Araştırma Makalesi
BibTex RIS Kaynak Göster

Examination of the Wingate Anaerobic Power Test Performance in Athletes and Sedentary Individuals Within the Scope of Five-Second Segments

Yıl 2023, , 315 - 328, 29.12.2023
https://doi.org/10.17155/omuspd.1348324

Öz

The main purpose of the present study was to investigate the Wingate anaerobic test (WAnT) performance in athletes and sedentary individuals, within the scope of five-second segments. A second goal was to explore the relationship between physical characteristics and WAnT performance. Thirteen well-trained male athletes (23.31 ± 2.06 years) and 13 sex-matched healthy sedentary individuals (22.84 ± 1.99 years) volunteered. Participants first completed demographic and anthropometric measurements. They then attended a laboratory session to perform the 30-second WAnT (WAnT-30) on a cycle ergometer (Monark Wingate Ergometer model 834E). The test load was adjusted to 7.5% of the body mass. The peak power (PP) related to WAnT-30 and mean power (MP) outputs of each five-second segment were collected using the ergometer software after performing the test. WAnT-30 PP and all five-second segment MP outputs were higher in the
athletes compared to the sedentary individuals (p < 0.001). A positive correlation was observed between WAnT-30 PP and each five-second segment of MP outputs in athletes (p < 0.05; r = 0.594 – 0.970), but this correlation was not observed after the 3rd segment in the sedentary individuals. Body height and body weight were identified as the best predictor variables for WAnT-30 performance in the simple regression model (R2 = 0.362 - 0.689 and R2 = 0.457 - 0.590 respectively). These findings indicated that athletes had higher power outputs than sedentary individuals
across all segments of WAnT-30. Additionally, it was revealed that an all-out anaerobic test performance could be affected by physical characteristics in athletes. Future research should include different segment intervals in participants from specific sports to better evaluate anaerobic performance.

Etik Beyan

Araştırma için Karamanoğlu Mehmetbey Üniversitesi Tıp Fakültesi, Klinik Araştırmalar Etik Kurulu’ndan 27/02/2023 tarihli ve 2022/154-01/22 karar sayısı ile etik kurul izni alınmıştır

