Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Differences in Heart Rate Measurements of Catapult S7 and X7 Micro Electromechanical Systems

Yıl 2024, Cilt: 15 Sayı: 3, 391 - 404, 25.12.2024
https://doi.org/10.17155/omuspd.1525108

Öz

The aim of this study was to investigate the validity and reliability of different microelectromechanical systems models belonging to the Catapult brand in the measurement of (i) average and (ii) maximal heart rate. Thirty elite academy football players (Age: 22 ± 3.4 years; Height: 175 ± 8.4 cm; Weight: 69 ± 4.5 kg) participated in the study voluntarily. To measure the heart rate values of the participants at different heart rate intervals, a team sport simulation cycle that included different activities such as walking, jogging, running, and sprinting was applied. During the team sport simulation cycle, the athletes’ average and maximum heart rates were recorded during the entire test using Catapult brand microelectromechanical systems. The participants were simultaneously dressed in four different Catapult microelectromechanical system equipment. Data were obtained simultaneously from two Catapult S7 units embedded in the vest and two Catapult X7 units measuring via H 10 Polar bands. With this method, differences between models and units of models were examined. One-way ANOVA analysis was performed to determine differences between models and units. At the same time, Bonferroni post hoc analysis was performed to determine which model and unit caused the difference. Pearson correlation analysis was performed to determine the relationship between models and units. In one-way ANOVA average heart rate measurement (F= 0.203; p=0.894; η²= 0.002) and maximum heart rate measurement (F= 0.262; p=0.852; η²= 0.002), no statistically significant difference was observed between models and units. In Pearson correlation analysis, almost perfect relationships were detected between all comparisons (r ≤ 0.9). The findings of the study show that different Catapult models and units are consistent and reliable in heart rate measurements. It is thought that these two systems can be used interchangeably.

