Araştırma Makalesi
BibTex RIS Kaynak Göster

Chemometric approach to the nutritive value of some sorghum (Sorghum bicolor L. Moench) cultivars

Yıl 2022, Cilt: 37 Sayı: 1, 67 - 82, 14.02.2022
https://doi.org/10.7161/omuanajas.911674

Öz

This study aimed to determine which nutritional traits are a key to indicate the nutritive value of some sorghum cultivars by chemometric techniques such as principal component (PCA) and cluster (CA) analyses. Based on their genotype, seven sorghum (Sorghum bicolor L. Moench) cultivars (sorghum [Rox and Early Sumac], sudangrass [Gözde] and sorghum × sudangrass hybrid [Jumbo, Grazer, Hayday and El Rey]) were denoted. Nutritional traits used were comprised of neutral detergent fibre (NDF), acid detergent fibre (ADF), crude protein (CP), Ca, P, K and Mg that determined by near-infrared spectroscopy analysis and digestible dry matter (DDM), dry matter intake (DMI), metabolizable energy (ME) and relative feed value (RFV) calculated by empirical equations. The NDF and ADF contents of cultivars showed a negative relationship with ME and RFV, while the CP content was positively and negatively correlated with these variables, respectively. The PCA generated two significant principal components (PCs). PC1 (59.51%) and PC2 (20.31%) described 79.83% of the total variation with eigenvalues of 6.55 and 2.23 in the sorghum cultivars, respectively. The PC1 were more representatives of the cultivars (Grazer, Hayday, Early Sumac and Gözde) and the calculated traits (DDM, DMI, ME and RFV). PC2 were characterized by Ca and Mg, while ADF, NDF and K with negative loadings in each PCs were the most representatives of most cultivars. CA grouped cultivars and traits into two clusters. The P, DDM, DMI, ME and RFV were the most important among components, defining important traits of cultivars to improve feeding of ruminants.

Destekleyen Kurum

Faculty of Agriculture, Ondokuz Mayis University University

Teşekkür

The authors thank Dr H.S. Abacı for her invaluable contribution to clustering analysis.