Kaynakça

  • Aouadi, R., Jlid, M. C., Khalifa, R., Hermassi, S., Chelly, M. S., Van Den Tillaar, R., & Gabbett, T. (2012). Association of anthropometric qualities with vertical jump performance in elite male volleyball players. The Journal of Sports Medicine and Physical Fitness, 52(1), 11-17.
  • Baker, U. C., Heath, E. M., Smith, D. R., & Oden, G. L. (2011). Development of Wingate Anaerobic Test Norms for Highly-Trained Women. Journal of Exercise Physiology Online, 14(2).
  • Balci, G. A., As, H., Colakoglu, M., & Ozkaya, O. (2022). Accuracy, reliability and segmental error relationship during a Wingate all-out test. Science & Sports, 37(3), 176-183. Doi: 10.1016/j.scispo.2021.05.003
  • Ballmann, C. G., Maynard, D. J., Lafoon, Z. N., Marshall, M. R., Williams, T. D., & Rogers, R. R. (2019). Effects of listening to preferred versus non-preferred music on repeated wingate anaerobic test performance. Sports, 7(8), 185. doi: 10.3390/sports7080185
  • Boraczyński, M., Boraczyński, T., Podstawski, R., Laskin, J., Choszcz, D., & Lipiński, A. (2017). Relationships between anthropometric features, body composition, and anaerobic alactic power in elite post-pubertal and mature male taekwondo athletes. Human Movement, 18(4), 30-4. doi: 10.1515/humo-2017-0032
  • Castañeda-Babarro, A. (2021). The Wingate Anaerobic Test, a narrative review of the protocol variables that affect the results obtained. Applied Sciences, 11(16), 7417. doi: 10.3390/app11167417
  • Clark, N. W., Wagner, D. R., & Heath, E. M. (2018). Influence of Velotron chainring size on Wingate anaerobic test. Journal of Science and Medicine in Sport, 21(2), 202-206. doi: 10.1016/j.jsams.2017.07.026
  • Cohen, J. (1998). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum
  • Coppin, E., Heath, E. M., Bressel, E., & Wagner, D. R. (2012). Wingate anaerobic test reference values for male power athletes. International Journal of Sports Physiology and Performance, 7(3), 232-236. doi: 10.1123/ijspp.7.3.232
  • Duncan, M. J., Eyre, E., Grgic, J., & Tallis, J. (2019). The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. European Journal of Sport Science, 1-8. doi: 10.1080/17461391.2019.1601261
  • Fujii, N., Tsuchiya, S. I., Tsuji, B., Watanabe, K., Sasaki, Y., & Nishiyasu, T. (2015). Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. European Journal of Applied Physiology, 115, 1967-1974. doi: 10.1007/s00421-015-3179-8
  • Galán-Rioja, M. Á., González-Mohíno, F., Sanders, D., Mellado, J., & González-Ravé, J. M. (2020). Effects of body weight vs. lean body mass on Wingate anaerobic test performance in endurance athletes. International Journal of Sports Medicine, 41(08), 545-551. doi:10.1055/a-1114-6206
  • Grgic, J. (2022). Effects of sodium bicarbonate ingestion on measures of Wingate test performance: a meta-analysis. Journal of the American Nutrition Association, 41(1), 1-10. doi: 10.1080/07315724.2020.1850370
  • Hazir, T., & Kosar, N. S. (2007). Assessment of gender differences in maximal anaerobic power by ratio scaling and allometric scaling. Isokinetics and Exercise Science, 15(4), 253-261. doi: 10.3233/IES-2007-0281
  • Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3. doi: 10.1249/MSS.0b013e31818cb278
  • Jaafar, H., Rouis, M., Coudrat, L., Attiogbé, E., Vandewalle, H., & Driss, T. (2014). Effects of load on Wingate test performances and reliability. The Journal of Strength & Conditioning Research, 28(12), 3462-3468. doi: 10.1519/JSC.0000000000000575
  • Kayacan, Y., Makaracı, Y., Ucar, C., Amonette, W. E., & Yıldız, S. (2023). Heart rate variability and cortisol levels before and after a brief anaerobic exercise in handball players. The Journal of Strength & Conditioning Research, 10-1519. doi: 10.1519/JSC.0000000000004411
  • Leithäuser, R. M., Böning, D., Hütler, M., & Beneke, R. (2016). Enhancement on Wingate anaerobic test performance with hyperventilation. International Journal of Sports Physiology and Performance, 11(5), 627-634. doi: 10.1123/ijspp.2015-0001
  • Maciejczyk, M., Wiecek, M., Szymura, J., Szygula, Z., & Brown, L. E. (2015). Influence of increased body mass and body composition on cycling anaerobic power. The Journal of Strength & Conditioning Research, 29(1), 58-65. doi: 10.1519/JSC.0000000000000727
  • McArdle, W. D., Katch, F. I., & Katch, V. L. (2007). Exercise Physiology, edn. Maryland: Lippincott Williams & Wilkins
  • McKay, A. K., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2021). Defining training and performance caliber: a participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 317-331. doi: 10.1123/ijspp.2021-0451
  • McKie, G. L., Islam, H., Townsend, L. K., Howe, G. J., & Hazell, T. J. (2018). Establishing a practical treadmill sprint as an alternative to the Wingate anaerobic test. Measurement in Physical Education and Exercise Science, 22(2), 138-144. doi: 10.1080/1091367X.2017.1400974
  • Michalik, K., Smolarek, M., Ochmann, B., & Zatoń, M. (2023). Determination of optimal load in the Wingate Anaerobic Test is not depend on number of sprints included in mathematical models. Frontiers in Physiology, 14, 854. doi: 10.3389/fphys.2023.1146076
  • Nakamura, M., & Nose‐Ogura, S. (2021). Effect of administration of monophasic oral contraceptive on the body composition and aerobic and anaerobic capacities of female athletes. Journal of Obstetrics and Gynaecology Research, 47(2), 792-799. doi:10.1111/jog.14613
  • Nikolaidis, P. T., Dellal, A., Torres-Luque, G., & Ingebrigtsen, J. (2015). Determinants of acceleration and maximum speed phase of repeated sprint ability in soccer players: A cross-sectional study. Science & Sports, 30(1), e7-e16. doi: 10.1016/j.scispo.2014.05.003
  • Özkaya, O., Colakoglu, M., Fowler, D., Kuzucu, Ö. E., & Colakoglu, S. (2009). Wingate anaerobic testing with a modified electromagnetically braked elliptical trainer. Part II: Physiological considerations. Isokinetics and Exercise Science, 17(2), 115-119. doi: 10.3233/IES-2009-0342
  • Ramírez-Vélez, R., López-Albán, C. A., La Rotta-Villamizar, D. R., Romero-García, J. A., Alonso-Martinez, A. M., & Izquierdo, M. (2016). Wingate anaerobic test percentile norms in colombian healthy adults. The Journal of Strength & Conditioning Research, 30(1), 217-225. doi: 10.1519/JSC.0000000000001054
  • Sandford, G. N., Laursen, P. B., & Buchheit, M. (2021). Anaerobic speed/power reserve and sport performance: scientific basis, current applications and future directions. Sports Medicine, 51(10), 2017-2028. doi: 10.1007/s40279-021-01523-9
  • Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196-199. doi: 10.1136/bjsm.25.4.196
  • Yáñez-Silva, A., Buzzachera, C. F., Piçarro, I. D. C., Januario, R. S., Ferreira, L. H., McAnulty, S. R., Utter, A. C., & Souza-Junior, T. P. (2017). Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players. Journal of the International Society of Sports Nutrition, 14(1), 5. doi: 10.1186/s12970-017-0162-2
  • Zupan, M. F., Arata, A. W., Dawson, L. H., Wile, A. L., Payn, T. L., & Hannon, M. E. (2009). Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. The Journal of Strength & Conditioning Research, 23(9), 2598-2604. doi: 10.1519/JSC.0b013e3181b1b21b