Kaynakça

  • Akyildiz, Z., Clemente, F. M., Şentürk, D., Gürol, B., Yildiz, M., Ocak, Y., & Günay, M. (2022). Investigation of the convergent validity and reliability of unit position differences of Catapult S5 GPS units in field conditions. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 175433712211005. https://doi.org/10.1177/17543371221100592
  • Borg, G. (1982). Ratings of Perceived Exertion and Heart Rates During Short-Term Cycle Exercise and Their Use in a New Cycling Strength Test*. International Journal of Sports Medicine, 03(03), 153-158. https://doi.org/10.1055/s-2008-1026080
  • Borg, G., Hassmén, P., & Lagerström, M. (1987). Perceived exertion related to heart rate and blood lactate during arm and leg exercise. European Journal of Applied Physiology and Occupational Physiology, 56(6), 679-685. https://doi.org/10.1007/BF00424810
  • Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J., Coutts, A. J., Burgess, D. J., Gregson, W., & Cable, N. T. (2017). Monitoring Athlete Training Loads: Consensus Statement. International Journal of Sports Physiology and Performance, 12(s2), S2-161-S2-170. https://doi.org/10.1123/IJSPP.2017-0208
  • Buchheit, M. (2014). Monitoring training status with HR measures: do all roads lead to Rome? Frontiers in Physiology, 5. https://doi.org/10.3389/fphys.2014.00073
  • Buchheit, M., Simpson, M. B., Al Haddad, H., Bourdon, P. C., & Mendez-Villanueva, A. (2012). Monitoring changes in physical performance with heart rate measures in young soccer players. European Journal of Applied Physiology, 112(2), 711-723. https://doi.org/10.1007/s00421-011-2014-0
  • Cormier, P., Tsai, M.-C., Meylan, C., Agar-Newman, D., Epp-Stobbe, A., Kalthoff, Z., & Klimstra, M. (2023). Concurrent Validity and Reliability of Different Technologies for Sprint-Derived Horizontal Force-Velocity-Power Profiling. Journal of Strength and Conditioning Research, 37(6), 1298-1305. https://doi.org/10.1519/JSC.0000000000004429
  • Crang, Z. L., Duthie, G., Cole, M. H., Weakley, J., Hewitt, A., & Johnston, R. D. (2021). The Validity and Reliability of Wearable Microtechnology for Intermittent Team Sports: A Systematic Review. Sports Medicine, 51(3), 549-565. https://doi.org/10.1007/s40279-020-01399-1
  • Crang, Z. L., Duthie, G., Cole, M. H., Weakley, J., Hewitt, A., & Johnston, R. D. (2022). The inter-device reliability of global navigation satellite systems during team sport movement across multiple days. Journal of Science and Medicine in Sport, 25(4), 340-344. https://doi.org/10.1016/j.jsams.2021.11.044
  • Crang, Z. L., Duthie, G., Cole, M. H., Weakley, J., Hewitt, A., & Johnston, R. D. (2024). The validity of raw custom-processed global navigation satellite systems data during straight-line sprinting across multiple days. Journal of Science and Medicine in Sport, 27(3), 204-210. https://doi.org/10.1016/j.jsams.2023.12.004
  • Essner, A., Sjöström, R., Ahlgren, E., & Lindmark, B. (2013). Validity and reliability of Polar® RS800CX heart rate monitor, measuring heart rate in dogs during standing position and at trot on a treadmill. Physiology & Behavior, 114-115, 1-5. https://doi.org/10.1016/j.physbeh.2013.03.002
  • Foster, C., Rodriguez-Marroyo, J. A., & de Koning, J. J. (2017). Monitoring Training Loads: The Past, the Present, and the Future. International Journal of Sports Physiology and Performance, 12(s2), S2-2-S2-8. https://doi.org/10.1123/IJSPP.2016-0388
  • Fotouhi-Ghazvini, F., & Abbaspour, S. (2020). Wearable wireless sensors for measuring calorie consumption. Journal of Medical Signals & Sensors, 10(1), 19. https://doi.org/10.4103/jmss.JMSS_15_18
  • Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., Buote, R., Van Heerden, D., Luan, H., Cullen, K., Slade, L., & Taylor, N. G. A. (2020). Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR mHealth and uHealth, 8(9), e18694. https://doi.org/10.2196/18694
  • Gilgen-Ammann, R., Schweizer, T., & Wyss, T. (2019). RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. European Journal of Applied Physiology, 119(7), 1525-1532. https://doi.org/10.1007/s00421-019-04142-5
  • Halson, S. L. (2014). Monitoring Training Load to Understand Fatigue in Athletes. Sports Medicine, 44(S2), 139-147. https://doi.org/10.1007/s40279-014-0253-z
  • Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science. Medicine & Science in Sports & Exercise, 41(1), 3-12. https://doi.org/10.1249/MSS.0b013e31818cb278
  • Keytel, L., Goedecke, J., Noakes, T., Hiiloskorpi, H., Laukkanen, R., van der Merwe, L., & Lambert, E. (2005). Prediction of energy expenditure from heart rate monitoring during submaximal exercise. Journal of Sports Sciences, 23(3), 289-297. https://doi.org/10.1080/02640410470001730089
  • Khushhal, A., Nichols, S., Evans, W., Gleadall-Siddall, D., Page, R., O’Doherty, A., Carroll, S., Ingle, L., & Abt, G. (2017). Validity and Reliability of the Apple Watch for Measuring Heart Rate During Exercise. Sports Medicine International Open, 1(06), E206-E211. https://doi.org/10.1055/s-0043-120195
