Araştırma Makalesi
BibTex RIS Kaynak Göster

Sudan’da Stokastik Yaklaşımlar Kullanılarak İklimsel Değişkenlerin Modellenmesi

Yıl 2023, Cilt: 38 Sayı: 1, 53 - 68, 28.02.2023
https://doi.org/10.7161/omuanajas.1145094

Öz

İklimsel değişkenleri, tarımsal süreç ve sulama yönetiminde önemli bir rol oynamaktadır çünkü iklimle ilgili tarımsal verimden kesinlikle tüm etkilenecek değişiklikleri bilmemiz gerekmektedir. Bu amaçla, bu çalışmada Sudan'daki beş ana meteoroloji istasyonu (Wad Madani, Hartum, Al Gadaref, Al Damazin ve Dongola) ile ilgili günlük ortalama sıcaklık, bağıl nem ve güneş radyasyonu değişkenlerinin modellenmesi için ARIMA modelleri önerilmiştir. 2013-2020 yılları arasındaki günlük iklim verileri kullanılmıştır. Box Jenkins modelleri olarak adlandırılan ARIMA (Otoregresif Entegre Hareketli Ortalama Modelleri) kullanılarak iklimsel değişkenlerin tahmin ve modellemesini için zaman serisi analiz yöntemlerini kullanılmıştır. Modelleme amacıyla, günlük değişkenlerin gelecekteki değerlerini tahmin etmek için doğrusal stokastik modeller kullanılmıştır. Durağanlığı 1%, 5% ve 10% güven düzeylerinde kontrol etmek için zaman serilerine artırılmış Dickey-Fuller testi (ADF) uygulanmıştır. Değişkenlerin zaman serileri durağanlı ve eğilimsiz olduğunu tespit edilmiştir. Modelleri kontrol etmek ve otokorelasyon (ACF) ve kısmi otokorelasyon (PACF) fonksiyon grafiklerinden en iyi modelleri seçmek için diyagnostik kontrolleri kullanılmıştır. En iyi modelleri, düzeltilmiş R2, Standart hata (S.E), Akaike bilgi kriteri (AIC) ve Bayesian bilgi kriteri (BIC) değerlerine göre seçilmiştir. En iyi sonuçları, gelecekteki değerleri tahmin etmek için etkili olabilecek ARIMA (1,0,1) ve (1,0,2) modellerinde gözlenmiştir. ARIMA modelleri sıcaklık, bağıl nem ve güneş radyasyonu değişkenleri için tatmin edici sonuçları elde etmiştir. Bu nedenle, bu çalışma ziraat mühendislerinin tarımsal uygulamalarla ilgili tüm süreçleri gerçekleştirmeleri için çok yardımcı olabilmektedir.

Destekleyen Kurum

Ondokuz Mayıs Ünversitesi OMÜ/ Ziraat Fakültesi

Proje Numarası

1

Teşekkür

Bu çalışmada, Prof. Dr Bilal Cemek hocaya ve bana tüm destek verenlere teşekkür ederim

