Derleme
BibTex RIS Kaynak Göster

Sabit ve Değişken Şiddet Dağilimli Yüksek Şiddetli İnterval Antrenman Yaklaşimlari: Hangisi Maksimal Oksijen Tüketim Düzeyinde Geçirilen Zamani Artirmada Daha Etkilidir? Anlatımsal Bir Derleme

Yıl 2025, Cilt: 16 Sayı: 3, 577 - 591, 21.12.2025
https://doi.org/10.17155/omuspd.1770805

Öz

Bir yüksek şiddetli interval antrenman (HIIT) seansı sırasında maksimal oksijen tüketiminin (V̇O2maks) yüksek yüzdelerinde geçirilen toplam süre, V̇O2maks’ı uzun vadede geliştiren temel akut yanıtlardan biri olarak kabul edilmektedir. Bu nedenle, son 15 yılda yapılan birçok çalışma, yüklenme süresi, tekrar sayısı, dinlenme süresi ve dinlenme yoğunluğu gibi değişkenleri manipüle ederek sabit şiddetli HIIT protokollerinde V̇O2maks’a yakın geçirilen zamanı maksimize etmeye odaklanmıştır. Ancak son dönemde sınırlı sayıda çalışma, bu süreyi artırabilmek amacıyla yüklenme periyotları içindeki şiddet dağılımını değiştiren stratejiler kullanmıştır. Bu anlatımsal derleme, sabit şiddetli HIIT protokollerine kıyasla, değişken şiddet dağılımına sahip HIIT stratejilerinin V̇O2maks’a yakın geçirilen süreyi maksimize etme potansiyelini incelemeyi amaçlamıştır. Bu bağlamda hızlı başlangıçlı, çeşitlendirilmiş şiddetli, doğrusal olarak değişen ve basamaklı azalan şiddetli protokoller ele alınmıştır. Bulgular, V̇O2’nin maksimale ulaşmasına izin verecek kadar yeterli uzunluktaki yüklenme periyotları uygulandığında, değişken şiddet dağılımlı HIIT yaklaşımlarının geleneksel sabit şiddetli protokollere kıyasla V̇O2maks düzeyinde geçirilen süreyi artırabildiğini göstermektedir. Ayrıca, bu stratejilerin benzer kan laktat yanıtları ve algılanan efor derecesine rağmen daha yüksek toplam V̇O2 tüketimi sağladığı bulunmuştur. Bu sonuçlar, değişken şiddet dağılımlarını içeren HIIT yaklaşımlarının daha yüksek aerobik talepler oluşturabileceğini ortaya koymaktadır.

Etik Beyan

Bu çalışma, mevcut literatürün incelenmesine dayanan bir anlatı derlemesidir ve herhangi bir insan ya da hayvan katılımcı içermemektedir.

