Araştırma Makalesi
BibTex RIS Kaynak Göster

Exploring Catalase Activity as A Biological Indicator in Degraded Soils

Yıl 2024, Cilt: 39 Sayı: 2, 401 - 417, 28.06.2024
https://doi.org/10.7161/omuanajas.1426932

Öz

This study examines the relationship between catalase activity in degraded soils and soil properties, and addresses its potential as an indicator of soil health and productivity. Catalase, a key enzyme reflecting microbial activity and soil aeration, has been analyzed in 30 soil samples collected from the disturbed surface layer (0-15 cm depth) of erosion-prone areas characterized by rubble accumulation on hill slopes and soil compaction in foot slopes. The soil in the study area is classified as Typic Xerortent. Catalase enzyme activity in the soil samples varied between 10.4 and 48 µl O2 g-1 dry soil. In addition to catalase, the physicochemical properties of the soil were also assessed, including pH, electrical conductivity, organic matter content, and texture. Nutrient contents, including nitrogen (0.046-0.239 g N 100 g-1), phosphorus (1.77-20.05 µg P g-1), and potassium (0.01-3.31 meq K 100 g-1), were also measured. A positive correlation was observed between catalase activity and potassium and phosphorus levels, but the relationship with nitrogen was statistically insignificant. These findings suggest that catalase activity can serve as a biological indicator for the early detection of degradation in soils at risk of erosion. The study provides valuable insights into the impact of erosion on soil biochemistry and highlights the role of catalase in assessing soil health and guiding sustainable land management practices.