Sporcu ve Sedanter Bireylerde Wingate Anaerobik Güç Testi Performansının Beş Saniyelik Segmentler Ekseninde İncelenmesi

Yıl 2023, , 315 - 328, 29.12.2023
https://doi.org/10.17155/omuspd.1348324

Öz

Bu çalışmanın ana amacı; sporcu ve sedanter bireylerde Wingate anaerobik güç testi (WAnT) performansının beş saniyelik segmentler ekseninde incelenmesidir. Çalışmanın ikincil amacı ise fiziksel özellikler ile WAnT performansı arasındaki ilişkiyi ortaya koymaktır. Çalışmaya iyi antrene durumdaki 13 erkek sporcu (Ort. yaş: 23,31 ± 2,06 yıl) ve 13 sağlıklı sedanter (Ort. yaş: 22,84 ± 1,99 yıl) gönüllü olarak katılmıştır. Öncelikle katılımcıların demografik ve antropometrik ölçüm aşaması tamamlanmıştır. Daha sonra katılımcılar, tek seanslık laboratuvar ölçümünde bir bisiklet ergometresi (Monark Wingate Ergometer model 834E) aracılığıyla 30 saniyelik WAnT (WAnT-30) protokolünü tamamlamıştır. Test yükü, vücut ağırlığının %7,5’i olarak belirlenmiştir. Test sonucunda ergometre yazılımından elde edilen WAnT-30 zirve güç (ZG) ve toplam altı segmentten oluşan beş saniyelik ortalama güç (OG) çıktıları kaydedilmiştir. Sporcular, WAnT-30 ZG ve tüm beş saniyelik segmentlere ait OG çıktılarında sedanterlere göre daha yüksek değerlere sahipti (p<0,001). Sporcularda WAnT-30 ZG değeri ile tüm beş saniyelik OG çıktıları arasında pozitif ilişki olduğu belirlenirken (p<0,05; r = 0,594- 0,970), sedanterlerde ise bu ilişki 3. segmentten sonra kaybolmuştur. Basit doğrusal regresyon sonuçlarına göre sporcularda boy uzunluğu ve vücut ağırlığı, WAnT-30 performansının en iyi belirteçleri olarak tespit edilmiştir (R2 = 0,362- 0,689 ve R2 = 0,457- 0,590 sırasıyla). Sonuç olarak, sporcuların WAnT-30’a ait tüm segmentlerde sedanter bireylere göre daha yüksek güç çıktısına sahip olduğu belirlenmiştir. Ayrıca sporcularda tam eforlu bir anaerobik performansın fiziksel özelliklerden etkilenebileceği görülmüştür. Sonraki çalışmalarda spesifik spor dallarından katılımcılarda farklı segment aralıkları kullanılarak anaerobik performansın gelişmiş bir değerlendirmesi yapılabilir.

