Araştırma Makalesi
BibTex RIS Kaynak Göster

Application of Biofertilizer Against Fusarium culmorum (W.G. Smith) Sacc. Pathogen in Bread Wheat

Yıl 2025, Cilt: 40 Sayı: 3, 481 - 500, 31.10.2025

Öz

ABSTRACT
Fusarium culmorum (W.G. Smith) Sacc. causes root and root collar rot disease in bread wheat (Triticum aestivum L.) and causes quality and yield losses. The use of pesticides is one of the most widely preferred methods to prevent the damage of disease agents in agricultural production areas. In this study, seed priming of different concentrations of biofertilizer containing two antagonist bacterial isolates (Bacillus thuringiensis LU3 and Bacillus cereus L14) against F. culmorum was investigated in Flamura-85, Esperia and NKÜ-Lider wheat varieties. Physiological (specific leaf area (cm²/g), chlorophyll content (SPAD), leaf water content) and biochemical (total protein, H₂O₂ and MDA) changes during germination and early developmental stages of wheat were investigated after the seeds were artificially infected with Fusarium disease agent with and without biofertilizer (1, 2 and 3 ml/L). At the germination stage, NKÜ-Lider cultivar showed the highest positive response to biofertilizer applications. In the early developmental stage, it was determined that H2O2 content increased due to infection and biofertilizer application suppressed this increase at different levels at the variety level and contributed to the increase in SPAD value. However, infection-induced MDA content was found to decrease in contrast to H2O2 content. Due to the biocontrol potential of the Bacillus species used in our study, seed priming of LU3 and L14 isolate mixture as 2 ml/L can be considered as an alternative choice to contribute to sustainable agricultural practices to reduce the effect of F. culmorum disease agent.