Kaynakça

  • Achuba, F. I., Okoh, P. N., 2014. Effect of Petroleum Products on Soil Catalase and Dehydrogenase Activities. Open Journal of Soil Science, 4(12), 399-406. doi:10.4236/ojss.2014.412040
  • Adams, W., 1973. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. Journal of Soil Science, 24(1), 10-17.
  • Adetunji, A. T., Lewu, F. B., Mulidzi, A. R., Ncube, B., 2017. The Biological Activities of &Amp;#946;-Glucosidase, Phosphatase and Urease as Soil Quality Indicators: A Review. Journal of Soil Science and Plant Nutrition, 17(3), 794-807. doi:10.4067/s0718-95162017000300018
  • Andre, A., Debande, L., Marteyn, B., 2021. The Selective Advantage of Facultative Anaerobes Relies on Their Unique Ability to Cope With Changing Oxygen Levels During Infection. Cellular Microbiology, 23(8), e13338. doi:10.1111/cmi.13338
  • Baligh, P., Honarjoo, N., Jalalian, A., Totonchi, A., 2021. Soil Chemical and Microbial Properties Affected by Land Use Type in a Unique Ecosystem (Fars, Iran). Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-01915-x
  • Beck, T., 1971. Die messung der katalaseaktivitaet von Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 130(1), 68-81.
  • Chakravarti, R., Gupta, K., Majors, A. K., Ruple, L., Aronica, M. A., Stuehr, D. J., 2015. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1. Free Radical Biology and Medicine, 82, 105-113. doi:10.1016/j.freeradbiomed.2015.01.030
  • Chang, E. H., Chung, R. S., Tsai, Y. H., 2007. Effect of Different Application Rates of Organic Fertilizer on Soil Enzyme Activity and Microbial Population. Soil Science & Plant Nutrition, 53(2), 132-140. doi:10.1111/j.1747-0765.2007.00122.x
  • Dengiz, O., Demirağ-Turan, İ., 2023. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem. Journal of Arid Land, 15(7), 779-796. doi:10.1007/s40333-023-0020-9
  • Dungait, J. A., Ghee, C., Rowan, J. S., McKenzie, B. M., Hawes, C., Dixon, E. R., Paterson, E., Hopkins, D. W., 2013. Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry, 60, 195-201.
  • Ekberli, I., Kizilkaya, R., 2006. Catalase enzyme and its kinetic parameters in earthworm L. terrestris casts and surrounding soil. Asian Journal of Chemistry, 18(3), 2321.
  • Fokeng, R. M., Fogwe, Z. N., Yemelong, N. T., 2020. Modelling Alternatives for Highland Soil Structural Degradation and Erodibility, Bui Plateau, Cameroon. European Journal of Environment and Earth Sciences, 1(6). doi:10.24018/ejgeo.2020.1.6.84
  • Galiulin, R. V., Galiulina, R. A., 2015. Remediation of Polar Ecosystems Polluted by Gas Condensate and Oil Hydrocarbons by Biological Preparations. The Open Ecology Journal, 8(1), 40-43. doi:10.2174/1874213001508010040
  • Geng, Z., Xiao, L., Li, Z., Yao, K., Chen, Y., 2022. Impacts of Adding Municipal Sewage Sludge On Soil Enzyme Activity and Stoichiometry In a Chinese Loess Soil. Polish Journal of Environmental Studies, 31(4), 3031-3041. doi:10.15244/pjoes/146239
  • Google Earth Pro V 7.3.6.9345. 2024. KSU Campus, Kahramanmaraş, Türkiye. 37° 35' 22.00" N, 36° 44' 45.70" E. Eye alt.: 30 km. CNES / Airbus, Maxar Technologies. http://www.earth.google.com (Access Date 27.01.2024).
  • Guan, H., Fan, J., 2020. Effects of Vegetation Restoration on Soil Quality in Fragile Karst Ecosystems of Southwest China. Peerj, 8, e9456. doi:10.7717/peerj.9456
  • Gundogan, R., Yilmaz, K., Gurel, N., Bodur, M., Demirkiran, A., Koksal, D., Serbetci, H. 1997. Avşar Kampüsü Topraklarının Etüd ve Haritalaması. KSU Research Foundation Project.
  • Hou, S., Xin, M., Wang, L., Jiang, H., Li, N., Wang, Z., 2014. The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China. Acta Ecologica Sinica, 34(6), 295-301.
  • Hu, L., Li, S., Li, K., Huang, H., Wan, W., Huang, Q.-H., Li, Q., Li, Y., Deng, H., He, T., 2020. Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland. Sustainability, 12(24), 10586. doi:10.3390/su122410586
  • Huang, X., Lu, Q., Yang, F., 2020. The Effects of Farmers’ Adoption Behavior of Soil and Water Conservation Measures on Agricultural Output. International Journal of Climate Change Strategies and Management, 2(5), 599-615. doi:10.1108/ijccsm-02-2020-0014
  • Imlay, J. A., 2015. Diagnosing Oxidative Stress in Bacteria: Not as Easy as You Might Think. Current Opinion in Microbiology, 24, 124-131. doi:10.1016/j.mib.2015.01.004
  • Jayasekara, M. J. P. T. M., Kadupitiya, H. K., Vitharana, U. W. A., 2018. Mapping of Soil Erosion Hazard Zones of Sri Lanka. Tropical Agricultural Research, 29(2), 135. doi:10.4038/tar.v29i2.8284
  • John Ryan, G. E. A. R. 2001. Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Area. 2nd Edition, https://hdl.handle.net/20.500.11766/67563
  • Kacar, B. 1994. Bitki ve Topragin Kimyasal Analizleri 3: Toprak Analizleri. Ankara Universitesi Ziraat Fakultesi Egitim Arastirma ve Gelistirme Vakfi Yayinlari, No. 3, 705 s.
  • Kandziora-Ciupa, M., Nadgórska-Socha, A., Barczyk, G., 2021. The Influence of Heavy Metals on Biological Soil Quality Assessments in the Vaccinium Myrtillus L. Rhizosphere Under Different Field Conditions. Ecotoxicology, 30(2), 292-310. doi:10.1007/s10646-021-02345-1
  • Karaca, A., Cetin, S. C., Turgay, O. C., Kizilkaya, R. 2011. Soil Enzymes as Indication of Soil Quality. In G. Shukla & A. Varma (Eds.), Soil Enzymology. Springer Berlin Heidelberg. pp. 119-148. doi:10.1007/978-3-642-14225-3_7
  • Kaya, N. S., Pacci, S., Demirağ Turan, I., Odabas, M. S., Dengiz, O., 2023. Comparing geographic information systems-based fuzzy-analytic hierarchical process approach and artificial neural network to characterize soil erosion risk indexes. Rendiconti Lincei. Scienze Fisiche e Naturali, 34(4), 1089-1104. doi:10.1007/s12210-023-01201-0 Kim, J.-G., Park, S.-J., Damsté, J. S. S., Schouten, S., Rijpstra, W. I. C., Jung, M. Y., Kim, S.-J., Gwak, J.-H., Hong, H., Si, O.-J., Lee, S., Madsen, E. L., Rhee, S. K., 2016. Hydrogen Peroxide Detoxification Is a Key Mechanism for Growth of Ammonia-Oxidizing Archaea. Proceedings of the National Academy of Sciences, 113(28), 7888-7893. doi:10.1073/pnas.1605501113
  • Kimmell, L. B., 2023. Soil Restoration Increases Soil Health Across Global Drylands: A meta‐analysis. Journal of Applied Ecology, 60(9), 1939-1951. doi:10.1111/1365-2664.14459
  • Könönen, M., Jauhiainen, J., Straková, P., Heinonsalo, J., Laiho, R., Kusin, K., Limin, S., Vasander, H., 2018. Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest. Soil Biology and Biochemistry, 123, 229-241.
  • Kuscu, I. S. K., Karaöz, M. Ö., 2021. The Change of Catalase Enzyme Activity in Soils by the Land Use. Turkish Journal of Agriculture - Food Science and Technology, 9(6), 1186-1192. doi:10.24925/turjaf.v9i6.1186-1192.4426
  • Lemanowicz, J., Brzezińska, M., Siwik-Ziomek, A., Koper, J., 2020. Activity of selected enzymes and phosphorus content in soils of former sulphur mines. Science of The Total Environment, 708, 134545. doi:10.1016/j.scitotenv.2019.134545
  • Lemanowicz, J., Siwik-Ziomek, A., Koper, J. W., 2018. Enzymatic Variation of Soils Exposed to the Impact of the Soda Plant in Terms of Biochemical Parameters. International Journal of Environmental Science and Technology, 16(7), 3309-3316. doi:10.1007/s13762-018-1959-5
  • Li, C., Li, Z., Yang, M., Ma, B., Wang, B., 2021. Grid-Scale Impact of Climate Change and Human Influence on Soil Erosion Within East African Highlands (Kagera Basin). International Journal of Environmental Research and Public Health, 18(5), 2775. doi:10.3390/ijerph18052775
  • Li, C., Ma, B., Zhang, T., 2002. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure. Canadian journal of soil science, 82(2), 147-154.
  • Li, Q., Liang, J., He, Y., Hu, Q., Yu, S., 2014. Effect of Land Use on Soil Enzyme Activities at Karst Area in Nanchuan, Chongqing, Southwest China. Plant Soil and Environment, 60(1), 15-20. doi:10.17221/599/2013-pse
  • Li, Z., Xiao, H., Tang, Z., Huang, J., Nie, X., Huang, B., Ma, W., Lu, Y., Zeng, G., 2015. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. European Journal of Soil Biology, 71, 37-44.
  • Liu, Q., Zhang, Q., Jarvie, S., Yan, Y., Han, P., Liu, T., K, G., Ren, L., Yue, K., H, W., Du, J., Niu, J., Svenning, J.-C., 2021. Ecosystem Restoration Through Aerial Seeding: Interacting Plant–soil Microbiome Effects on Soil Multifunctionality. Land Degradation and Development, 32(18), 5334-5347. doi:10.1002/ldr.4112
  • Liu, T., Wei, L., Qiao, M., Zou, D., Yang, X., Lin, A., 2016. Mineralization of Pyrene Induced by Interaction Between Ochrobactrum Sp. PW and Ryegrass in Spiked Soil. Ecotoxicology and Environmental Safety, 133, 290-296. doi:10.1016/j.ecoenv.2016.07.032