  • Kiely, M., Warrington, G., McGoldrick, A., & Cullen, S. (2019). Physiological and Performance Monitoring in Competitive Sporting Environments: A Review for Elite Individual Sports. Strength & Conditioning Journal, 41(6), 62-74. https://doi.org/10.1519/SSC.0000000000000493
  • Kranjec, J., Beguš, S., Geršak, G., & Drnovšek, J. (2014). Non-contact heart rate and heart rate variability measurements: A review. Biomedical Signal Processing and Control, 13, 102-112. https://doi.org/10.1016/j.bspc.2014.03.004
  • Lai, N., Camesasca, M., Saidel, G. M., Dash, R. K., & Cabrera, M. E. (2007). Linking Pulmonary Oxygen Uptake, Muscle Oxygen Utilization and Cellular Metabolism during Exercise. Annals of Biomedical Engineering, 35(6), 956-969. https://doi.org/10.1007/s10439-007-9271-4
  • Lentz-Nielsen, N., & Madeleine, P. (2023). Validation of football locomotion categories derived from inertial measurements. Sports Engineering, 26(1), 26. https://doi.org/10.1007/s12283-023-00414-8
  • Makar, P., Silva, A. F., Oliveira, R., Janusiak, M., Parus, P., Smoter, M., & Clemente, F. M. (2023). Assessing the agreement between a global navigation satellite system and an optical-tracking system for measuring total, high-speed running, and sprint distances in official soccer matches. Science Progress, 106(3). https://doi.org/10.1177/00368504231187501
  • Mosley, E., & Laborde, S. (2022). A scoping review of heart rate variability in sport and exercise psychology. International Review of Sport and Exercise Psychology, 1-75. https://doi.org/10.1080/1750984X.2022.2092884
  • Müller, A. M., Wang, N. X., Yao, J., Tan, C. S., Low, I. C. C., Lim, N., Tan, J., Tan, A., & Müller-Riemenschneider, F. (2019). Heart Rate Measures From Wrist-Worn Activity Trackers in a Laboratory and Free-Living Setting: Validation Study. JMIR mHealth and uHealth, 7(10), e14120. https://doi.org/10.2196/14120
  • Owen, A. L., Forsyth, J. J., Wong, D. P., Dellal, A., Connelly, S. P., & Chamari, K. (2015). Heart Rate–Based Training Intensity and Its Impact on Injury Incidence Among Elite-Level Professional Soccer Players. Journal of Strength and Conditioning Research, 29(6), 1705-1712. https://doi.org/10.1519/JSC.0000000000000810
  • Owen, A. L., Wong, D. P., McKenna, M., & Dellal, A. (2011). Heart Rate Responses and Technical Comparison Between Small- vs. Large-Sided Games in Elite Professional Soccer. Journal of Strength and Conditioning Research, 25(8), 2104-2110. https://doi.org/10.1519/JSC.0b013e3181f0a8a3
  • Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(3), R502-R516. https://doi.org/10.1152/ajpregu.00114.2004
  • Schaffarczyk, M., Rogers, B., Reer, R., & Gronwald, T. (2022). Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremental Exercise in Recreational Men and Women. Sensors, 22(17), 6536. https://doi.org/10.3390/s22176536
  • Scherr, J., Wolfarth, B., Christle, J. W., Pressler, A., Wagenpfeil, S., & Halle, M. (2013). Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. European Journal of Applied Physiology, 113(1), 147-155. https://doi.org/10.1007/s00421-012-2421-x
  • Silva, H., Nakamura, F. Y., Castellano, J., & Marcelino, R. (2023). Training Load Within a Soccer Microcycle Week—A Systematic Review. Strength & Conditioning Journal, 45(5), 568-577. https://doi.org/10.1519/SSC.0000000000000765
  • Silva, P., Santos, E. Dos, Grishin, M., & Rocha, J. M. (2018). Validity of Heart Rate-Based Indices to Measure Training Load and Intensity in Elite Football Players. Journal of Strength and Conditioning Research, 32(8), 2340-2347. https://doi.org/10.1519/JSC.0000000000002057
  • Speer, K. E., Semple, S., Naumovski, N., & McKune, A. J. (2020). Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study. European Journal of Investigation in Health, Psychology and Education, 10(1), 390-404. https://doi.org/10.3390/ejihpe10010029
  • Stagno, K. M., Thatcher, R., & van Someren, K. A. (2007). A modified TRIMP to quantify the in-season training load of team sport players. Journal of Sports Sciences, 25(6), 629-634. https://doi.org/10.1080/02640410600811817
  • Taksler, G. B., Keshner, M., Fagerlin, A., Hajizadeh, N., & Braithwaite, R. S. (2013). Personalized Estimates of Benefit From Preventive Care Guidelines. Annals of Internal Medicine, 159(3), 161-168. https://doi.org/10.7326/0003-4819-159-3-201308060-00005
  • Weakley, J., Black, G., McLaren, S., Scantlebury, S., Suchomel, T. J., McMahon, E., Watts, D., & Read, D. B. (2024). Testing and Profiling Athletes: Recommendations for Test Selection, Implementation, and Maximizing Information. Strength & Conditioning Journal, 46(2), 159-179. https://doi.org/10.1519/SSC.0000000000000784
  • Wing, C. (2018). Monitoring Athlete Load: Data Collection Methods and Practical Recommendations. Strength & Conditioning Journal, 40(4), 26-39. https://doi.org/10.1519/SSC.0000000000000384