Proje Numarası

1919B012333209

Kaynakça

  • Anonim, 2025. TÜİK, Bitkisel üretim istatistikleri. Available at https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel Uretim-Istatis tikleri-2024-53447#:~:text=Bir%20%C3%B6nceki%20y%C4%B1la%20g%C3%B6re%2C%20 bu%C4%9F day,8%2C1%20milyon%20ton%20oldu (Erişim tarihi: 10 Ocak 2025).
  • Balkan, A., Demirbaş S., İnkaya B. Ü., Vural K. S. 2015. Bazı ekmeklik buğday çeşitlerinde hidrojen peroksit uygulamasının çimlenme dönemindeki etkileri. 1. Ulusal Bitki Fizyolojisi Sempozyumu, 91, 1-4 Eylül, Erzurum.
  • Balkan, A., Demirbaş, S. 2024. Assessment of antioxidant defence system as a selection criterion against to oxidative stress during the early growth period of common wheat. Journal of Animal & Plant Sciences, 34(4): 1081-1090. doi.org/10.36899/JAPS.2024.4.0790
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. doi:10.1016/j.sbi.2014.10.005
  • Chen, M., Wei, X., Zhang, J., Zhou, H., Chen, N., Wang, J., Feng, Y., Yu, S., Zhang, J., Wu, S., Ye, Q., Pang, R., Ding, Y., Wu, Q. 2022. Differentiation of Bacillus cereus and Bacillus thuringiensis using genome-guided maldı-tof ms based on variations in ribosomal proteins. Microorganisms, 27, 10(5): 918. doi: 10.3390/microorganisms10050918. PMID: 35630362; PMCID: PMC9146703.
  • Elkoca, E. 2007. Priming: ekim öncesi tohum uygulamaları. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 38(1): 113-120.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., Gürbüz, F. 1987. Araştırma ve deneme metotları. Ankara Üniversitesi, Ziraat Fakültesi Yayınları, Ankara, 381s.
  • Gang, G., Miedaner, T., Schuhmacher, U., Schollenberger, M., Geiger, H. H. 1998. Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology, 88(9): 879-884.
  • Gökçe, A. Y., Kotan, R. 2016. Buğday kök çürüklüğüne neden olan Bipolaris sorokiniana (Sacc.)’ya karşı PGPR ve biyoajan bakterileri kullanılarak kontrollü koşullarda biyolojik mücadele imkanlarının araştırılması. Bitki Koruma Bülteni, 56(1): 49-75.
  • Haidukowski, M., Visconti, A., Perrone, G., Vanadia, S., Pancaldi, D., Covarelli, L., Balestrazzi, R.., Pascale, M. 2012. Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions. Phytopathologia Mediterranea, 51(1): 236–246.
  • Hameed, A., Hussain, S., Nisar, F., Rasheed, A., Shah, S. Z. 2025. Seed priming as an effective technique for enhancing salinity tolerance in plants: mechanistic insights and prospects for saline agriculture with a special emphasis on halophytes. Seeds, 4(1), 14. doi.org/10.3390/seeds4010014
  • Hasanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants (Basel), 9(8):681. doi.org/10.3390/antiox9080681
  • Hodges, D., DeLong, J., Forney, C. Prange, R.K. 1999. Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604–611. doi.org/10.1007/s004250050524
  • Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., Maruo, T. 2017. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch, 71(71): 37-42. https://doi.org/10.20776/S18808824-71-P37
  • Jin, X., Shi, C., Yu, C. Y., Yamada, T., Sacks, E. J. 2017. Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in miscanthus. Frontiers in Plant Science, 8: 1-8. doi.org/10.3389/fpls.2017.00721
  • Jisha, K.C., Vijayakumari, K., Puthur, J.T. 2013. Seed priming for abiotic stres tolerance: an overview. Acta Physiologiae Plantarum, 35: 1381–1396. doi.org/10.1007/s11738-012-1186-5
  • Köycü, N.D., Özer, N. 2019. Trakya Bölgesi’nde bazı buğday çeşitlerinin Fusarium spp. izolatlarına karşı dayanıklılığın tespit edilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(4): 498-505. doi.org/10.18016/ksutarimdoga.vi.494117
  • Köycü, N.D. 2021. Fusarium başak yanıklığının buğday kalite parametreleri üzerine etkisi: enfekteli başaklara fungisit uygulamaları sonrasındaki değişim. Journal of the Institute of Science and Technology, 11(özel sayı): 3455-3464. doi.org/10.21597/jist.1027025
  • Köycü, N.D. 2022. Effect of fungicides on spike characteristics in winter wheat inoculated with Fusarium culmorum. Food Additives and Contaminants. Part: A. 39(5): 1001-1008. doi.org/10.1080/19440049.2022.2052971
  • Kulkova, I., Dobrzyński, J., Kowalczyk, P., Bełżecki, G., Kramkowski, K. 2023. Plant growth promotion using Bacillus cereus. Int J Mol Sci., 24(11): 9759. https://doi: 10.3390/ijms24119759. PMID: 37298706; PMCID: PMC10253305. Labudda M. 2013. Lipid peroxidation as a biochemical marker for oxidative stress during drought. An effective tool for plant breeding. E-wydawnictwo, Poland, http://www.e-wydawnictwo.eu/Document/DocumentPreview/3342
  • Madhava Rao K.V., Sresty T.V.S. 2000. Antioksidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157: 113-128. doi.org/10.1016/S0168-9452(00)00273-9
  • Meena, K.R., Kanwar, S.S. 2015. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int., 2015: 473050. doi.org/10.1155/2015/473050.
  • Miljaković, D., Marinković, J., Balešević-Tubić, S. 2020. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7): 1037. doi.org/10.3390/microorganisms8071037
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., Başer, İ. 2022. Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27 (1): 127-133. doi.org/10.17557/tjfc.1019160
  • Pastuszak, J., Szczerba, A., Dziurka, M., Hornyák, M., Kopeć, P., Szklarczyk, M., Płażek, A. 2021. Physiological and biochemical response to Fusarium culmorum infection in three durum wheat genotypes at seedling and full anthesis stage. International Journal of Molecular Sciences, 22(14): 7433. doi.org/10.3390/ijms22147433
  • Paul, S., Dey, S. Kundu, R. 2022. Seed priming: An emerging tool towards sustainable agriculture. Plant Growth Regulation, 97: 215–234. doi.org/10.1007/s10725-021-00761-1
  • Sahu, A. K., Kumari, P., Mittra, B. 2023. Physiological and biochemical response to Fusarium oxysporum ınfection in wheat. International Journal of Life Science and Agriculture Research, 2(3): 16-23. doi.org/10.55677/ijlsar/V02I03Y2023-01
  • Sivasubramaniam, K., Geetha, R., Sujatha, K., Raja, K., Sripunitha, A., Selvarani, R. 2011. Seed priming: Triumphs and tribulations. The Madras Agricultural Journal, 98: 197-209. doi.org/10.29321/maj.10.100277
  • Steel, R.G.D., Torrie J. H. 1984. A biometrical approach. 2nd Ed. McGraw Hill Book Co., Inc., Singapore.
  • Teker Yıldız, M., Acar, O., Öztürk, F, Hacioğlu, N. 2023. Some physiological and biochemical effects of Bacillus thuringiensis LU3 biopriming in common wheat (Triticum aestivum L.) under salt stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26 (5): 1086-1098. doi.org/10.18016/ksutarimdoga.vi.1174882
  • Townsend, G.R., Heuberger, J.W. 1943. Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter, 27: 340-343.
  • Wagacha, J.M., Muthomi J.W. 2007. Fusarium culmorum: Infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protection, 26 (7): 877-885.
  • Wildermuth, G.B., McNamara, R.B., 1994. Testing wheat seedlings for resistance to crown rot caused by Fusarium graminearum group 1. Plant Disease, 78: 949–953.
  • Wilson, P.J., Thompson, K., Hodgson, J.G. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143(1): 155–162.
  • Xu, W., Yang, Q., Xie, X., Goodwin, P. H., Deng, X., Zhang, J., Sun, R., Wang, Q., Xia, M., Wu, C., Yang, L. 2022. Genomic and phenotypic insights into the potential of Bacillus subtilis YB-15 isolated from rhizosphere to biocontrol against crown rot and promote growth of wheat. Biology, 11(5), 778. doi.org/10.3390/biology11050778
  • Yörük, E., Albayrak, G. 2012. Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopathologia, 173: 53–61. doi.org/10.1007/s11046-011-9462-2