Kaynakça

  • Bailey, S. J., Vanhatalo, A., DiMenna, F. J., Wilkerson, D. P., & Jones, A. M. (2011). Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Medicine and Science in Sports and Exercise, 43(3), 457–467. https://doi.org/10.1249/MSS.0b013e3181ef3dce
  • Billat, V., Petot, H., Karp, J. R., Sarre, G., Morton, R. H., & Mille-Hamard, L. (2013). The sustainability of VO2max: Effect of decreasing the workload. European Journal of Applied Physiology, 113(2), 385–394. https://doi.org/10.1007/s00421-012-2424-7
  • Bossi, A. H., Mesquida, C., Passfield, L., Rønnestad, B. R., & Hopker, J. G. (2020). Optimizing Interval Training Through Power-Output Variation Within the Work Intervals. International Journal of Sports Physiology and Performance, 15(7), 982–989. https://doi.org/10.1123/ijspp.2019-0260
  • Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Medicine, 43(5), 313–338. https://doi.org/10.1007/s40279-013-0029-x
  • Caputo, F., & Denadai, B. S. (2008). The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. European Journal of Applied Physiology, 103(1), 47–57. https://doi.org/10.1007/s00421-008-0670-5
  • Chance, B., & Williams, G. R. (1955). Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. The Journal of Biological Chemistry, 217, 383–393.
  • Chidnok, W., DiMenna, F. J., Fulford, J., Bailey, S. J., Skiba, P. F., Vanhatalo, A., & Jones, A. M. (2013). Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 305(9), R1085–R1092. https://doi.org/10.1152/ajpregu.00406.2013
  • de Aguiar, R. A., Turnes, T., de Oliveira Cruz, R. S., & Caputo, F. (2013). Fast-start strategy increases the time spent above 95 %VO2max during severe-intensity intermittent running exercise. European Journal of Applied Physiology, 113(4), 941–949. https://doi.org/10.1007/s00421-012-2508-4
  • De Lucas, R. D., De Souza, K. M., Costa, V. P., Grossl, T., & Guglielmo, L. G. A. (2013). Time to exhaustion at and above critical power in trained cyclists: The relationship between heavy and severe intensity domains. Science & Sports, 28(1), 9–14. https://doi.org/10.1016/j.scispo.2012.04.004
  • Ferguson, C., Rossiter, H. B., Whipp, B. J., Cathcart, A. J., Murgatroyd, S. R., & Ward, S. A. (2010). Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. Journal of Applied Physiology 108(4), 866–874. https://doi.org/10.1152/japplphysiol.91425.2008
  • Heinonen, I., Nesterov, S. V., Kemppainen, J., Fujimoto, T., Knuuti, J., & Kalliokoski, K. K. (2012). Increasing exercise intensity reduces heterogeneity of glucose uptake in human skeletal muscles. Plos One, 7(12), e52191. https://doi.org/10.1371/journal.pone.0052191
  • Hill, D. W., Poole, D. C., & Smith, J. C. (2002). The relationship between power and the time to achieve .VO(2max). Medicine and Science in Sports and Exercise, 34(4), 709–714. https://doi.org/10.1097/00005768-200204000-00023
  • Hodson-Tole, E. F., & Wakeling, J. M. (2009). Motor unit recruitment for dynamic tasks: current understanding and future directions. Journal of comparative physiology. B, Biochemical, Systemic, and Environmental Physiology, 179(1), 57–66. https://doi.org/10.1007/s00360-008-0289-1
  • Jones, A. M., & Vanhatalo, A. (2017). The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports medicine (Auckland, N.Z.), 47(Suppl 1), 65–78. https://doi.org/10.1007/s40279-017-0688-0
  • Jones, A. M., Grassi, B., Christensen, P. M., Krustrup, P., Bangsbo, J., & Poole, D. C. (2011). Slow component of VO2 kinetics: mechanistic bases and practical applications. Medicine and Science in Sports and Exercise, 43(11), 2046–2062. https://doi.org/10.1249/MSS.0b013e31821fcfc1
  • Jones, A. M., Wilkerson, D. P., Vanhatalo, A., & Burnley, M. (2008). Influence of pacing strategy on O2 uptake and exercise tolerance. Scandinavian Journal of Medicine & Science in Sports, 18(5), 615–626. https://doi.org/10.1111/j.1600-0838.2007.00725.x
  • Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Medicine (Auckland, N.Z.), 32(1), 53–73. https://doi.org/10.2165/00007256-200232010-00003
  • Lisbôa, F. D., Raimundo, J. A. G., Salvador, A. F., Pereira, K. L., Turnes, T., Diefenthaeler, F., Oliveira, M. F. M., & Caputo, F. (2019). Acute Cardiopulmonary, Metabolic, and Neuromuscular Responses to Severe-Intensity Intermittent Exercises. Journal of Strength and Conditioning Research, 33(2), 408–416. https://doi.org/10.1519/JSC.0000000000002130