Kaynakça

  • Abdel-Fatah, B.E., Ali, E.A., El-Din, A.A.T., Hessein, E.M., 2013. Genetic diversity among Egyptian sorghum (Sorghum bicolor L. Moench) landraces in agro-morphological traits and molecular markers. Asian Journal of Crop Science, 5: 106-124. doi: 10.3923/ajcs.2013.106.124.
  • Aydin, I., Algan, D., Pak, B., Ocak, N., 2019. Similarity analysis with respect to some quality indicators and quality categories based on relative forage quality ranges of desirable rangeland forages. Fresenius Environmental Bulletin, 28: 5926-5936.
  • Badigannavar, A., Girish, G., Ramachandran, V., Ganapathi, T.R., 2016. Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. Crop Journal, 4(1): 61-67. doi: 10.1016/j.cj.2015.07.002.
  • Bean, B.W., Baumhardt, R.L., McCollum, F.T., McCuistiona, K.C., 2013. Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crops Research, 142: 20-26. doi: 10.1016/j.fcr.2012. 11.014.
  • Blümmel, M., Reddy, B.V.S., 2006. Stover fodder quality traits for dual-purpose sorghum genetic improvement. Journal of SAT Agricultural Research, 2:74-77.
  • Bölük, H., 2016. The climate of Turkey according to Thornthwaite climate classification (in Turkish). https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari/Thornthwaite.pdf (Access: 02.04.2021).
  • Bro, R., Papalexakis, E.E., Acar, E., Sidiropoulos, N.D., 2012. Coclustering-a useful tool for chemometrics. Journal of Chemometrics, 26(6): 256-263. doi: 10.1002/cem.1424.
  • Burow, G., Franks, C.D., Xin, Z., Burke. J.J., 2012. Genetic diversity in a collection of Chinese sorghum landraces assessed by microsatellites. American Journal of Plant Sciences, 3(12): 1722. doi:10.4236/ajps. 2012.312210.
  • Chikuta, S., Odong, T., Kabi, F., Rubaihayo, P., 2015. Phenotypic diversity of selected dual purpose forage and grain sorghum genotypes. Journal of Experimental Agriculture International, 9(6): 1-9. doi: 10.9734/AJEA/ 2015/20577.
  • Drab, K., Daszykowski, M., 2014. Clustering in analytical chemistry. Journal of AOAC International, 97(1): 29-38. doi: 10.5740/jaoacint.SGEDrab.
  • Pinho, R.M.A., Santos, E.M., Oliveira, J.S.D., Bezerra, H.F.C., Freitas, P.M.D.D., Perazzo, A.F., Ramos R.C.D.S., Silva, A.P.G.D., 2015. Sorghum cultivars of different purposes silage. Ciência Rural, 45(2): 298-303. doi: 10.1590/0103-8478cr20131532.
  • Farré, I., Faci, J.M., 2006. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural Water Management, 83(1): 135-143. doi: 10.1016/j.agwat.2005.11.001.
  • Hamidou, M., Souleymane, O., Ba, M., Danquah, E., Kapran, I., Gracen, V., Ofori, K., 2018. Principal component analysis of early generation sorghum lines for yield-contributing traits and resistance to midge. Journal of Crop Improvement, 32(6): 757-765. doi: 10.1080/15427528.2018.1498423.
  • Jahansouz, M.R., Keshavarz, A.R., Heidari, H., Hashemi, M., 2014. Evaluation of yield and quality of sorghum and millet as alternative forage crops to corn under normal and deficit irrigation regimes. Jordan Journal of Agricultural Sciences, 10(4): 699-715. doi: 10.5897/AJAR2018.13316.
  • Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: a review and recent developments. Phil. Trans. R. Soc. A 374:20150202. doi:10.1098/rsta.2015.0202.
  • Jolliffe I.T., 2002. Principal component analysis, 2nd edn. 487 p., New York, NY: Springer-Verlag.
  • Kim, H.K., Luquet, D., van Oosterom, E., Dingkuhn, M., Hammer, G., 2010a. Regulation of tillering in sorghum, genotypic effects. Annual Botanical, 106(1): 69-78. doi.org/10.1093/aob/mcq080.
  • Kim, H.K., van Oosterom, E., Dingkuhn, M., Luquet, D., Hammer, G., 2010b. Regulation of tillering in sorghum, environmental effects. Annual Botanical, 106(1): 57-67. doi:org/10.1093/aob/mcq079.
  • Martiwi, I.N.A., Nugroho, L.H., Daryono, B.S., Susandarini, R. 2020. Morphological variability and taxonomic relationship of Sorghum bicolor (L.) Moench accessions based on qualitative characters. Annual Research & Review in Biology, 35(6): 40-52. doi: 10.9734/ARRB/2020/v35i630234.
  • Masters, D.G., 2018. Practical implications of mineral and vitamin imbalance in grazing sheep. Animal Production Science, 58(8): 1438-1450. doi: 10.1071/AN17761.
  • Mofokeng, A.M., Shimelis, H.A., Laing, M.D., 2017. Agromorphological diversity of South African sorghum genotypes assessed through quantitative and qualitative phenotypic traits. South African Journal of Plant and Soil, 34(5): 361-370. doi: 10.1080/02571862.2017.1319504.
  • Moraes, É.A., da Silva Marineli, R., Lenquiste, S.A., Steel, C.J., de Menezes, C.B., Queiroz, V.A.V., Júnior, M.R.M., 2015. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food chemistry, 180, 116-123. doi: 10.1016/j.foodchem.2015.02. 023.
  • Moore, J.E., Undersander, D.J., 2002. Relative forage quality: An alternative to relative feed value and quality index. Proc 13th Annual Florida Ruminant Nutrition Symposium, 16–32, January 10-11, University of Florida, USA.
  • Muir, J., Lambert, B., Newman, Y., 2007. Defining Forage Quality. http://hdl.handle.net/1969.1/87461. (Accessed: 20.03.2021)
  • Mulima, E., Sibiya, J., Cousin Musvosvi, C., Egas Nhamucho, E., 2018. Identification of important morphological traits in Mozambican sorghum [Sorghum bicolor (L.) Moench] germplasm using multivariate analysis. African Journal of Agricultural Research, 13(34): 1796-1810. doi: 10.5897/AJAR2018.13316.
  • Ouda, J.O., Njehia, G.K., Moss, A.R., Omed, H.M., Nsahlai, I.V., 2005. The nutritive value of forage sorghum genotypes developed for the dry tropical highlands of Kenya as feed source for ruminants. South African Journal of Animal Science, 35(1): 55-60.
  • Ritter, K.B., McIntyre, C.L., Godwin, I.D., Jordan, D.R., Chapman, S.C., 2007. An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica, 157(1): 161-176. doi: 10.1007/s10681-007-9408-4.
  • Santos, R.D.O., Gorgulho, B.M., Castro, M.A.D., Fisberg, R.M., Marchioni, D.M., Baltar, V.T., 2019. Principal component analysis and factor analysis: Differences and similarities in nutritional epidemiology application. Revista Brasileira de Epidemiologia, 22, e190041. doi: 10.1590/1980-549720190041.
  • Saraçli, S., Doğan, N., Doğan, İ., 2013. Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications, 2013(1): 1-8.
  • Senbayram, M., Gransee, A., Wahle, V., Thiel, H., 2016. Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop and Pasture Science, 66(12): 1219-1229. doi: 10.1071/CP15104.
  • Shin, E.C., Hwang, C.E., Lee, B.W., Kim, H.T., Ko, J.M., Baek, I.Y., Lee, Y., Choi, J., Cho, J.S., Cho, E.J., Seo, W.T., Cho, K.M., 2012. Chemometric approach to fatty acid profiles in soybean cultivars by principal component analysis (PCA). Preventive Nutrition and Food Science, 17(3): 184-191. doi: 0.3746/pnf.2012. 17.3.184
  • Singh, S., Shukla, G.P., Joshi, D.C., 2014. Evaluation of dual-purpose sorghum hybrids for nutritional quality, energetic efficiency and methane emission. Animal Nutrition and Feed Technology, 14(3): 535-548. doi : 10.5958/0974-181X.2014.01356.0
  • Singh, S., Bhat, B.V., Shukla, G.P., Gaharana, D., Anele, U.Y., 2017. Nutritional evaluation of different varieties of sorghum stovers in sheep. Animal Feed Science and Technology, 227: 42-51. doi: 10.1016/j.anifeedsci. 2017.03.011.
  • Upadhyaya, H.D., Sharma, S., Ramulu, B., Bhattacharjee, R., Gowda, C.L.L., Reddy, V.G., Singh, S., 2010. Variation for qualitative and quantitative traits and identification of trait-specific sources in new sorghum germplasm. Crop Pasture Science, 61: 609–618.
  • Uzun, F., Garipoğlu, A.V., Ocak, N., 2017. Water use efficiency, yield, and nutritional quality of maize and sorghum cultivars as influenced by irrigation in a shallow soil. Anadolu Journal of Agricultural Sciences, 32: 358-366. doi: 10.7161/omuanajas.293642.