Ekmeklik Buğdayda Fusarium culmorum (W.G. Smith) Sacc. Hastalık Etmenine Karşı Biyogübre Uygulaması

Yıl 2025, Cilt: 40 Sayı: 3, 481 - 500, 31.10.2025

Öz

Ekmeklik buğdayda (Triticum aestivum L.) kök ve kök boğazı çürüklüğü hastalığına neden olan Fusarium culmorum (W.G. Smith) Sacc. hastalık etmeni üründe kalite ve verim kayıplarına neden olmaktadır. Tarımsal üretim alanlarında hastalık etmenlerinin zararlarını önlemek için pestisit kullanımı en yaygın tercih edilen yöntemler arasında yer almaktadır. Bu çalışmada, Flamura-85, Esperia ve NKÜ-Lider buğday çeşitlerinde F. culmorum hastalık etmenine karşı antagonist iki bakteri izolatını (Bacillus thuringiensis LU3 ve Bacillus cereus L14) içeren biyogübrenin farklı konsantrasyonlarının tohum uygulaması araştırılmıştır. Biyogübre (1, 2 ve 3 ml/L) uygulanan ve uygulanmayan tohumlara suni olarak Fusarium hastalık etmeni bulaştırıldıktan sonra buğdayın çimlenme döneminde ve erken gelişim dönemi fizyolojik (spesifik yaprak alanı (cm²/g), klorofil miktarı (SPAD), yaprak su içeriği) ve biyokimyasal (toplam protein, H₂O₂ ve MDA) değişimleri incelenmiştir. Çimlenme aşamasında NKÜ-Lider çeşidinin biyogübre uygulamalarına en fazla olumlu yanıtı verdiği saptanmıştır. Erken gelişim döneminde, enfeksiyon kaynaklı olarak H2O2 miktarında artış meydana geldiği, biyogübre uygulamasının bu artışı çeşit düzeyinde farklı seviyede baskıladığı ve SPAD değerinde meydana gelen artışa katkı sağladığı saptanmıştır. Bununla beraber enfeksiyon kaynaklı MDA içeriğinde ise H2O2 içeriğinin tersine azalma olduğu saptanmıştır. Çalışmamızda kullanılan Bacillus türlerinin biyokontrol etki gösterebilme potansiyellerinden dolayı LU3 ve L14 izolat karışımının 2 ml/L olarak tohumdan uygulanması F. culmorum hastalık etmeninin etkisini azaltmak için sürdürülebilir tarım uygulamalarına katkı sağlamak amacıyla alternatif bir tercih olarak değerlendirilebilir.

Etik Beyan

Bu çalışma etik kurul onayı gerektirmez.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012333209

Teşekkür

Bu çalışma, TÜBİTAK 2209-A kapsamında 1919B012333209 numaralı proje tarafından desteklenmiştir. Projenin yürütülmesi sırasında teknik yönlendirmelerinden dolayı Doç. Dr. N. Desen KÖYCÜ, Prof. Dr. Alpay BALKAN, Prof. Dr. Nurcihan HACIOĞLU DOĞRU, Arş. Gör. İbrahim UZ ile lisansüstü öğrencileri Mimoza JAKUPİ, Alper ULAŞ ve Esra DEMİRBAŞ’a teşekkür ederiz.