Catapult S7 ve X7 Mikro Elektro Mekanik Sistemlerinin Kalp Atım Hızı Ölçümlerindeki Farklılıklarının İncelenmesi

Yıl 2024, Cilt: 15 Sayı: 3, 391 - 404, 25.12.2024
https://doi.org/10.17155/omuspd.1525108

Öz

Bu araştırmanın amacı Catapult markasına ait farklı modellerdeki mikro elektro mekanik sistemlerin (i) ortalama ve (ii) maksimal kalp atım hızı ölçümündeki geçerlilik ve güvenirliliğini incelemektir. Araştırmaya 30 elit akademi futbol oyuncusu (Yaş: 22± 3.4 yıl; Boy: 175 ± 8.4cm; Kilo: 69 ± 4.5 kg) gönüllü olarak katılmıştır. Katılımcıların kalp atım hız değerlerini farklı atım aralıklarında ölçebilmek için yürüme, jog, koşu ve sprint gibi farklı aktiveleri içeren takım sporu simülasyon döngüsü uygulatılmıştır. Takım sporu simülasyon döngüsü esnasında sporcuların ortalama ve maksimum kalp atım hızları Catapult marka mikro elektro mekanik sistemleri aracılığıyla tüm test esnasında kayıt altına alınmıştır. Katılımcılara eş zamanlı olarak dört farklı Catapult mikro elektro mekanik sistem ekipmanı giydirilmiştir. İki tane Catapult S7 yeleğe gömülü ve iki tanede H 10 Polar bandı aracılığıyla ölçüm yapan Catapult X7 ünitesinden eş zamanlı olarak veri elde edilmiştir. Bu yöntemle, modeller arası ve modellerin birimleri arasındaki farklılıklar incelenmiştir. Modellerin ve ünite farklılıklarını tespit etmek için tek yönlü ANOVA analizi yapılmıştır. Aynı zamanda farklılık hangi model ve üniteden kaynaklandığı tespit etmek için bonferroni post hoc analizi yapılmıştır. Modeller ve üniteler arasındaki ilişkiyi tespit etmek için pearson korelasyon analizi yapılmıştır. Tek yönlü ANOVA ortalama kalp atım hızları ölçümünde (F= 0,203; p=0,894; η²= 0,002) ve maksimum kalp atım hızı ölçümünde (F= 0,262; p=0,852; η²= 0,002) model ve birimler arasında istatistiksel olarak anlamlı farklılık görülmemiştir. Pearson korelasyon analizinde tüm karşılaştırmalar arasında (r ≤ 0,9) neredeyse mükemmel ilişikliler tespit edilmiştir. Araştırmanın bulguları, farklı Catapult modelleri ve ünitelerinin kalp atım hızı ölçümlerinde tutarlı ve güvenilir olduğunu göstermektedir. Bu iki sistemin birbiri yerine kullanılabileceği düşünülmektedir.