Etik Beyan

Araştırma için Karamanoğlu Mehmetbey Üniversitesi Tıp Fakültesi, Klinik Araştırmalar Etik Kurulu’ndan 27/02/2023 tarihli ve 2022/154-01/22 karar sayısı ile etik kurul izni alınmıştır

Kaynakça

  • Aouadi, R., Jlid, M. C., Khalifa, R., Hermassi, S., Chelly, M. S., Van Den Tillaar, R., & Gabbett, T. (2012). Association of anthropometric qualities with vertical jump performance in elite male volleyball players. The Journal of Sports Medicine and Physical Fitness, 52(1), 11-17.
  • Baker, U. C., Heath, E. M., Smith, D. R., & Oden, G. L. (2011). Development of Wingate Anaerobic Test Norms for Highly-Trained Women. Journal of Exercise Physiology Online, 14(2).
  • Balci, G. A., As, H., Colakoglu, M., & Ozkaya, O. (2022). Accuracy, reliability and segmental error relationship during a Wingate all-out test. Science & Sports, 37(3), 176-183. Doi: 10.1016/j.scispo.2021.05.003
  • Ballmann, C. G., Maynard, D. J., Lafoon, Z. N., Marshall, M. R., Williams, T. D., & Rogers, R. R. (2019). Effects of listening to preferred versus non-preferred music on repeated wingate anaerobic test performance. Sports, 7(8), 185. doi: 10.3390/sports7080185
  • Boraczyński, M., Boraczyński, T., Podstawski, R., Laskin, J., Choszcz, D., & Lipiński, A. (2017). Relationships between anthropometric features, body composition, and anaerobic alactic power in elite post-pubertal and mature male taekwondo athletes. Human Movement, 18(4), 30-4. doi: 10.1515/humo-2017-0032
  • Castañeda-Babarro, A. (2021). The Wingate Anaerobic Test, a narrative review of the protocol variables that affect the results obtained. Applied Sciences, 11(16), 7417. doi: 10.3390/app11167417
  • Clark, N. W., Wagner, D. R., & Heath, E. M. (2018). Influence of Velotron chainring size on Wingate anaerobic test. Journal of Science and Medicine in Sport, 21(2), 202-206. doi: 10.1016/j.jsams.2017.07.026
  • Cohen, J. (1998). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum
  • Coppin, E., Heath, E. M., Bressel, E., & Wagner, D. R. (2012). Wingate anaerobic test reference values for male power athletes. International Journal of Sports Physiology and Performance, 7(3), 232-236. doi: 10.1123/ijspp.7.3.232
  • Duncan, M. J., Eyre, E., Grgic, J., & Tallis, J. (2019). The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. European Journal of Sport Science, 1-8. doi: 10.1080/17461391.2019.1601261
  • Fujii, N., Tsuchiya, S. I., Tsuji, B., Watanabe, K., Sasaki, Y., & Nishiyasu, T. (2015). Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. European Journal of Applied Physiology, 115, 1967-1974. doi: 10.1007/s00421-015-3179-8
  • Galán-Rioja, M. Á., González-Mohíno, F., Sanders, D., Mellado, J., & González-Ravé, J. M. (2020). Effects of body weight vs. lean body mass on Wingate anaerobic test performance in endurance athletes. International Journal of Sports Medicine, 41(08), 545-551. doi:10.1055/a-1114-6206
  • Grgic, J. (2022). Effects of sodium bicarbonate ingestion on measures of Wingate test performance: a meta-analysis. Journal of the American Nutrition Association, 41(1), 1-10. doi: 10.1080/07315724.2020.1850370
  • Hazir, T., & Kosar, N. S. (2007). Assessment of gender differences in maximal anaerobic power by ratio scaling and allometric scaling. Isokinetics and Exercise Science, 15(4), 253-261. doi: 10.3233/IES-2007-0281
  • Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3. doi: 10.1249/MSS.0b013e31818cb278
  • Jaafar, H., Rouis, M., Coudrat, L., Attiogbé, E., Vandewalle, H., & Driss, T. (2014). Effects of load on Wingate test performances and reliability. The Journal of Strength & Conditioning Research, 28(12), 3462-3468. doi: 10.1519/JSC.0000000000000575
  • Kayacan, Y., Makaracı, Y., Ucar, C., Amonette, W. E., & Yıldız, S. (2023). Heart rate variability and cortisol levels before and after a brief anaerobic exercise in handball players. The Journal of Strength & Conditioning Research, 10-1519. doi: 10.1519/JSC.0000000000004411