Kaynakça

  • Anonim, 2025. TÜİK, Bitkisel üretim istatistikleri. Available at https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel Uretim-Istatis tikleri-2024-53447#:~:text=Bir%20%C3%B6nceki%20y%C4%B1la%20g%C3%B6re%2C%20 bu%C4%9F day,8%2C1%20milyon%20ton%20oldu (Erişim tarihi: 10 Ocak 2025).
  • Balkan, A., Demirbaş S., İnkaya B. Ü., Vural K. S. 2015. Bazı ekmeklik buğday çeşitlerinde hidrojen peroksit uygulamasının çimlenme dönemindeki etkileri. 1. Ulusal Bitki Fizyolojisi Sempozyumu, 91, 1-4 Eylül, Erzurum.
  • Balkan, A., Demirbaş, S. 2024. Assessment of antioxidant defence system as a selection criterion against to oxidative stress during the early growth period of common wheat. Journal of Animal & Plant Sciences, 34(4): 1081-1090. doi.org/10.36899/JAPS.2024.4.0790
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. doi:10.1016/j.sbi.2014.10.005
  • Chen, M., Wei, X., Zhang, J., Zhou, H., Chen, N., Wang, J., Feng, Y., Yu, S., Zhang, J., Wu, S., Ye, Q., Pang, R., Ding, Y., Wu, Q. 2022. Differentiation of Bacillus cereus and Bacillus thuringiensis using genome-guided maldı-tof ms based on variations in ribosomal proteins. Microorganisms, 27, 10(5): 918. doi: 10.3390/microorganisms10050918. PMID: 35630362; PMCID: PMC9146703.
  • Elkoca, E. 2007. Priming: ekim öncesi tohum uygulamaları. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 38(1): 113-120.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., Gürbüz, F. 1987. Araştırma ve deneme metotları. Ankara Üniversitesi, Ziraat Fakültesi Yayınları, Ankara, 381s.
  • Gang, G., Miedaner, T., Schuhmacher, U., Schollenberger, M., Geiger, H. H. 1998. Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology, 88(9): 879-884.
  • Gökçe, A. Y., Kotan, R. 2016. Buğday kök çürüklüğüne neden olan Bipolaris sorokiniana (Sacc.)’ya karşı PGPR ve biyoajan bakterileri kullanılarak kontrollü koşullarda biyolojik mücadele imkanlarının araştırılması. Bitki Koruma Bülteni, 56(1): 49-75.
  • Haidukowski, M., Visconti, A., Perrone, G., Vanadia, S., Pancaldi, D., Covarelli, L., Balestrazzi, R.., Pascale, M. 2012. Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions. Phytopathologia Mediterranea, 51(1): 236–246.
  • Hameed, A., Hussain, S., Nisar, F., Rasheed, A., Shah, S. Z. 2025. Seed priming as an effective technique for enhancing salinity tolerance in plants: mechanistic insights and prospects for saline agriculture with a special emphasis on halophytes. Seeds, 4(1), 14. doi.org/10.3390/seeds4010014
  • Hasanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants (Basel), 9(8):681. doi.org/10.3390/antiox9080681
  • Hodges, D., DeLong, J., Forney, C. Prange, R.K. 1999. Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207: 604–611. doi.org/10.1007/s004250050524
  • Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., Maruo, T. 2017. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch, 71(71): 37-42. https://doi.org/10.20776/S18808824-71-P37
  • Jin, X., Shi, C., Yu, C. Y., Yamada, T., Sacks, E. J. 2017. Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in miscanthus. Frontiers in Plant Science, 8: 1-8. doi.org/10.3389/fpls.2017.00721
  • Jisha, K.C., Vijayakumari, K., Puthur, J.T. 2013. Seed priming for abiotic stres tolerance: an overview. Acta Physiologiae Plantarum, 35: 1381–1396. doi.org/10.1007/s11738-012-1186-5
  • Köycü, N.D., Özer, N. 2019. Trakya Bölgesi’nde bazı buğday çeşitlerinin Fusarium spp. izolatlarına karşı dayanıklılığın tespit edilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(4): 498-505. doi.org/10.18016/ksutarimdoga.vi.494117
  • Köycü, N.D. 2021. Fusarium başak yanıklığının buğday kalite parametreleri üzerine etkisi: enfekteli başaklara fungisit uygulamaları sonrasındaki değişim. Journal of the Institute of Science and Technology, 11(özel sayı): 3455-3464. doi.org/10.21597/jist.1027025
  • Köycü, N.D. 2022. Effect of fungicides on spike characteristics in winter wheat inoculated with Fusarium culmorum. Food Additives and Contaminants. Part: A. 39(5): 1001-1008. doi.org/10.1080/19440049.2022.2052971