  • Lisbôa, F. D., Salvador, A. F., Raimundo, J. A., Pereira, K. L., de Aguiar, R. A., & Caputo, F. (2015). Decreasing Power Output Increases Aerobic Contribution During Low-Volume Severe-Intensity Intermittent Exercise. Journal of Strength and Conditioning Research, 29(9), 2434–2440. https://doi.org/10.1519/JSC.0000000000000914
  • Meyler, S., Bottoms, L., Wellsted, D., & Muniz-Pumares, D. (2023). Variability in exercise tolerance and physiological responses to exercise prescribed relative to physiological thresholds and to maximum oxygen uptake. Experimental Physiology, 108(4), 581–594. https://doi.org/10.1113/EP090878
  • Midgley, A. W., & Mc Naughton, L. R. (2006). Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. The Journal of Sports Medicine and Physical Fitness, 46(1), 1–14.
  • Miller, P., Perez, N., & Farrell, J. W. (2023). Acute Oxygen Consumption Response to Fast Start High-Intensity Intermittent Exercise. Sports, 11(12), 238. https://doi.org/10.3390/sports11120238
  • Mølmen, K. S., & Rønnestad, B. R. (2024). A narrative review exploring advances in interval training for endurance athletes. Applied Physiology, Nutrition, and Metabolism, 49(7), 1008-1013. https://doi.org/10.1139/apnm-2023-0603
  • Norouzi, M., Cabuk, R., Balci, G. A., As, H., & Ozkaya, O. (2023). Assessing acute responses to exercises performed within and at the upper boundary of severe exercise domain. Research Quarterly for Exercise and Sport, 94(4), 1094–1100. https://doi.org/10.1080/02701367.2022.2117268
  • Odden, I., Nymoen, L., Urianstad, T., Kristoffersen, M., Hammarström, D., Hansen, J., … et al. (2024). The higher the fraction of maximal oxygen uptake is during interval training, the greater is the cycling performance gain. European Journal of Sport Science, 24(11), 1583–1596. https://doi.org/10.1002/ejsc.12202
  • Rønnestad, B. R., Bakken, T. A., Thyli, V., Hansen, J., Ellefsen, S., & Hammarstrøm, D. (2022). Increasing Oxygen Uptake in Cross-Country Skiers by Speed Variation in Work Intervals. International Journal of Sports Physiology and Performance, 17(3), 384–390. https://doi.org/10.1123/ijspp.2021-0226
  • Rønnestad, B. R., Rømer, T., & Hansen, J. (2020). Increasing Oxygen Uptake in Well-Trained Cross-Country Skiers During Work Intervals With a Fast Start. International Journal of Sports Physiology and Performance, 15(3), 383–389. https://doi.org/10.1123/ijspp.2018-0360
  • Rossiter, H. B., Ward, S. A., Kowalchuk, J. M., Howe, F. A., Griffiths, J. R., & Whipp, B. J. (2002). Dynamic asymmetry of phosphocreatine concentration and O(2) uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. The Journal of Physiology, 541(Pt 3), 991–1002. https://doi.org/10.1113/jphysiol.2001.012910
  • Thevenet, D., Tardieu-Berger, M., Berthoin, S., & Prioux, J. (2007). Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. European Journal of Applied Physiology, 99(2), 133–142. https://doi.org/10.1007/s00421-006-0327-1
  • Thron, M., Ruf, L., Buchheit, M., Härtel, S., Woll, A., & Altmann, S. (2025). Anaerobic speed reserve and acute responses to a short-format high-intensity interval session in runners. Journal of Science and Medicine in Sport, 28(5), 408–417. https://doi.org/10.1016/j.jsams.2024.12.012
  • Turnes, T., de Aguiar, R. A., Cruz, R. S., & Caputo, F. (2016). Interval training in the boundaries of severe domain: effects on aerobic parameters. European Journal of Applied Physiology, 116(1), 161–169. https://doi.org/10.1007/s00421-015-3263-0
  • Vanhatalo, A., Poole, D. C., DiMenna, F. J., Bailey, S. J., & Jones, A. M. (2011). Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. American journal of physiology. Regulatory, Integrative and Comparative Physiology, 300(3), R700–R707. https://doi.org/10.1152/ajpregu.00761.2010
  • Whipp, B. J., & Mahler, M. (1980). Dynamics of pulmonary gas exchange during exercise. In J. B. West (Ed.), Pulmonary gas exchange (Vol. II, pp. 33–96). Academic Press.
  • Wilson, D. F. (2015). Regulation of metabolism: the rest-to-work transition in skeletal muscle. American journal of physiology. Endocrinology and Metabolism, 309(9), E793–E801. https://doi.org/10.1152/ajpendo.00355.2015
  • Wommer, D., Turnes, T., Souza, K., & Guglielmo, L. G. A. (2022). Similar Time Near VO2max Regardless of Work Rate Manipulation in Cycling Interval Training. International Journal of Sports Medicine, 43(4), 350–356. https://doi.org/10.1055/a-1550-9977

