley.
  • Marques Junior, A., Maria De Castro, D., Guimarães, T.T., Inocencio, L.C., Veronez, M.R., Mauad, F.F., Gonzaga Jr, L., 2020. Statistical assessment of cartographic product from photogrammetry and fixed-wing UAV acquisition. European Journal of Remote Sensing. 53(1), 27-39.
  • MGM, 2020. https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx=BAFRA. (Erişim tarihi: 15/05/2020).
  • Nieto, H., Kustas, W.P., Torres-Rúa, A., Alfieri, J.G., Gao, F., Anderson, M.C., White, W.A., Song, L., del Mar Alsina, M., Prueger, J.H., 2019. Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery. Irrigation Sci. 37(3), 389-406.
  • Novák, V., Křížová, K., Napitupulu, R., 2018. Influence of North Sumatra Maize (Zea mays L.) monocultuure on soil properties using free Sentinel 2 imagery, 2nd Nommensen International Conference on Technology and Engineering 19–20 July 2018. Medan, Indonesia, p. 012076.
  • Ortega-Farías, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría, C., Ahumada-Orellana, L., Zuñiga, M., Sepúlveda, D., 2016. Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sens-Basel. 8(8), 638.
  • Peña, J.M., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A.I., López-Granados, F., 2015. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors. 15(3), 5609-5626.
  • Poblete, T., Ortega-Farías, S., Ryu, D., 2018. Automatic coregistration algorithm to remove canopy shaded pixels in UAV-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated Cabernet Sauvignon vineyard. Sensors. 18(2), 397.
  • Qiao, X., Yuan, D., Li, H., 2017. Urban shadow detection and classification using hyperspectral image. Journal of the Indian Society of Remote Sensing. 45(6), 945-952.
  • Review, M.T., 2020. 10 Breakthrough Technologies 2014. https://www.technologyreview.com/10-breakthrough-technologies/2014/. (Erişim tarihi: 5 Mayıs, 2020).
  • Rosin, P.L., Ellis, T.J., 1995. Image difference threshold strategies and shadow detection, BMVC. Citeseer, pp. 347-356.
  • Sandnes, F.E., 2011. Determining the geographical location of image scenes based on object shadow lengths. Journal of Signal Processing Systems. 65(1), 35-47.
  • Shin, J.-i., Seo, W.-w., Kim, T., Park, J., Woo, C.-s., 2019. Using UAV multispectral images for classification of forest burn severity—A case study of the 2019 Gangneung forest fire. Forests. 10(11), 1025.
  • Shiting, W., Hong, Z., 2013. Clustering-based shadow edge detection in a single color image, Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). IEEE, pp. 1038-1041.
  • Siala, K., Chakchouk, M., Chaieb, F., Besbes, O., 2004. Moving shadow detection with support vector domain description in the color ratios space, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, pp. 384-387.
  • Sirmacek, B., Unsalan, C., 2008. Building detection from aerial images using invariant color features and shadow information, 2008 23rd International Symposium on Computer and Information Sciences. IEEE, pp. 1-5.
  • Sona, G., Passoni, D., Pinto, L., Pagliari, D., Masseroni, D., Ortuani, B., Facchi, A., 2016. UAV multispectral survey to map soil and crop for precision farming applications, Remote Sensing and Spatial Information Sciences Congress: International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences Congress: 19 July. International Society for Photogrammetry and Remote Sensing (ISPRS), pp. 1023-1029.
  • Tolt, G., Shimoni, M., Ahlberg, J., 2011. A shadow detection method for remote sensing images using VHR hyperspectral and LIDAR data, 2011 IEEE international geoscience and remote sensing symposium. IEEE, pp. 4423-4426.
  • Tunca, E., Köksal, E.S., Çetin, S., Ekiz, N.M., Balde, H., 2018. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environmental Monitoring and Assessment. 190(11). https://doi.org/10.1007/s10661-018-7064-x.
  • Werner, T., Bebbington, A., Gregory, G., 2019. Assessing impacts of mining: Recent contributions from GIS and remote sensing. The Extractive Industries Society. 6(3), 993-1012.
  • Xia, H., Chen, X., Guo, P., 2009. A shadow detection method for remote sensing images using affinity propagation algorithm, 2009 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp. 3116-3121.
  • Xu, N., Tian, J., Tian, Q., Xu, K., Tang, S., 2019. Analysis of Vegetation Red Edge with Different Illuminated/Shaded Canopy Proportions and to Construct Normalized Difference Canopy Shadow Index. Remote Sens-Basel. 11(10), 1192.
  • Zheng, H., Cheng, T., Li, D., Yao, X., Tian, Y., Cao, W., Zhu, Y., 2018. Combining unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice. Frontiers in plant science. 9, 936.
  • Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ. 118, 83-94.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Emre Tunca 0000-0001-6869-9602

Eyüp Köksal 0000-0002-5103-9170

Proje Numarası PYO.ZRT.1904.19.001
Yayımlanma Tarihi 15 Haziran 2021
Kabul Tarihi 26 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 2

Kaynak Göster

APA Tunca, E., & Köksal, E. (2021). Yüksek Çözünürlüklü İnsansız Hava Aracı Görüntülerinde Bitki Gölgelerinin Tespit Edilmesi. Anadolu Tarım Bilimleri Dergisi, 36(2), 189-199. https://doi.org/10.7161/omuanajas.826960
Online ISSN: 1308-8769