  • Kulkova, I., Dobrzyński, J., Kowalczyk, P., Bełżecki, G., Kramkowski, K. 2023. Plant growth promotion using Bacillus cereus. Int J Mol Sci., 24(11): 9759. https://doi: 10.3390/ijms24119759. PMID: 37298706; PMCID: PMC10253305. Labudda M. 2013. Lipid peroxidation as a biochemical marker for oxidative stress during drought. An effective tool for plant breeding. E-wydawnictwo, Poland, http://www.e-wydawnictwo.eu/Document/DocumentPreview/3342
  • Madhava Rao K.V., Sresty T.V.S. 2000. Antioksidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157: 113-128. doi.org/10.1016/S0168-9452(00)00273-9
  • Meena, K.R., Kanwar, S.S. 2015. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int., 2015: 473050. doi.org/10.1155/2015/473050.
  • Miljaković, D., Marinković, J., Balešević-Tubić, S. 2020. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7): 1037. doi.org/10.3390/microorganisms8071037
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., Başer, İ. 2022. Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27 (1): 127-133. doi.org/10.17557/tjfc.1019160
  • Pastuszak, J., Szczerba, A., Dziurka, M., Hornyák, M., Kopeć, P., Szklarczyk, M., Płażek, A. 2021. Physiological and biochemical response to Fusarium culmorum infection in three durum wheat genotypes at seedling and full anthesis stage. International Journal of Molecular Sciences, 22(14): 7433. doi.org/10.3390/ijms22147433
  • Paul, S., Dey, S. Kundu, R. 2022. Seed priming: An emerging tool towards sustainable agriculture. Plant Growth Regulation, 97: 215–234. doi.org/10.1007/s10725-021-00761-1
  • Sahu, A. K., Kumari, P., Mittra, B. 2023. Physiological and biochemical response to Fusarium oxysporum ınfection in wheat. International Journal of Life Science and Agriculture Research, 2(3): 16-23. doi.org/10.55677/ijlsar/V02I03Y2023-01
  • Sivasubramaniam, K., Geetha, R., Sujatha, K., Raja, K., Sripunitha, A., Selvarani, R. 2011. Seed priming: Triumphs and tribulations. The Madras Agricultural Journal, 98: 197-209. doi.org/10.29321/maj.10.100277
  • Steel, R.G.D., Torrie J. H. 1984. A biometrical approach. 2nd Ed. McGraw Hill Book Co., Inc., Singapore.
  • Teker Yıldız, M., Acar, O., Öztürk, F, Hacioğlu, N. 2023. Some physiological and biochemical effects of Bacillus thuringiensis LU3 biopriming in common wheat (Triticum aestivum L.) under salt stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26 (5): 1086-1098. doi.org/10.18016/ksutarimdoga.vi.1174882
  • Townsend, G.R., Heuberger, J.W. 1943. Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter, 27: 340-343.
  • Wagacha, J.M., Muthomi J.W. 2007. Fusarium culmorum: Infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protection, 26 (7): 877-885.
  • Wildermuth, G.B., McNamara, R.B., 1994. Testing wheat seedlings for resistance to crown rot caused by Fusarium graminearum group 1. Plant Disease, 78: 949–953.
  • Wilson, P.J., Thompson, K., Hodgson, J.G. 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143(1): 155–162.
  • Xu, W., Yang, Q., Xie, X., Goodwin, P. H., Deng, X., Zhang, J., Sun, R., Wang, Q., Xia, M., Wu, C., Yang, L. 2022. Genomic and phenotypic insights into the potential of Bacillus subtilis YB-15 isolated from rhizosphere to biocontrol against crown rot and promote growth of wheat. Biology, 11(5), 778. doi.org/10.3390/biology11050778
  • Yörük, E., Albayrak, G. 2012. Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopathologia, 173: 53–61. doi.org/10.1007/s11046-011-9462-2
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fitopatoloji, Tarımda Bitki Biyoteknolojisi, Tarımda Bitki Biyokimyası ve Fizyolojisi
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Güldoğan Erdinçli 0009-0001-2581-0929

Mehmet Durmaz 0009-0003-4033-5358

Sefer Demirbaş 0000-0001-7201-3888

Proje Numarası 1919B012333209
Erken Görünüm Tarihi 31 Ekim 2025
Yayımlanma Tarihi 31 Ekim 2025
Gönderilme Tarihi 20 Mart 2025
Kabul Tarihi 2 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Erdinçli, G., Durmaz, M., & Demirbaş, S. (2025). Ekmeklik Buğdayda Fusarium culmorum (W.G. Smith) Sacc. Hastalık Etmenine Karşı Biyogübre Uygulaması. Anadolu Tarım Bilimleri Dergisi, 40(3), 481-500. https://doi.org/10.7161/omuanajas.1661959
Online ISSN: 1308-8769