  • Ma, J., Qin, J., Ma, H., Zhou, Y., Shen, Y., Xie, Y., Xu, D., 2022. Soil Characteristic Changes and Quality Evaluation of Degraded Desert Steppe in Arid Windy Sandy Areas. Peerj, 10, e13100. doi:10.7717/peerj.13100
  • Maina, C. W., Sang, J., Mutua, B. M., Raude, J. M., 2018. A Review of Radiometric Analysis on Soil Erosion and Deposition Studies in Africa. Geochronometria, 45(1), 10-19. doi:10.1515/geochr-2015-0085
  • Marshall, K. S., Balster, N. J., Bajcz, A. W., 2018. Underneath It All: Soil Differences May Explain Contrasting Outcomes of Adjacent Prairie Restorations in Madison, Wisconsin. American Journal of Undergraduate Research, 15(3), 61-72. doi:10.33697/ajur.2018.024
  • Marumbi, R., Nyamugafata, P., Wuta, M., Tittonell, P., Torquebiau, E., 2023. Influence of Planting Basins on Selected Soil Quality Parameters and Sorghum Yield Along an Agro-Ecological Gradient in South Eastern Zimbabwe. Southern Africa Journal of Education Science and Technology, 5(1), 26-52. doi:10.4314/sajest.v5i1.39821
  • Mogen, A. B., Carroll, R., James, K. L., Lima, G. S. C. C., Silva, D., Culver, J. A., Petucci, C., Shaw, L. N., Rice, K. C., 2017. Staphylococcus Aureus Nitric Oxide Synthase (sa NOS) Modulates Aerobic Respiratory Metabolism and Cell Physiology. Molecular Microbiology, 105(1), 139-157. doi:10.1111/mmi.13693
  • Mukherjee, S., Kuang, Z., Ghosh, S., Detroja, R., Carmi, G., Tripathy, S., Barash, D., Frenkel-Morgenstern, M., Nevo, E., Li, K., 2022. Incipient Sympatric Speciation and Evolution of Soil Bacteria Revealed by Metagenomic and Structured Non-Coding RNAs Analysis. Biology, 11(8). 1110 doi:10.3390/biology11081110
  • Nandi, A., Luffman, I., 2012. Erosion related changes to physicochemical properties of Ultisols distributed on calcareous sedimentary rocks. Journal of sustainable development, 5(8), 52.
  • Nedyalkova, K., Donkova, R., Deribeeva, D., 2017. Enzyme Activity of Chromic Luvisols Under Different Degree of Erosion and Land Use. Eurasian Journal of Soil Science (Ejss), 6(1), 37-37. doi:10.18393/ejss.284262
  • Panico, S. C., Memoli, V., Santorufo, L., Aiello, S., Barile, R., Marco, A. D., Maisto, G., 2022. Soil Biological Responses Under Different Vegetation Types in Mediterranean Area. International Journal of Environmental Research and Public Health, 19(2). doi:10.3390/ijerph19020903
  • Poesen, J., 2017. Soil Erosion in the Anthropocene: Research Needs. Earth Surface Processes and Landforms, 43(1), 64-84. doi:10.1002/esp.4250
  • Raina, P., Kumar, M., Singh, M., 2009. Mapping of Soil Degradation Hazards by Remote Sensing in Hanumangarh District (Western Rajasthan). Journal of the Indian Society of Remote Sensing, 37(4), 647-657. doi:10.1007/s12524-009-0056-0
  • Ramazanoglu, E., 2023. Effects of Biochar Application as a Carbon Substrate on Cotton Plant Growth and Some Soil Enzymes. ISPEC Journal of Agricultural Sciences, 7(4), 904-915. doi:10.5281/zenodo.10257518
  • Rodríguez, J. J. M., González‐Pérez, J. A., Turmero, A., Hernández, M., Ball, A. S., González-Vila, F. J., Arias, M., 2018. Physico-Chemical and Microbial Perturbations of Andalusian Pine Forest Soils Following a Wildfire. The Science of the Total Environment, 634, 650-660. doi:10.1016/j.scitotenv.2018.04.028
  • Sainju, U. M., Liptzin, D., Dangi, S. M., 2021. Carbon Dioxide Flush as a Soil Health Indicator Related to Soil Properties and Crop Yields. Soil Science Society of America Journal, 85(5), 1679-1697. doi:10.1002/saj2.20288
  • Shrestha, S. K., 2015. Sustainable Soil Management Practices. World Journal of Science Technology and Sustainable Development, 12(1), 13-24. doi:10.1108/wjstsd-07-2014-0015
  • Singh, H., Northup, B. K., Rice, C. W., Prasad, P., 2022. Biochar Applications Influence Soil Physical and Chemical Properties, Microbial Diversity, and Crop Productivity: A Meta-Analysis. Biochar, 4(1). doi:10.1007/s42773-022-00138-1
  • Sinha, S., Masto, R., Ram, L., Selvi, V., Srivastava, N., Tripathi, R., George, J., 2009. Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biology and Biochemistry, 41(9), 1824-1832.
  • Steinhoff-Knopp, B., Kuhn, T., Burkhard, B., 2021. The Impact of Soil Erosion on Soil-Related Ecosystem Services: Development and Testing a Scenario-Based Assessment Approach. Environmental Monitoring and Assessment, 193(Suppl 1), 274. doi:10.1007/s10661-020-08814-0
  • Sun, S.-Y., Sun, H., DeShun, Z., Zhang, J., Cai, Z., Qin, G., Song, Y., 2019. Response of Soil Microbes to Vegetation Restoration in Coal Mining Subsidence Areas at Huaibei Coal Mine, China. International Journal of Environmental Research and Public Health, 16(10). doi:10.3390/ijerph16101757
  • Susanti, Y., Syafrudin, S., Helmi, M., 2019. Soil Erosion Modelling at Watershed Level in Indonesia: A Review. E3s Web of Conferences, 125. doi:10.1051/e3sconf/201912501008
  • TARIST. 1994. General Statistic version 4.01 DOS. In Egean Forestry Research Institute Bornova, İzmir.
  • Wang, H., wu, j., Li, G., Yan, L., 2020. Changes in Soil Carbon Fractions and Enzyme Activities Under Different Vegetation Types of the Northern Loess Plateau. Ecol Evol, 10(21), 12211-12223. doi:10.22541/au.159318509.95089487
  • Watthanasakphuban, N., Srila, P., Pinmanee, P., Sompinit, K., Rattanaporn, K., Peterbauer, C. K., 2023. Development of High Cell Density Limosilactobacillus Reuteri KUB-AC5 for Cell Factory Using Oxidative Stress Reduction Approach. Microbial Cell Factories, 22(1), 86. doi:10.1186/s12934-023-02076-4
  • Wei, S., Ding, S., Li, Y., Zhang, E., Duan, X., 2024. Differential responses of soil cellulase enzymes and oxidative enzymes to soil erosion. Catena, 241, 108015.
  • Wu, X., Wei, Y., Wang, J., Cai, C., Deng, Y., Xia, J., 2018. RUSLE erodibility of heavy‐textured soils as affected by soil type, erosional degradation, and rainfall intensity: A field simulation. Land degradation & development, 29(3), 408-421.
  • Wu, Y., Kong, F., Wu, D., Zeng, Y., Chen, Z., Deng, T., 2010. Effects of Dimethomorph on Some Enzymatic Activities in Soil. 1-3. doi:10.1109/icbbe.2010.5517394
  • Wu, Y., Wang, R., Zhang, M., He, P., Wu, Y., Tian, X., Zhang, J., 2023. Spatial Patterns and Influencing Factors of Soil SOC、DOC、ROC at Initial Stage of Vegetation Restoration in a Karst Area. Frontiers in Environmental Science, 11, e15044. doi:10.3389/fenvs.2023.1099942
  • Xiao, H., Li, Z., Chang, X., Huang, B., Nie, X., Liu, C., Liu, L., Wang, D., Jiang, J., 2018. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma, 329, 73-81. doi:10.1016/j.geoderma.2018.05.018
  • Xu, H., Qu, Q., Chen, Y., Wang, M., Liu, G., Xue, S., Yang, X., 2020. Disentangling the direct and indirect effects of cropland abandonment on soil microbial activity in grassland soil at different depths. Catena, 194, 104774.
  • Xu, Z., Yu, G., Zhang, X., He, N., Wang, Q., Wang, S., Wang, R., Zhao, N., Jia, Y., Wang, C., 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry, 104, 152-163.
  • Xuefeng, X., Liao, X., Yan, Q., Xie, Y., Chen, J.-Z., Liang, G., Chen, M., Xiao, S., Chen, Y., Liu, J., 2023. Arbuscular Mycorrhizal Fungi Improve the Growth, Water Status, and Nutrient Uptake of Cinnamomum Migao and the Soil Nutrient Stoichiometry Under Drought Stress and Recovery. Journal of Fungi, 9(3), 321. doi:10.3390/jof9030321
  • Yakupoğlu, T., Gündoğan, R., 2015. Predicting of soil aggregate stability values using artificial neural networks. Türkiye Tarımsal Araștırmalar Dergisi, 2(2), 83-92.
  • Zhang, H., Dong, C., Yang, H., Kasim, N., 2020. Differences of Soil Enzyme Activities and Its Influencing Factors Under Different Flooding Conditions in Ili Valley, Xinjiang. Peerj, 8, e8531. doi:10.7717/peerj.8531
  • Zhang, J.-G., Bo, G., Zhang, Z., Kong, F., Wang, Y., Shen, G., 2016. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China. Sustainability, 8(8), 710. doi:10.3390/su8080710
  • Zhang, K., Li, S., Peng, W., Yu, B., 2004. Erodibility of agricultural soils on the Loess Plateau of China. Soil and Tillage Research, 76(2), 157-165.
  • Zhao, W., Fang, X., Daryanto, S., Zhang, X., Wang, Y., 2018. Factors Influencing Soil Moisture in the Loess Plateau, China: A Review. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109(3-4), 501-509. doi:10.1017/s1755691018000671
  • Žížala, D., Zádorová, T., Kapička, J., 2017. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic. Remote Sensing, 9(1), 28. doi:10.3390/rs9010028