Kaynakça

  • Ashrafzadeh, A., Kişi, O., Aghelpour, P., Biazar, S. M., & Masouleh, M. A. (2020). Comparative study of time series models, support vector machines, and GMDH in forecasting long-term evapotranspiration rates in northern Iran. Journal of Irrigation and Drainage Engineering, 146(6), 04020010. Asteriou, D., & Hall, S. G. (2007). Applied Econometrics: a modern approach, revised edition. Hampshire: Palgrave Macmillan, 46(2), 117-155.
  • Bazrafshan, O., Salajegheh, A., Bazrafshan, J., Mahdavi, M., & Fatehi Maraj, A. (2015). Hydrological drought forecasting using ARIMA models (case study: Karkheh Basin). Ecopersia, 3(3), 1099-1117.
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2008). Time series analysis: forecasting and control John Wiley & Sons. Hoboken, NJ.
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control: John Wiley & Sons.
  • Box, T. M., White, M. A., & Barr, S. H. (1994). A contingency model of new manufacturing firm performance. Entrepreneurship theory and practice, 18(2), 31-45.
  • Chen, C.-F., Chang, Y.-H., & Chang, Y.-W. (2009). Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica, 5(2), 125-140.
  • Dickey, D. A. (2015). Stationarity issues in time series models. SAS Users Group International, 30.
  • Han, P., Wang, P., Tian, M., Zhang, S., Liu, J., & Zhu, D. (2012). Application of the ARIMA models in drought forecasting using the standardized precipitation index. Paper presented at the International Conference on Computer and Computing Technologies in Agriculture.
  • Han, P., Wang, P. X., & Zhang, S. Y. (2010). Drought forecasting based on the remote sensing data using ARIMA models. Mathematical and computer modelling, 51(11-12), 1398-1403.
  • Ibrahim, M. H., & Amin, R. M. (2005). EXCHANGE RATE, MONETARY POLICY AND MANUFACTURING OUTPUT IN MALAYSIA. Journal of Economic Cooperation among Islamic Countries, 26(3).
  • Khashei, M., & Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with applications, 37(1), 479-489.
  • Kim, B. S., Hossein, S. Z., & Choi, G. (2011). Evaluation of temporal-spatial precipitation variability and prediction using seasonal ARIMA model in Mongolia. KSCE Journal of Civil Engineering, 15(5), 917-925.
  • Lee, M. H. (2011). Forecasting of tourist arrivals using subset, multiplicative or additive seasonal Arima Model. MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 27, 169-182.
  • Luo, Y., Chang, X., Peng, S., Khan, S., Wang, W., Zheng, Q., & Cai, X. (2014). Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts. Agricultural Water Management, 136, 42-51.
  • MacKinnon, J. G. (2010). Critical values for cointegration tests. Retrieved from
  • Mishra, A., & Desai, V. (2005). Drought forecasting using stochastic models. Stochastic environmental research and risk assessment, 19(5), 326-339.
  • Mohan, S., & Arumugam, N. (1995). Forecasting weekly reference crop evapotranspiration series. Hydrological sciences journal, 40(6), 689-702.
  • Mossad, A., & Alazba, A. (2016). Simulation of temporal variation for reference evapotranspiration under arid climate. Arabian Journal of Geosciences, 9(5), 386.
  • Ozaki, T., & Oda, H. (1977). Non-linear time series model identification by Akaike's information criterion. IFAC Proceedings Volumes, 10(12), 83-91.
  • Palmroth, S., Katul, G. G., Hui, D., McCarthy, H. R., Jackson, R. B., & Oren, R. (2010). Estimation of long‐term basin scale evapotranspiration from streamflow time series. Water Resources Research, 46(10).
  • Profillidis, V. A., & Botzoris, G. N. (2018). Modeling of transport demand: Analyzing, calculating, and forecasting transport demand: Elsevier.
  • Saravanan, V. (2015). The Determinant of Consumer Price Index in Malaysia. Journal of Economics, Business and Management, 3(12).
  • Webster, R., & McBratney, A. (1989). On the Akaike information criterion for choosing models for variograms of soil properties. Journal of Soil Science, 40(3), 493-496.
  • Yürekli, K., Simsek, H., Cemek, B., & Karaman, S. (2007). Simulating climatic variables by using stochastic approach. Building and environment, 42(10), 3493-3499.
  • Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.

Modeling of Climatic Variables Using Stochastic Approaches in Sudan

Yıl 2023, Cilt: 38 Sayı: 1, 53 - 68, 28.02.2023
https://doi.org/10.7161/omuanajas.1145094

Öz

The climatic variables play a significant role in agricultural process and irrigation management because we need to know all changes related to the climate, which will absolutely affect agricultural yield.. For this purpose, the ARIMA models were suggested in this study for modeling daily average temperature, solar radiation, and relative humidity factors related to five main meteorological stations (Wad Madani, Khartoum, Al Gadaref, Al Damazin, and Dongola) in Sudan. The daily variables were obtained from the period 2013 to 2020. Time series analysis methods are used for estimating and modeling the climatic variables using Autoregressive Integrated Moving Average methods, which are called Box Jenkins models. For modeling purposes, linear stochastic models were used to estimate the future values of daily variables. The Augmented Dickey-Fuller test (ADF) was used to check the stationarity of the data at 1%, 5%, and 10% confidence levels. The time series of variables showed stationarity and no trend. The best models were selected from the autocorrelation (ACF) and partial autocorrelation (PACF) function graphs employing diagnostic testing. The adjusted R2, Standard error (S.E), Akaike information criterion (AIC), and Bayesian information criterion (BIC) values were used to assess which models were the best. The appropriate findings were observed in ARIMA (1,0,1) and (1,0,2) which can be effective for predicting future values. The ARIMA models obtained satisfactory results for temperature, relative humidity, and solar radiation variables. So, this study might be extremely helpful for agricultural engineers to achieve all the processes related to agricultural practices.