Constant and Variable-Intensity Distribution High-Intensity Interval Training Approaches: Which Is More Effective in Increasing Time Spent at Maximal Oxygen Uptake? A Narrative Review

Yıl 2025, Cilt: 16 Sayı: 3, 577 - 591, 21.12.2025
https://doi.org/10.17155/omuspd.1770805

Öz

The total time spent at high percentages of maximal oxygen uptake (V̇O2max) during a high-intensity interval training (HIIT) session is considered one of the key acute responses for inducing long-term improvements in V̇O2max. Therefore, over the past 15 years, many studies have focused on maximizing the time spent near V̇O2max in constant-intensity HIIT protocols by manipulating variables such as work duration, number of repetitions, recovery duration, and recovery intensity. More recently, however, a limited number of studies have employed strategies that modify the intensity distribution within work bouts in order to increase this time. This narrative review aimed to examine the potential of HIIT strategies with variable intensity distributions to maximize the time spent near V̇O2max compared with constant-intensity HIIT protocols. Accordingly, fast-start, varied-intensity, linearly varying, and stepwise decreasing-intensity protocols were addressed. The findings indicate that, when sufficiently long work bouts are applied to allow V̇O2 to reach maximal levels, variable intensity-distribution HIIT approaches can increase the time spent at V̇O2max compared with traditional constant-intensity protocols. Furthermore, these strategies were found to elicit greater total V̇O2 consumption despite producing similar blood lactate responses and ratings of perceived exertion. These results suggest that HIIT approaches incorporating variable intensity distributions may impose higher aerobic demands.

Etik Beyan

This study is a narrative review based on an examination of the existing literature and does not involve any human or animal participants