Degrade Topraklarda Katalaz Aktivitesinin Biyolojik Bir Gösterge Olarak Araştırılması

Yıl 2024, Cilt: 39 Sayı: 2, 401 - 417, 28.06.2024
https://doi.org/10.7161/omuanajas.1426932

Öz

Bu çalışma, degrade topraklardaki katalaz aktivitesi ile toprak özellikleri arasındaki ilişkiyi incelemekte ve toprak sağlığı ve verimliliğinin bir göstergesi olarak potansiyelini ele almaktadır. Mikrobiyal aktiviteyi ve toprak havalanmasını yansıtan anahtar bir enzim olan katalaz, toprak sıkışması ile karakterize edilen ayak yamaçlarındaki ve tepe yamaçlarında moloz birikimi ile karakterize edilen erozyona hassas alanların bozulmuş yüzey tabakasından (0-15 cm derinlik) toplanan 30 toprak örneğinde analiz edilmiştir. Çalışma alanındaki toprak Tipik Xerortent olarak sınıflandırılmıştır. Toprak örneklerinde katalaz enzim aktivitesi 10.4 ile 48 µl O2 g-1 kuru toprak arasında değişiklik göstermiş. Katalazın yanı sıra toprak fizikokimyasal özellikleri de değerlendirilmiştir; bunlar pH, elektriksel iletkenlik ve organik madde içeriği gibi özelliklerdir. Azot (0.046-0.239 g N 100 g-1), fosfor (1.77-20.05 µg P g-1) ve potasyum (0.01-3.31 meq K 100 g-1) da dahil olmak üzere besin içerikleri de ölçülmüştür. Katalaz aktivitesi ile potasyum ve fosfor seviyeleri arasında pozitif bir korelasyon gözlemlenmiştir, ancak azot ile ilişki istatistiksel olarak anlamsızdır. Bu bulgular, katalaz aktivitesinin erozyon riski taşıyan topraklarda bozulmanın erken tespiti için bir biyolojik gösterge olarak hizmet edebileceğini öne sürmektedir. Çalışma, erozyonun toprak biyokimyası üzerindeki etkisine dair değerli bilgiler sağlamakta ve katalazın toprak sağlığını değerlendirme ve sürdürülebilir arazi yönetimi uygulamalarını yönlendirmedeki rolünü vurgulamaktadır.