Bazı sorgum (Sorghum bicolor L. Moench) çeşitlerinin besin değerlerine kemometrik yaklaşım

Yıl 2022, Cilt: 37 Sayı: 1, 67 - 82, 14.02.2022
https://doi.org/10.7161/omuanajas.911674

Öz

Bu çalışma, temel bileşen (TBA) ve kümeleme (KA) analizleri gibi kemometrik tekniklerle, bazı sorgum çeşitlerinin besleyici değerini göstermede hangi besinsel özelliklerinin anahtar araç olduğunu belirlemeyi amaçlamıştır. Genotip bazında yedi sorgum (Sorghum bicolor L. Moench) (sorgum [Rox ve Early Sumac], sudanotu (Gözde) ve sorgum × sudanotu hibriti [Jumbo, Grazer, Hayday ve El Rey)] çeşidi incelenmiştir. Numune setinde, yakın kızılötesi spektroskopi (NIR) ile belirlenen nötr deterjanda çözünmeyen lif (NDF), asit deterjanda çözünmeyen lif (ADF), ham protein (HP), Ca, P, K ve Mg ve ampirik denklemlerle hesaplanan sindirilebilir kuru madde (SKM), kuru madde tüketimi (KMT), metabolize edilebilir enerji (ME) ve nispi yem değerine (NYD) ait veriler incelenmiştir. Çeşitlerin NDF ve ADF içerikleri ME ve NYD ile negatif ilişki gösterirken, HP içeriği bu değişkenlerle sırasıyla pozitif ve negatif ilgileşim göstermiştir. Veri kümesinin TBA, iki önemli temel bileşen (TB) üretmiştir. TB1 (%59.51) ve TB2 (%20.31), sorgum çeşitlerinde sırasıyla 6.55 ve 2.23 öz değerleri ile toplam varyasyonun %79.83'ünü tanımlamıştır. TB1, çeşitlerin (Grazer, Hayday, Early Sumac ve Gözde) HP ve P haricinde, hesaplanan özelliklerini (SKM, KMT, ME ve NYD) daha çok temsil etmiştir. TB2 ise Ca ve Mg ile karakterize edilirken, TB1 ve/veya TB2'de negatif yüklemelere sahip ADF, NDF ve K, çoğu çeşitleri daha fazla temsil etmiştir. KA, çeşitleri ve besinsel özellikleri iki gruba ayırmıştır. Geviş getiren hayvanların beslenmesini iyileştirmek için çeşitlerin önemli özellikleri olarak tanımlanan P, SKM, KMT, ME ve NYD, bileşenler arasında en önemlilerini olmuştur.