Proje Numarası

1

Kaynakça

  • Ashrafzadeh, A., Kişi, O., Aghelpour, P., Biazar, S. M., & Masouleh, M. A. (2020). Comparative study of time series models, support vector machines, and GMDH in forecasting long-term evapotranspiration rates in northern Iran. Journal of Irrigation and Drainage Engineering, 146(6), 04020010. Asteriou, D., & Hall, S. G. (2007). Applied Econometrics: a modern approach, revised edition. Hampshire: Palgrave Macmillan, 46(2), 117-155.
  • Bazrafshan, O., Salajegheh, A., Bazrafshan, J., Mahdavi, M., & Fatehi Maraj, A. (2015). Hydrological drought forecasting using ARIMA models (case study: Karkheh Basin). Ecopersia, 3(3), 1099-1117.
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2008). Time series analysis: forecasting and control John Wiley & Sons. Hoboken, NJ.
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control: John Wiley & Sons.
  • Box, T. M., White, M. A., & Barr, S. H. (1994). A contingency model of new manufacturing firm performance. Entrepreneurship theory and practice, 18(2), 31-45.
  • Chen, C.-F., Chang, Y.-H., & Chang, Y.-W. (2009). Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica, 5(2), 125-140.
  • Dickey, D. A. (2015). Stationarity issues in time series models. SAS Users Group International, 30.
  • Han, P., Wang, P., Tian, M., Zhang, S., Liu, J., & Zhu, D. (2012). Application of the ARIMA models in drought forecasting using the standardized precipitation index. Paper presented at the International Conference on Computer and Computing Technologies in Agriculture.
  • Han, P., Wang, P. X., & Zhang, S. Y. (2010). Drought forecasting based on the remote sensing data using ARIMA models. Mathematical and computer modelling, 51(11-12), 1398-1403.
  • Ibrahim, M. H., & Amin, R. M. (2005). EXCHANGE RATE, MONETARY POLICY AND MANUFACTURING OUTPUT IN MALAYSIA. Journal of Economic Cooperation among Islamic Countries, 26(3).
  • Khashei, M., & Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with applications, 37(1), 479-489.
  • Kim, B. S., Hossein, S. Z., & Choi, G. (2011). Evaluation of temporal-spatial precipitation variability and prediction using seasonal ARIMA model in Mongolia. KSCE Journal of Civil Engineering, 15(5), 917-925.
  • Lee, M. H. (2011). Forecasting of tourist arrivals using subset, multiplicative or additive seasonal Arima Model. MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 27, 169-182.
  • Luo, Y., Chang, X., Peng, S., Khan, S., Wang, W., Zheng, Q., & Cai, X. (2014). Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts. Agricultural Water Management, 136, 42-51.
  • MacKinnon, J. G. (2010). Critical values for cointegration tests. Retrieved from
  • Mishra, A., & Desai, V. (2005). Drought forecasting using stochastic models. Stochastic environmental research and risk assessment, 19(5), 326-339.
  • Mohan, S., & Arumugam, N. (1995). Forecasting weekly reference crop evapotranspiration series. Hydrological sciences journal, 40(6), 689-702.
  • Mossad, A., & Alazba, A. (2016). Simulation of temporal variation for reference evapotranspiration under arid climate. Arabian Journal of Geosciences, 9(5), 386.
  • Ozaki, T., & Oda, H. (1977). Non-linear time series model identification by Akaike's information criterion. IFAC Proceedings Volumes, 10(12), 83-91.
  • Palmroth, S., Katul, G. G., Hui, D., McCarthy, H. R., Jackson, R. B., & Oren, R. (2010). Estimation of long‐term basin scale evapotranspiration from streamflow time series. Water Resources Research, 46(10).
  • Profillidis, V. A., & Botzoris, G. N. (2018). Modeling of transport demand: Analyzing, calculating, and forecasting transport demand: Elsevier.
  • Saravanan, V. (2015). The Determinant of Consumer Price Index in Malaysia. Journal of Economics, Business and Management, 3(12).
  • Webster, R., & McBratney, A. (1989). On the Akaike information criterion for choosing models for variograms of soil properties. Journal of Soil Science, 40(3), 493-496.
  • Yürekli, K., Simsek, H., Cemek, B., & Karaman, S. (2007). Simulating climatic variables by using stochastic approach. Building and environment, 42(10), 3493-3499.
  • Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Mawadda Abdallah 0000-0002-9135-3025

Bilal Cemek 0000-0002-0503-6497

Proje Numarası 1
Yayımlanma Tarihi 28 Şubat 2023
Kabul Tarihi 3 Kasım 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 1

Kaynak Göster

APA Abdallah, M., & Cemek, B. (2023). Modeling of Climatic Variables Using Stochastic Approaches in Sudan. Anadolu Tarım Bilimleri Dergisi, 38(1), 53-68. https://doi.org/10.7161/omuanajas.1145094
Online ISSN: 1308-8769