Kaynakça

  • Achuba, F. I., Okoh, P. N., 2014. Effect of Petroleum Products on Soil Catalase and Dehydrogenase Activities. Open Journal of Soil Science, 4(12), 399-406. doi:10.4236/ojss.2014.412040
  • Adams, W., 1973. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. Journal of Soil Science, 24(1), 10-17.
  • Adetunji, A. T., Lewu, F. B., Mulidzi, A. R., Ncube, B., 2017. The Biological Activities of &Amp;#946;-Glucosidase, Phosphatase and Urease as Soil Quality Indicators: A Review. Journal of Soil Science and Plant Nutrition, 17(3), 794-807. doi:10.4067/s0718-95162017000300018
  • Andre, A., Debande, L., Marteyn, B., 2021. The Selective Advantage of Facultative Anaerobes Relies on Their Unique Ability to Cope With Changing Oxygen Levels During Infection. Cellular Microbiology, 23(8), e13338. doi:10.1111/cmi.13338
  • Baligh, P., Honarjoo, N., Jalalian, A., Totonchi, A., 2021. Soil Chemical and Microbial Properties Affected by Land Use Type in a Unique Ecosystem (Fars, Iran). Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-01915-x
  • Beck, T., 1971. Die messung der katalaseaktivitaet von Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 130(1), 68-81.
  • Chakravarti, R., Gupta, K., Majors, A. K., Ruple, L., Aronica, M. A., Stuehr, D. J., 2015. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1. Free Radical Biology and Medicine, 82, 105-113. doi:10.1016/j.freeradbiomed.2015.01.030
  • Chang, E. H., Chung, R. S., Tsai, Y. H., 2007. Effect of Different Application Rates of Organic Fertilizer on Soil Enzyme Activity and Microbial Population. Soil Science & Plant Nutrition, 53(2), 132-140. doi:10.1111/j.1747-0765.2007.00122.x
  • Dengiz, O., Demirağ-Turan, İ., 2023. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem. Journal of Arid Land, 15(7), 779-796. doi:10.1007/s40333-023-0020-9
  • Dungait, J. A., Ghee, C., Rowan, J. S., McKenzie, B. M., Hawes, C., Dixon, E. R., Paterson, E., Hopkins, D. W., 2013. Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry, 60, 195-201.
  • Ekberli, I., Kizilkaya, R., 2006. Catalase enzyme and its kinetic parameters in earthworm L. terrestris casts and surrounding soil. Asian Journal of Chemistry, 18(3), 2321.
  • Fokeng, R. M., Fogwe, Z. N., Yemelong, N. T., 2020. Modelling Alternatives for Highland Soil Structural Degradation and Erodibility, Bui Plateau, Cameroon. European Journal of Environment and Earth Sciences, 1(6). doi:10.24018/ejgeo.2020.1.6.84
  • Galiulin, R. V., Galiulina, R. A., 2015. Remediation of Polar Ecosystems Polluted by Gas Condensate and Oil Hydrocarbons by Biological Preparations. The Open Ecology Journal, 8(1), 40-43. doi:10.2174/1874213001508010040
  • Geng, Z., Xiao, L., Li, Z., Yao, K., Chen, Y., 2022. Impacts of Adding Municipal Sewage Sludge On Soil Enzyme Activity and Stoichiometry In a Chinese Loess Soil. Polish Journal of Environmental Studies, 31(4), 3031-3041. doi:10.15244/pjoes/146239
  • Google Earth Pro V 7.3.6.9345. 2024. KSU Campus, Kahramanmaraş, Türkiye. 37° 35' 22.00" N, 36° 44' 45.70" E. Eye alt.: 30 km. CNES / Airbus, Maxar Technologies. http://www.earth.google.com (Access Date 27.01.2024).
  • Guan, H., Fan, J., 2020. Effects of Vegetation Restoration on Soil Quality in Fragile Karst Ecosystems of Southwest China. Peerj, 8, e9456. doi:10.7717/peerj.9456
  • Gundogan, R., Yilmaz, K., Gurel, N., Bodur, M., Demirkiran, A., Koksal, D., Serbetci, H. 1997. Avşar Kampüsü Topraklarının Etüd ve Haritalaması. KSU Research Foundation Project.
  • Hou, S., Xin, M., Wang, L., Jiang, H., Li, N., Wang, Z., 2014. The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China. Acta Ecologica Sinica, 34(6), 295-301.
  • Hu, L., Li, S., Li, K., Huang, H., Wan, W., Huang, Q.-H., Li, Q., Li, Y., Deng, H., He, T., 2020. Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland. Sustainability, 12(24), 10586. doi:10.3390/su122410586
  • Huang, X., Lu, Q., Yang, F., 2020. The Effects of Farmers’ Adoption Behavior of Soil and Water Conservation Measures on Agricultural Output. International Journal of Climate Change Strategies and Management, 2(5), 599-615. doi:10.1108/ijccsm-02-2020-0014
  • Imlay, J. A., 2015. Diagnosing Oxidative Stress in Bacteria: Not as Easy as You Might Think. Current Opinion in Microbiology, 24, 124-131. doi:10.1016/j.mib.2015.01.004
  • Jayasekara, M. J. P. T. M., Kadupitiya, H. K., Vitharana, U. W. A., 2018. Mapping of Soil Erosion Hazard Zones of Sri Lanka. Tropical Agricultural Research, 29(2), 135. doi:10.4038/tar.v29i2.8284
  • John Ryan, G. E. A. R. 2001. Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Area. 2nd Edition, https://hdl.handle.net/20.500.11766/67563
  • Kacar, B. 1994. Bitki ve Topragin Kimyasal Analizleri 3: Toprak Analizleri. Ankara Universitesi Ziraat Fakultesi Egitim Arastirma ve Gelistirme Vakfi Yayinlari, No. 3, 705 s.
  • Kandziora-Ciupa, M., Nadgórska-Socha, A., Barczyk, G., 2021. The Influence of Heavy Metals on Biological Soil Quality Assessments in the Vaccinium Myrtillus L. Rhizosphere Under Different Field Conditions. Ecotoxicology, 30(2), 292-310. doi:10.1007/s10646-021-02345-1
  • Karaca, A., Cetin, S. C., Turgay, O. C., Kizilkaya, R. 2011. Soil Enzymes as Indication of Soil Quality. In G. Shukla & A. Varma (Eds.), Soil Enzymology. Springer Berlin Heidelberg. pp. 119-148. doi:10.1007/978-3-642-14225-3_7
  • Kaya, N. S., Pacci, S., Demirağ Turan, I., Odabas, M. S., Dengiz, O., 2023. Comparing geographic information systems-based fuzzy-analytic hierarchical process approach and artificial neural network to characterize soil erosion risk indexes. Rendiconti Lincei. Scienze Fisiche e Naturali, 34(4), 1089-1104. doi:10.1007/s12210-023-01201-0 Kim, J.-G., Park, S.-J., Damsté, J. S. S., Schouten, S., Rijpstra, W. I. C., Jung, M. Y., Kim, S.-J., Gwak, J.-H., Hong, H., Si, O.-J., Lee, S., Madsen, E. L., Rhee, S. K., 2016. Hydrogen Peroxide Detoxification Is a Key Mechanism for Growth of Ammonia-Oxidizing Archaea. Proceedings of the National Academy of Sciences, 113(28), 7888-7893. doi:10.1073/pnas.1605501113