Kaynakça

  • Abdel-Fatah, B.E., Ali, E.A., El-Din, A.A.T., Hessein, E.M., 2013. Genetic diversity among Egyptian sorghum (Sorghum bicolor L. Moench) landraces in agro-morphological traits and molecular markers. Asian Journal of Crop Science, 5: 106-124. doi: 10.3923/ajcs.2013.106.124.
  • Aydin, I., Algan, D., Pak, B., Ocak, N., 2019. Similarity analysis with respect to some quality indicators and quality categories based on relative forage quality ranges of desirable rangeland forages. Fresenius Environmental Bulletin, 28: 5926-5936.
  • Badigannavar, A., Girish, G., Ramachandran, V., Ganapathi, T.R., 2016. Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. Crop Journal, 4(1): 61-67. doi: 10.1016/j.cj.2015.07.002.
  • Bean, B.W., Baumhardt, R.L., McCollum, F.T., McCuistiona, K.C., 2013. Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crops Research, 142: 20-26. doi: 10.1016/j.fcr.2012. 11.014.
  • Blümmel, M., Reddy, B.V.S., 2006. Stover fodder quality traits for dual-purpose sorghum genetic improvement. Journal of SAT Agricultural Research, 2:74-77.
  • Bölük, H., 2016. The climate of Turkey according to Thornthwaite climate classification (in Turkish). https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari/Thornthwaite.pdf (Access: 02.04.2021).
  • Bro, R., Papalexakis, E.E., Acar, E., Sidiropoulos, N.D., 2012. Coclustering-a useful tool for chemometrics. Journal of Chemometrics, 26(6): 256-263. doi: 10.1002/cem.1424.
  • Burow, G., Franks, C.D., Xin, Z., Burke. J.J., 2012. Genetic diversity in a collection of Chinese sorghum landraces assessed by microsatellites. American Journal of Plant Sciences, 3(12): 1722. doi:10.4236/ajps. 2012.312210.
  • Chikuta, S., Odong, T., Kabi, F., Rubaihayo, P., 2015. Phenotypic diversity of selected dual purpose forage and grain sorghum genotypes. Journal of Experimental Agriculture International, 9(6): 1-9. doi: 10.9734/AJEA/ 2015/20577.
  • Drab, K., Daszykowski, M., 2014. Clustering in analytical chemistry. Journal of AOAC International, 97(1): 29-38. doi: 10.5740/jaoacint.SGEDrab.
  • Pinho, R.M.A., Santos, E.M., Oliveira, J.S.D., Bezerra, H.F.C., Freitas, P.M.D.D., Perazzo, A.F., Ramos R.C.D.S., Silva, A.P.G.D., 2015. Sorghum cultivars of different purposes silage. Ciência Rural, 45(2): 298-303. doi: 10.1590/0103-8478cr20131532.
  • Farré, I., Faci, J.M., 2006. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural Water Management, 83(1): 135-143. doi: 10.1016/j.agwat.2005.11.001.
  • Hamidou, M., Souleymane, O., Ba, M., Danquah, E., Kapran, I., Gracen, V., Ofori, K., 2018. Principal component analysis of early generation sorghum lines for yield-contributing traits and resistance to midge. Journal of Crop Improvement, 32(6): 757-765. doi: 10.1080/15427528.2018.1498423.
  • Jahansouz, M.R., Keshavarz, A.R., Heidari, H., Hashemi, M., 2014. Evaluation of yield and quality of sorghum and millet as alternative forage crops to corn under normal and deficit irrigation regimes. Jordan Journal of Agricultural Sciences, 10(4): 699-715. doi: 10.5897/AJAR2018.13316.
  • Jolliffe, I.T., Cadima, J., 2016. Principal component analysis: a review and recent developments. Phil. Trans. R. Soc. A 374:20150202. doi:10.1098/rsta.2015.0202.
  • Jolliffe I.T., 2002. Principal component analysis, 2nd edn. 487 p., New York, NY: Springer-Verlag.
  • Kim, H.K., Luquet, D., van Oosterom, E., Dingkuhn, M., Hammer, G., 2010a. Regulation of tillering in sorghum, genotypic effects. Annual Botanical, 106(1): 69-78. doi.org/10.1093/aob/mcq080.
  • Kim, H.K., van Oosterom, E., Dingkuhn, M., Luquet, D., Hammer, G., 2010b. Regulation of tillering in sorghum, environmental effects. Annual Botanical, 106(1): 57-67. doi:org/10.1093/aob/mcq079.
  • Martiwi, I.N.A., Nugroho, L.H., Daryono, B.S., Susandarini, R. 2020. Morphological variability and taxonomic relationship of Sorghum bicolor (L.) Moench accessions based on qualitative characters. Annual Research & Review in Biology, 35(6): 40-52. doi: 10.9734/ARRB/2020/v35i630234.