  • Leithäuser, R. M., Böning, D., Hütler, M., & Beneke, R. (2016). Enhancement on Wingate anaerobic test performance with hyperventilation. International Journal of Sports Physiology and Performance, 11(5), 627-634. doi: 10.1123/ijspp.2015-0001
  • Maciejczyk, M., Wiecek, M., Szymura, J., Szygula, Z., & Brown, L. E. (2015). Influence of increased body mass and body composition on cycling anaerobic power. The Journal of Strength & Conditioning Research, 29(1), 58-65. doi: 10.1519/JSC.0000000000000727
  • McArdle, W. D., Katch, F. I., & Katch, V. L. (2007). Exercise Physiology, edn. Maryland: Lippincott Williams & Wilkins
  • McKay, A. K., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2021). Defining training and performance caliber: a participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 317-331. doi: 10.1123/ijspp.2021-0451
  • McKie, G. L., Islam, H., Townsend, L. K., Howe, G. J., & Hazell, T. J. (2018). Establishing a practical treadmill sprint as an alternative to the Wingate anaerobic test. Measurement in Physical Education and Exercise Science, 22(2), 138-144. doi: 10.1080/1091367X.2017.1400974
  • Michalik, K., Smolarek, M., Ochmann, B., & Zatoń, M. (2023). Determination of optimal load in the Wingate Anaerobic Test is not depend on number of sprints included in mathematical models. Frontiers in Physiology, 14, 854. doi: 10.3389/fphys.2023.1146076
  • Nakamura, M., & Nose‐Ogura, S. (2021). Effect of administration of monophasic oral contraceptive on the body composition and aerobic and anaerobic capacities of female athletes. Journal of Obstetrics and Gynaecology Research, 47(2), 792-799. doi:10.1111/jog.14613
  • Nikolaidis, P. T., Dellal, A., Torres-Luque, G., & Ingebrigtsen, J. (2015). Determinants of acceleration and maximum speed phase of repeated sprint ability in soccer players: A cross-sectional study. Science & Sports, 30(1), e7-e16. doi: 10.1016/j.scispo.2014.05.003
  • Özkaya, O., Colakoglu, M., Fowler, D., Kuzucu, Ö. E., & Colakoglu, S. (2009). Wingate anaerobic testing with a modified electromagnetically braked elliptical trainer. Part II: Physiological considerations. Isokinetics and Exercise Science, 17(2), 115-119. doi: 10.3233/IES-2009-0342
  • Ramírez-Vélez, R., López-Albán, C. A., La Rotta-Villamizar, D. R., Romero-García, J. A., Alonso-Martinez, A. M., & Izquierdo, M. (2016). Wingate anaerobic test percentile norms in colombian healthy adults. The Journal of Strength & Conditioning Research, 30(1), 217-225. doi: 10.1519/JSC.0000000000001054
  • Sandford, G. N., Laursen, P. B., & Buchheit, M. (2021). Anaerobic speed/power reserve and sport performance: scientific basis, current applications and future directions. Sports Medicine, 51(10), 2017-2028. doi: 10.1007/s40279-021-01523-9
  • Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196-199. doi: 10.1136/bjsm.25.4.196
  • Yáñez-Silva, A., Buzzachera, C. F., Piçarro, I. D. C., Januario, R. S., Ferreira, L. H., McAnulty, S. R., Utter, A. C., & Souza-Junior, T. P. (2017). Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players. Journal of the International Society of Sports Nutrition, 14(1), 5. doi: 10.1186/s12970-017-0162-2
  • Zupan, M. F., Arata, A. W., Dawson, L. H., Wile, A. L., Payn, T. L., & Hannon, M. E. (2009). Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. The Journal of Strength & Conditioning Research, 23(9), 2598-2604. doi: 10.1519/JSC.0b013e3181b1b21b
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Antrenman, Egzersiz Fizyolojisi
Bölüm Araştırma Makalesi
Yazarlar

Yücel Makaracı 0000-0002-6891-9916

Yayımlanma Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Makaracı, Y. (2023). Sporcu ve Sedanter Bireylerde Wingate Anaerobik Güç Testi Performansının Beş Saniyelik Segmentler Ekseninde İncelenmesi. Spor Ve Performans Araştırmaları Dergisi, 14(3), 315-328. https://doi.org/10.17155/omuspd.1348324