  • Kimmell, L. B., 2023. Soil Restoration Increases Soil Health Across Global Drylands: A meta‐analysis. Journal of Applied Ecology, 60(9), 1939-1951. doi:10.1111/1365-2664.14459
  • Könönen, M., Jauhiainen, J., Straková, P., Heinonsalo, J., Laiho, R., Kusin, K., Limin, S., Vasander, H., 2018. Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest. Soil Biology and Biochemistry, 123, 229-241.
  • Kuscu, I. S. K., Karaöz, M. Ö., 2021. The Change of Catalase Enzyme Activity in Soils by the Land Use. Turkish Journal of Agriculture - Food Science and Technology, 9(6), 1186-1192. doi:10.24925/turjaf.v9i6.1186-1192.4426
  • Lemanowicz, J., Brzezińska, M., Siwik-Ziomek, A., Koper, J., 2020. Activity of selected enzymes and phosphorus content in soils of former sulphur mines. Science of The Total Environment, 708, 134545. doi:10.1016/j.scitotenv.2019.134545
  • Lemanowicz, J., Siwik-Ziomek, A., Koper, J. W., 2018. Enzymatic Variation of Soils Exposed to the Impact of the Soda Plant in Terms of Biochemical Parameters. International Journal of Environmental Science and Technology, 16(7), 3309-3316. doi:10.1007/s13762-018-1959-5
  • Li, C., Li, Z., Yang, M., Ma, B., Wang, B., 2021. Grid-Scale Impact of Climate Change and Human Influence on Soil Erosion Within East African Highlands (Kagera Basin). International Journal of Environmental Research and Public Health, 18(5), 2775. doi:10.3390/ijerph18052775
  • Li, C., Ma, B., Zhang, T., 2002. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure. Canadian journal of soil science, 82(2), 147-154.
  • Li, Q., Liang, J., He, Y., Hu, Q., Yu, S., 2014. Effect of Land Use on Soil Enzyme Activities at Karst Area in Nanchuan, Chongqing, Southwest China. Plant Soil and Environment, 60(1), 15-20. doi:10.17221/599/2013-pse
  • Li, Z., Xiao, H., Tang, Z., Huang, J., Nie, X., Huang, B., Ma, W., Lu, Y., Zeng, G., 2015. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. European Journal of Soil Biology, 71, 37-44.
  • Liu, Q., Zhang, Q., Jarvie, S., Yan, Y., Han, P., Liu, T., K, G., Ren, L., Yue, K., H, W., Du, J., Niu, J., Svenning, J.-C., 2021. Ecosystem Restoration Through Aerial Seeding: Interacting Plant–soil Microbiome Effects on Soil Multifunctionality. Land Degradation and Development, 32(18), 5334-5347. doi:10.1002/ldr.4112
  • Liu, T., Wei, L., Qiao, M., Zou, D., Yang, X., Lin, A., 2016. Mineralization of Pyrene Induced by Interaction Between Ochrobactrum Sp. PW and Ryegrass in Spiked Soil. Ecotoxicology and Environmental Safety, 133, 290-296. doi:10.1016/j.ecoenv.2016.07.032
  • Ma, J., Qin, J., Ma, H., Zhou, Y., Shen, Y., Xie, Y., Xu, D., 2022. Soil Characteristic Changes and Quality Evaluation of Degraded Desert Steppe in Arid Windy Sandy Areas. Peerj, 10, e13100. doi:10.7717/peerj.13100
  • Maina, C. W., Sang, J., Mutua, B. M., Raude, J. M., 2018. A Review of Radiometric Analysis on Soil Erosion and Deposition Studies in Africa. Geochronometria, 45(1), 10-19. doi:10.1515/geochr-2015-0085
  • Marshall, K. S., Balster, N. J., Bajcz, A. W., 2018. Underneath It All: Soil Differences May Explain Contrasting Outcomes of Adjacent Prairie Restorations in Madison, Wisconsin. American Journal of Undergraduate Research, 15(3), 61-72. doi:10.33697/ajur.2018.024
  • Marumbi, R., Nyamugafata, P., Wuta, M., Tittonell, P., Torquebiau, E., 2023. Influence of Planting Basins on Selected Soil Quality Parameters and Sorghum Yield Along an Agro-Ecological Gradient in South Eastern Zimbabwe. Southern Africa Journal of Education Science and Technology, 5(1), 26-52. doi:10.4314/sajest.v5i1.39821
  • Mogen, A. B., Carroll, R., James, K. L., Lima, G. S. C. C., Silva, D., Culver, J. A., Petucci, C., Shaw, L. N., Rice, K. C., 2017. Staphylococcus Aureus Nitric Oxide Synthase (sa NOS) Modulates Aerobic Respiratory Metabolism and Cell Physiology. Molecular Microbiology, 105(1), 139-157. doi:10.1111/mmi.13693
  • Mukherjee, S., Kuang, Z., Ghosh, S., Detroja, R., Carmi, G., Tripathy, S., Barash, D., Frenkel-Morgenstern, M., Nevo, E., Li, K., 2022. Incipient Sympatric Speciation and Evolution of Soil Bacteria Revealed by Metagenomic and Structured Non-Coding RNAs Analysis. Biology, 11(8). 1110 doi:10.3390/biology11081110
  • Nandi, A., Luffman, I., 2012. Erosion related changes to physicochemical properties of Ultisols distributed on calcareous sedimentary rocks. Journal of sustainable development, 5(8), 52.
  • Nedyalkova, K., Donkova, R., Deribeeva, D., 2017. Enzyme Activity of Chromic Luvisols Under Different Degree of Erosion and Land Use. Eurasian Journal of Soil Science (Ejss), 6(1), 37-37. doi:10.18393/ejss.284262
  • Panico, S. C., Memoli, V., Santorufo, L., Aiello, S., Barile, R., Marco, A. D., Maisto, G., 2022. Soil Biological Responses Under Different Vegetation Types in Mediterranean Area. International Journal of Environmental Research and Public Health, 19(2). doi:10.3390/ijerph19020903
  • Poesen, J., 2017. Soil Erosion in the Anthropocene: Research Needs. Earth Surface Processes and Landforms, 43(1), 64-84. doi:10.1002/esp.4250
  • Raina, P., Kumar, M., Singh, M., 2009. Mapping of Soil Degradation Hazards by Remote Sensing in Hanumangarh District (Western Rajasthan). Journal of the Indian Society of Remote Sensing, 37(4), 647-657. doi:10.1007/s12524-009-0056-0
  • Ramazanoglu, E., 2023. Effects of Biochar Application as a Carbon Substrate on Cotton Plant Growth and Some Soil Enzymes. ISPEC Journal of Agricultural Sciences, 7(4), 904-915. doi:10.5281/zenodo.10257518