  • Masters, D.G., 2018. Practical implications of mineral and vitamin imbalance in grazing sheep. Animal Production Science, 58(8): 1438-1450. doi: 10.1071/AN17761.
  • Mofokeng, A.M., Shimelis, H.A., Laing, M.D., 2017. Agromorphological diversity of South African sorghum genotypes assessed through quantitative and qualitative phenotypic traits. South African Journal of Plant and Soil, 34(5): 361-370. doi: 10.1080/02571862.2017.1319504.
  • Moraes, É.A., da Silva Marineli, R., Lenquiste, S.A., Steel, C.J., de Menezes, C.B., Queiroz, V.A.V., Júnior, M.R.M., 2015. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food chemistry, 180, 116-123. doi: 10.1016/j.foodchem.2015.02. 023.
  • Moore, J.E., Undersander, D.J., 2002. Relative forage quality: An alternative to relative feed value and quality index. Proc 13th Annual Florida Ruminant Nutrition Symposium, 16–32, January 10-11, University of Florida, USA.
  • Muir, J., Lambert, B., Newman, Y., 2007. Defining Forage Quality. http://hdl.handle.net/1969.1/87461. (Accessed: 20.03.2021)
  • Mulima, E., Sibiya, J., Cousin Musvosvi, C., Egas Nhamucho, E., 2018. Identification of important morphological traits in Mozambican sorghum [Sorghum bicolor (L.) Moench] germplasm using multivariate analysis. African Journal of Agricultural Research, 13(34): 1796-1810. doi: 10.5897/AJAR2018.13316.
  • Ouda, J.O., Njehia, G.K., Moss, A.R., Omed, H.M., Nsahlai, I.V., 2005. The nutritive value of forage sorghum genotypes developed for the dry tropical highlands of Kenya as feed source for ruminants. South African Journal of Animal Science, 35(1): 55-60.
  • Ritter, K.B., McIntyre, C.L., Godwin, I.D., Jordan, D.R., Chapman, S.C., 2007. An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica, 157(1): 161-176. doi: 10.1007/s10681-007-9408-4.
  • Santos, R.D.O., Gorgulho, B.M., Castro, M.A.D., Fisberg, R.M., Marchioni, D.M., Baltar, V.T., 2019. Principal component analysis and factor analysis: Differences and similarities in nutritional epidemiology application. Revista Brasileira de Epidemiologia, 22, e190041. doi: 10.1590/1980-549720190041.
  • Saraçli, S., Doğan, N., Doğan, İ., 2013. Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications, 2013(1): 1-8.
  • Senbayram, M., Gransee, A., Wahle, V., Thiel, H., 2016. Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop and Pasture Science, 66(12): 1219-1229. doi: 10.1071/CP15104.
  • Shin, E.C., Hwang, C.E., Lee, B.W., Kim, H.T., Ko, J.M., Baek, I.Y., Lee, Y., Choi, J., Cho, J.S., Cho, E.J., Seo, W.T., Cho, K.M., 2012. Chemometric approach to fatty acid profiles in soybean cultivars by principal component analysis (PCA). Preventive Nutrition and Food Science, 17(3): 184-191. doi: 0.3746/pnf.2012. 17.3.184
  • Singh, S., Shukla, G.P., Joshi, D.C., 2014. Evaluation of dual-purpose sorghum hybrids for nutritional quality, energetic efficiency and methane emission. Animal Nutrition and Feed Technology, 14(3): 535-548. doi : 10.5958/0974-181X.2014.01356.0
  • Singh, S., Bhat, B.V., Shukla, G.P., Gaharana, D., Anele, U.Y., 2017. Nutritional evaluation of different varieties of sorghum stovers in sheep. Animal Feed Science and Technology, 227: 42-51. doi: 10.1016/j.anifeedsci. 2017.03.011.
  • Upadhyaya, H.D., Sharma, S., Ramulu, B., Bhattacharjee, R., Gowda, C.L.L., Reddy, V.G., Singh, S., 2010. Variation for qualitative and quantitative traits and identification of trait-specific sources in new sorghum germplasm. Crop Pasture Science, 61: 609–618.
  • Uzun, F., Garipoğlu, A.V., Ocak, N., 2017. Water use efficiency, yield, and nutritional quality of maize and sorghum cultivars as influenced by irrigation in a shallow soil. Anadolu Journal of Agricultural Sciences, 32: 358-366. doi: 10.7161/omuanajas.293642.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Ferat Uzun 0000-0001-7389-5835