Kaynakça

  • Bailey, S. J., Vanhatalo, A., DiMenna, F. J., Wilkerson, D. P., & Jones, A. M. (2011). Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Medicine and Science in Sports and Exercise, 43(3), 457–467. https://doi.org/10.1249/MSS.0b013e3181ef3dce
  • Billat, V., Petot, H., Karp, J. R., Sarre, G., Morton, R. H., & Mille-Hamard, L. (2013). The sustainability of VO2max: Effect of decreasing the workload. European Journal of Applied Physiology, 113(2), 385–394. https://doi.org/10.1007/s00421-012-2424-7
  • Bossi, A. H., Mesquida, C., Passfield, L., Rønnestad, B. R., & Hopker, J. G. (2020). Optimizing Interval Training Through Power-Output Variation Within the Work Intervals. International Journal of Sports Physiology and Performance, 15(7), 982–989. https://doi.org/10.1123/ijspp.2019-0260
  • Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Medicine, 43(5), 313–338. https://doi.org/10.1007/s40279-013-0029-x
  • Caputo, F., & Denadai, B. S. (2008). The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. European Journal of Applied Physiology, 103(1), 47–57. https://doi.org/10.1007/s00421-008-0670-5
  • Chance, B., & Williams, G. R. (1955). Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. The Journal of Biological Chemistry, 217, 383–393.
  • Chidnok, W., DiMenna, F. J., Fulford, J., Bailey, S. J., Skiba, P. F., Vanhatalo, A., & Jones, A. M. (2013). Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 305(9), R1085–R1092. https://doi.org/10.1152/ajpregu.00406.2013
  • de Aguiar, R. A., Turnes, T., de Oliveira Cruz, R. S., & Caputo, F. (2013). Fast-start strategy increases the time spent above 95 %VO2max during severe-intensity intermittent running exercise. European Journal of Applied Physiology, 113(4), 941–949. https://doi.org/10.1007/s00421-012-2508-4
  • De Lucas, R. D., De Souza, K. M., Costa, V. P., Grossl, T., & Guglielmo, L. G. A. (2013). Time to exhaustion at and above critical power in trained cyclists: The relationship between heavy and severe intensity domains. Science & Sports, 28(1), 9–14. https://doi.org/10.1016/j.scispo.2012.04.004
  • Ferguson, C., Rossiter, H. B., Whipp, B. J., Cathcart, A. J., Murgatroyd, S. R., & Ward, S. A. (2010). Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. Journal of Applied Physiology 108(4), 866–874. https://doi.org/10.1152/japplphysiol.91425.2008
  • Heinonen, I., Nesterov, S. V., Kemppainen, J., Fujimoto, T., Knuuti, J., & Kalliokoski, K. K. (2012). Increasing exercise intensity reduces heterogeneity of glucose uptake in human skeletal muscles. Plos One, 7(12), e52191. https://doi.org/10.1371/journal.pone.0052191
  • Hill, D. W., Poole, D. C., & Smith, J. C. (2002). The relationship between power and the time to achieve .VO(2max). Medicine and Science in Sports and Exercise, 34(4), 709–714. https://doi.org/10.1097/00005768-200204000-00023
  • Hodson-Tole, E. F., & Wakeling, J. M. (2009). Motor unit recruitment for dynamic tasks: current understanding and future directions. Journal of comparative physiology. B, Biochemical, Systemic, and Environmental Physiology, 179(1), 57–66. https://doi.org/10.1007/s00360-008-0289-1
  • Jones, A. M., & Vanhatalo, A. (2017). The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports medicine (Auckland, N.Z.), 47(Suppl 1), 65–78. https://doi.org/10.1007/s40279-017-0688-0
  • Jones, A. M., Grassi, B., Christensen, P. M., Krustrup, P., Bangsbo, J., & Poole, D. C. (2011). Slow component of VO2 kinetics: mechanistic bases and practical applications. Medicine and Science in Sports and Exercise, 43(11), 2046–2062. https://doi.org/10.1249/MSS.0b013e31821fcfc1
  • Jones, A. M., Wilkerson, D. P., Vanhatalo, A., & Burnley, M. (2008). Influence of pacing strategy on O2 uptake and exercise tolerance. Scandinavian Journal of Medicine & Science in Sports, 18(5), 615–626. https://doi.org/10.1111/j.1600-0838.2007.00725.x
  • Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Medicine (Auckland, N.Z.), 32(1), 53–73. https://doi.org/10.2165/00007256-200232010-00003
  • Lisbôa, F. D., Raimundo, J. A. G., Salvador, A. F., Pereira, K. L., Turnes, T., Diefenthaeler, F., Oliveira, M. F. M., & Caputo, F. (2019). Acute Cardiopulmonary, Metabolic, and Neuromuscular Responses to Severe-Intensity Intermittent Exercises. Journal of Strength and Conditioning Research, 33(2), 408–416. https://doi.org/10.1519/JSC.0000000000002130
  • Lisbôa, F. D., Salvador, A. F., Raimundo, J. A., Pereira, K. L., de Aguiar, R. A., & Caputo, F. (2015). Decreasing Power Output Increases Aerobic Contribution During Low-Volume Severe-Intensity Intermittent Exercise. Journal of Strength and Conditioning Research, 29(9), 2434–2440. https://doi.org/10.1519/JSC.0000000000000914