  • Rodríguez, J. J. M., González‐Pérez, J. A., Turmero, A., Hernández, M., Ball, A. S., González-Vila, F. J., Arias, M., 2018. Physico-Chemical and Microbial Perturbations of Andalusian Pine Forest Soils Following a Wildfire. The Science of the Total Environment, 634, 650-660. doi:10.1016/j.scitotenv.2018.04.028
  • Sainju, U. M., Liptzin, D., Dangi, S. M., 2021. Carbon Dioxide Flush as a Soil Health Indicator Related to Soil Properties and Crop Yields. Soil Science Society of America Journal, 85(5), 1679-1697. doi:10.1002/saj2.20288
  • Shrestha, S. K., 2015. Sustainable Soil Management Practices. World Journal of Science Technology and Sustainable Development, 12(1), 13-24. doi:10.1108/wjstsd-07-2014-0015
  • Singh, H., Northup, B. K., Rice, C. W., Prasad, P., 2022. Biochar Applications Influence Soil Physical and Chemical Properties, Microbial Diversity, and Crop Productivity: A Meta-Analysis. Biochar, 4(1). doi:10.1007/s42773-022-00138-1
  • Sinha, S., Masto, R., Ram, L., Selvi, V., Srivastava, N., Tripathi, R., George, J., 2009. Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biology and Biochemistry, 41(9), 1824-1832.
  • Steinhoff-Knopp, B., Kuhn, T., Burkhard, B., 2021. The Impact of Soil Erosion on Soil-Related Ecosystem Services: Development and Testing a Scenario-Based Assessment Approach. Environmental Monitoring and Assessment, 193(Suppl 1), 274. doi:10.1007/s10661-020-08814-0
  • Sun, S.-Y., Sun, H., DeShun, Z., Zhang, J., Cai, Z., Qin, G., Song, Y., 2019. Response of Soil Microbes to Vegetation Restoration in Coal Mining Subsidence Areas at Huaibei Coal Mine, China. International Journal of Environmental Research and Public Health, 16(10). doi:10.3390/ijerph16101757
  • Susanti, Y., Syafrudin, S., Helmi, M., 2019. Soil Erosion Modelling at Watershed Level in Indonesia: A Review. E3s Web of Conferences, 125. doi:10.1051/e3sconf/201912501008
  • TARIST. 1994. General Statistic version 4.01 DOS. In Egean Forestry Research Institute Bornova, İzmir.
  • Wang, H., wu, j., Li, G., Yan, L., 2020. Changes in Soil Carbon Fractions and Enzyme Activities Under Different Vegetation Types of the Northern Loess Plateau. Ecol Evol, 10(21), 12211-12223. doi:10.22541/au.159318509.95089487
  • Watthanasakphuban, N., Srila, P., Pinmanee, P., Sompinit, K., Rattanaporn, K., Peterbauer, C. K., 2023. Development of High Cell Density Limosilactobacillus Reuteri KUB-AC5 for Cell Factory Using Oxidative Stress Reduction Approach. Microbial Cell Factories, 22(1), 86. doi:10.1186/s12934-023-02076-4
  • Wei, S., Ding, S., Li, Y., Zhang, E., Duan, X., 2024. Differential responses of soil cellulase enzymes and oxidative enzymes to soil erosion. Catena, 241, 108015.
  • Wu, X., Wei, Y., Wang, J., Cai, C., Deng, Y., Xia, J., 2018. RUSLE erodibility of heavy‐textured soils as affected by soil type, erosional degradation, and rainfall intensity: A field simulation. Land degradation & development, 29(3), 408-421.
  • Wu, Y., Kong, F., Wu, D., Zeng, Y., Chen, Z., Deng, T., 2010. Effects of Dimethomorph on Some Enzymatic Activities in Soil. 1-3. doi:10.1109/icbbe.2010.5517394
  • Wu, Y., Wang, R., Zhang, M., He, P., Wu, Y., Tian, X., Zhang, J., 2023. Spatial Patterns and Influencing Factors of Soil SOC、DOC、ROC at Initial Stage of Vegetation Restoration in a Karst Area. Frontiers in Environmental Science, 11, e15044. doi:10.3389/fenvs.2023.1099942
  • Xiao, H., Li, Z., Chang, X., Huang, B., Nie, X., Liu, C., Liu, L., Wang, D., Jiang, J., 2018. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma, 329, 73-81. doi:10.1016/j.geoderma.2018.05.018
  • Xu, H., Qu, Q., Chen, Y., Wang, M., Liu, G., Xue, S., Yang, X., 2020. Disentangling the direct and indirect effects of cropland abandonment on soil microbial activity in grassland soil at different depths. Catena, 194, 104774.
  • Xu, Z., Yu, G., Zhang, X., He, N., Wang, Q., Wang, S., Wang, R., Zhao, N., Jia, Y., Wang, C., 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry, 104, 152-163.
  • Xuefeng, X., Liao, X., Yan, Q., Xie, Y., Chen, J.-Z., Liang, G., Chen, M., Xiao, S., Chen, Y., Liu, J., 2023. Arbuscular Mycorrhizal Fungi Improve the Growth, Water Status, and Nutrient Uptake of Cinnamomum Migao and the Soil Nutrient Stoichiometry Under Drought Stress and Recovery. Journal of Fungi, 9(3), 321. doi:10.3390/jof9030321
  • Yakupoğlu, T., Gündoğan, R., 2015. Predicting of soil aggregate stability values using artificial neural networks. Türkiye Tarımsal Araștırmalar Dergisi, 2(2), 83-92.
  • Zhang, H., Dong, C., Yang, H., Kasim, N., 2020. Differences of Soil Enzyme Activities and Its Influencing Factors Under Different Flooding Conditions in Ili Valley, Xinjiang. Peerj, 8, e8531. doi:10.7717/peerj.8531
  • Zhang, J.-G., Bo, G., Zhang, Z., Kong, F., Wang, Y., Shen, G., 2016. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China. Sustainability, 8(8), 710. doi:10.3390/su8080710
  • Zhang, K., Li, S., Peng, W., Yu, B., 2004. Erodibility of agricultural soils on the Loess Plateau of China. Soil and Tillage Research, 76(2), 157-165.
  • Zhao, W., Fang, X., Daryanto, S., Zhang, X., Wang, Y., 2018. Factors Influencing Soil Moisture in the Loess Plateau, China: A Review. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109(3-4), 501-509. doi:10.1017/s1755691018000671
  • Žížala, D., Zádorová, T., Kapička, J., 2017. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic. Remote Sensing, 9(1), 28. doi:10.3390/rs9010028
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Biyolojisi
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Fevziye Şüheda Hepşen Türkay 0000-0002-9413-264X