Nuh Ocak 0000-0001-7393-1373

Yayımlanma Tarihi 14 Şubat 2022
Kabul Tarihi 13 Ekim 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 1

Kaynak Göster

APA Uzun, F., & Ocak, N. (2022). Chemometric approach to the nutritive value of some sorghum (Sorghum bicolor L. Moench) cultivars. Anadolu Tarım Bilimleri Dergisi, 37(1), 67-82. https://doi.org/10.7161/omuanajas.911674
AMA Uzun F, Ocak N. Chemometric approach to the nutritive value of some sorghum (Sorghum bicolor L. Moench) cultivars. ANAJAS. Şubat 2022;37(1):67-82. doi:10.7161/omuanajas.911674
Chicago Uzun, Ferat, ve Nuh Ocak. “Chemometric Approach to the Nutritive Value of Some Sorghum (Sorghum Bicolor L. Moench) Cultivars”. Anadolu Tarım Bilimleri Dergisi 37, sy. 1 (Şubat 2022): 67-82. https://doi.org/10.7161/omuanajas.911674.
EndNote Uzun F, Ocak N (01 Şubat 2022) Chemometric approach to the nutritive value of some sorghum (Sorghum bicolor L. Moench) cultivars. Anadolu Tarım Bilimleri Dergisi 37 1 67–82.
IEEE F. Uzun ve N. Ocak, “Chemometric approach to the nutritive value of some sorghum (Sorghum bicolor L. Moench) cultivars”, ANAJAS, c. 37, sy. 1, ss. 67–82, 2022, doi: 10.7161/omuanajas.911674.
ISNAD Uzun, Ferat - Ocak, Nuh. “Chemometric Approach to the Nutritive Value of Some Sorghum (Sorghum Bicolor L. Moench) Cultivars”. Anadolu Tarım Bilimleri Dergisi 37/1 (Şubat 2022), 67-82. https://doi.org/10.7161/omuanajas.911674.
JAMA Uzun F, Ocak N. Chemometric approach to the nutritive value of some sorghum (Sorghum bicolor L. Moench) cultivars. ANAJAS. 2022;37:67–82.
MLA Uzun, Ferat ve Nuh Ocak. “Chemometric Approach to the Nutritive Value of Some Sorghum (Sorghum Bicolor L. Moench) Cultivars”. Anadolu Tarım Bilimleri Dergisi, c. 37, sy. 1, 2022, ss. 67-82, doi:10.7161/omuanajas.911674.
Vancouver Uzun F, Ocak N. Chemometric approach to the nutritive value of some sorghum (Sorghum bicolor L. Moench) cultivars. ANAJAS. 2022;37(1):67-82.
Online ISSN: 1308-8769