  • Meyler, S., Bottoms, L., Wellsted, D., & Muniz-Pumares, D. (2023). Variability in exercise tolerance and physiological responses to exercise prescribed relative to physiological thresholds and to maximum oxygen uptake. Experimental Physiology, 108(4), 581–594. https://doi.org/10.1113/EP090878
  • Midgley, A. W., & Mc Naughton, L. R. (2006). Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. The Journal of Sports Medicine and Physical Fitness, 46(1), 1–14.
  • Miller, P., Perez, N., & Farrell, J. W. (2023). Acute Oxygen Consumption Response to Fast Start High-Intensity Intermittent Exercise. Sports, 11(12), 238. https://doi.org/10.3390/sports11120238
  • Mølmen, K. S., & Rønnestad, B. R. (2024). A narrative review exploring advances in interval training for endurance athletes. Applied Physiology, Nutrition, and Metabolism, 49(7), 1008-1013. https://doi.org/10.1139/apnm-2023-0603
  • Norouzi, M., Cabuk, R., Balci, G. A., As, H., & Ozkaya, O. (2023). Assessing acute responses to exercises performed within and at the upper boundary of severe exercise domain. Research Quarterly for Exercise and Sport, 94(4), 1094–1100. https://doi.org/10.1080/02701367.2022.2117268
  • Odden, I., Nymoen, L., Urianstad, T., Kristoffersen, M., Hammarström, D., Hansen, J., … et al. (2024). The higher the fraction of maximal oxygen uptake is during interval training, the greater is the cycling performance gain. European Journal of Sport Science, 24(11), 1583–1596. https://doi.org/10.1002/ejsc.12202
  • Rønnestad, B. R., Bakken, T. A., Thyli, V., Hansen, J., Ellefsen, S., & Hammarstrøm, D. (2022). Increasing Oxygen Uptake in Cross-Country Skiers by Speed Variation in Work Intervals. International Journal of Sports Physiology and Performance, 17(3), 384–390. https://doi.org/10.1123/ijspp.2021-0226
  • Rønnestad, B. R., Rømer, T., & Hansen, J. (2020). Increasing Oxygen Uptake in Well-Trained Cross-Country Skiers During Work Intervals With a Fast Start. International Journal of Sports Physiology and Performance, 15(3), 383–389. https://doi.org/10.1123/ijspp.2018-0360
  • Rossiter, H. B., Ward, S. A., Kowalchuk, J. M., Howe, F. A., Griffiths, J. R., & Whipp, B. J. (2002). Dynamic asymmetry of phosphocreatine concentration and O(2) uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. The Journal of Physiology, 541(Pt 3), 991–1002. https://doi.org/10.1113/jphysiol.2001.012910
  • Thevenet, D., Tardieu-Berger, M., Berthoin, S., & Prioux, J. (2007). Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. European Journal of Applied Physiology, 99(2), 133–142. https://doi.org/10.1007/s00421-006-0327-1
  • Thron, M., Ruf, L., Buchheit, M., Härtel, S., Woll, A., & Altmann, S. (2025). Anaerobic speed reserve and acute responses to a short-format high-intensity interval session in runners. Journal of Science and Medicine in Sport, 28(5), 408–417. https://doi.org/10.1016/j.jsams.2024.12.012
  • Turnes, T., de Aguiar, R. A., Cruz, R. S., & Caputo, F. (2016). Interval training in the boundaries of severe domain: effects on aerobic parameters. European Journal of Applied Physiology, 116(1), 161–169. https://doi.org/10.1007/s00421-015-3263-0
  • Vanhatalo, A., Poole, D. C., DiMenna, F. J., Bailey, S. J., & Jones, A. M. (2011). Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. American journal of physiology. Regulatory, Integrative and Comparative Physiology, 300(3), R700–R707. https://doi.org/10.1152/ajpregu.00761.2010
  • Whipp, B. J., & Mahler, M. (1980). Dynamics of pulmonary gas exchange during exercise. In J. B. West (Ed.), Pulmonary gas exchange (Vol. II, pp. 33–96). Academic Press.
  • Wilson, D. F. (2015). Regulation of metabolism: the rest-to-work transition in skeletal muscle. American journal of physiology. Endocrinology and Metabolism, 309(9), E793–E801. https://doi.org/10.1152/ajpendo.00355.2015
  • Wommer, D., Turnes, T., Souza, K., & Guglielmo, L. G. A. (2022). Similar Time Near VO2max Regardless of Work Rate Manipulation in Cycling Interval Training. International Journal of Sports Medicine, 43(4), 350–356. https://doi.org/10.1055/a-1550-9977
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Antrenman
Bölüm Derleme
Yazarlar

Refik Çabuk 0000-0002-3682-3135

Egemen Alp 0000-0002-5915-8625

Gönderilme Tarihi 22 Ağustos 2025
Kabul Tarihi 24 Kasım 2025
Yayımlanma Tarihi 21 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

APA Çabuk, R., & Alp, E. (2025). Constant and Variable-Intensity Distribution High-Intensity Interval Training Approaches: Which Is More Effective in Increasing Time Spent at Maximal Oxygen Uptake? A Narrative Review. Spor ve Performans Araştırmaları Dergisi, 16(3), 577-591. https://doi.org/10.17155/omuspd.1770805