Murat Durmuş 0000-0001-5441-8048

Tuğrul Yakupoğlu 0000-0003-4291-3046

Erken Görünüm Tarihi 27 Haziran 2024
Yayımlanma Tarihi 28 Haziran 2024
Gönderilme Tarihi 28 Ocak 2024
Kabul Tarihi 28 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 2

Kaynak Göster

APA Hepşen Türkay, F. Ş., Durmuş, M., & Yakupoğlu, T. (2024). Exploring Catalase Activity as A Biological Indicator in Degraded Soils. Anadolu Tarım Bilimleri Dergisi, 39(2), 401-417. https://doi.org/10.7161/omuanajas.1426932
AMA Hepşen Türkay FŞ, Durmuş M, Yakupoğlu T. Exploring Catalase Activity as A Biological Indicator in Degraded Soils. ANAJAS. Haziran 2024;39(2):401-417. doi:10.7161/omuanajas.1426932
Chicago Hepşen Türkay, Fevziye Şüheda, Murat Durmuş, ve Tuğrul Yakupoğlu. “Exploring Catalase Activity As A Biological Indicator in Degraded Soils”. Anadolu Tarım Bilimleri Dergisi 39, sy. 2 (Haziran 2024): 401-17. https://doi.org/10.7161/omuanajas.1426932.
EndNote Hepşen Türkay FŞ, Durmuş M, Yakupoğlu T (01 Haziran 2024) Exploring Catalase Activity as A Biological Indicator in Degraded Soils. Anadolu Tarım Bilimleri Dergisi 39 2 401–417.
IEEE F. Ş. Hepşen Türkay, M. Durmuş, ve T. Yakupoğlu, “Exploring Catalase Activity as A Biological Indicator in Degraded Soils”, ANAJAS, c. 39, sy. 2, ss. 401–417, 2024, doi: 10.7161/omuanajas.1426932.
ISNAD Hepşen Türkay, Fevziye Şüheda vd. “Exploring Catalase Activity As A Biological Indicator in Degraded Soils”. Anadolu Tarım Bilimleri Dergisi 39/2 (Haziran 2024), 401-417. https://doi.org/10.7161/omuanajas.1426932.
JAMA Hepşen Türkay FŞ, Durmuş M, Yakupoğlu T. Exploring Catalase Activity as A Biological Indicator in Degraded Soils. ANAJAS. 2024;39:401–417.
MLA Hepşen Türkay, Fevziye Şüheda vd. “Exploring Catalase Activity As A Biological Indicator in Degraded Soils”. Anadolu Tarım Bilimleri Dergisi, c. 39, sy. 2, 2024, ss. 401-17, doi:10.7161/omuanajas.1426932.
Vancouver Hepşen Türkay FŞ, Durmuş M, Yakupoğlu T. Exploring Catalase Activity as A Biological Indicator in Degraded Soils. ANAJAS. 2024;39(2):401-17.
Online ISSN: 1308-8769