Kaynakça

  • Akyildiz, Z., Clemente, F. M., Şentürk, D., Gürol, B., Yildiz, M., Ocak, Y., & Günay, M. (2022). Investigation of the convergent validity and reliability of unit position differences of Catapult S5 GPS units in field conditions. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 175433712211005. https://doi.org/10.1177/17543371221100592
  • Borg, G. (1982). Ratings of Perceived Exertion and Heart Rates During Short-Term Cycle Exercise and Their Use in a New Cycling Strength Test*. International Journal of Sports Medicine, 03(03), 153-158. https://doi.org/10.1055/s-2008-1026080
  • Borg, G., Hassmén, P., & Lagerström, M. (1987). Perceived exertion related to heart rate and blood lactate during arm and leg exercise. European Journal of Applied Physiology and Occupational Physiology, 56(6), 679-685. https://doi.org/10.1007/BF00424810
  • Bourdon, P. C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M. C., Gabbett, T. J., Coutts, A. J., Burgess, D. J., Gregson, W., & Cable, N. T. (2017). Monitoring Athlete Training Loads: Consensus Statement. International Journal of Sports Physiology and Performance, 12(s2), S2-161-S2-170. https://doi.org/10.1123/IJSPP.2017-0208
  • Buchheit, M. (2014). Monitoring training status with HR measures: do all roads lead to Rome? Frontiers in Physiology, 5. https://doi.org/10.3389/fphys.2014.00073
  • Buchheit, M., Simpson, M. B., Al Haddad, H., Bourdon, P. C., & Mendez-Villanueva, A. (2012). Monitoring changes in physical performance with heart rate measures in young soccer players. European Journal of Applied Physiology, 112(2), 711-723. https://doi.org/10.1007/s00421-011-2014-0
  • Cormier, P., Tsai, M.-C., Meylan, C., Agar-Newman, D., Epp-Stobbe, A., Kalthoff, Z., & Klimstra, M. (2023). Concurrent Validity and Reliability of Different Technologies for Sprint-Derived Horizontal Force-Velocity-Power Profiling. Journal of Strength and Conditioning Research, 37(6), 1298-1305. https://doi.org/10.1519/JSC.0000000000004429
  • Crang, Z. L., Duthie, G., Cole, M. H., Weakley, J., Hewitt, A., & Johnston, R. D. (2021). The Validity and Reliability of Wearable Microtechnology for Intermittent Team Sports: A Systematic Review. Sports Medicine, 51(3), 549-565. https://doi.org/10.1007/s40279-020-01399-1
  • Crang, Z. L., Duthie, G., Cole, M. H., Weakley, J., Hewitt, A., & Johnston, R. D. (2022). The inter-device reliability of global navigation satellite systems during team sport movement across multiple days. Journal of Science and Medicine in Sport, 25(4), 340-344. https://doi.org/10.1016/j.jsams.2021.11.044
  • Crang, Z. L., Duthie, G., Cole, M. H., Weakley, J., Hewitt, A., & Johnston, R. D. (2024). The validity of raw custom-processed global navigation satellite systems data during straight-line sprinting across multiple days. Journal of Science and Medicine in Sport, 27(3), 204-210. https://doi.org/10.1016/j.jsams.2023.12.004
  • Essner, A., Sjöström, R., Ahlgren, E., & Lindmark, B. (2013). Validity and reliability of Polar® RS800CX heart rate monitor, measuring heart rate in dogs during standing position and at trot on a treadmill. Physiology & Behavior, 114-115, 1-5. https://doi.org/10.1016/j.physbeh.2013.03.002
  • Foster, C., Rodriguez-Marroyo, J. A., & de Koning, J. J. (2017). Monitoring Training Loads: The Past, the Present, and the Future. International Journal of Sports Physiology and Performance, 12(s2), S2-2-S2-8. https://doi.org/10.1123/IJSPP.2016-0388
  • Fotouhi-Ghazvini, F., & Abbaspour, S. (2020). Wearable wireless sensors for measuring calorie consumption. Journal of Medical Signals & Sensors, 10(1), 19. https://doi.org/10.4103/jmss.JMSS_15_18
  • Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., Buote, R., Van Heerden, D., Luan, H., Cullen, K., Slade, L., & Taylor, N. G. A. (2020). Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR mHealth and uHealth, 8(9), e18694. https://doi.org/10.2196/18694
  • Gilgen-Ammann, R., Schweizer, T., & Wyss, T. (2019). RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. European Journal of Applied Physiology, 119(7), 1525-1532. https://doi.org/10.1007/s00421-019-04142-5
  • Halson, S. L. (2014). Monitoring Training Load to Understand Fatigue in Athletes. Sports Medicine, 44(S2), 139-147. https://doi.org/10.1007/s40279-014-0253-z
  • Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science. Medicine & Science in Sports & Exercise, 41(1), 3-12. https://doi.org/10.1249/MSS.0b013e31818cb278
  • Keytel, L., Goedecke, J., Noakes, T., Hiiloskorpi, H., Laukkanen, R., van der Merwe, L., & Lambert, E. (2005). Prediction of energy expenditure from heart rate monitoring during submaximal exercise. Journal of Sports Sciences, 23(3), 289-297. https://doi.org/10.1080/02640410470001730089
  • Khushhal, A., Nichols, S., Evans, W., Gleadall-Siddall, D., Page, R., O’Doherty, A., Carroll, S., Ingle, L., & Abt, G. (2017). Validity and Reliability of the Apple Watch for Measuring Heart Rate During Exercise. Sports Medicine International Open, 1(06), E206-E211. https://doi.org/10.1055/s-0043-120195
  • Kiely, M., Warrington, G., McGoldrick, A., & Cullen, S. (2019). Physiological and Performance Monitoring in Competitive Sporting Environments: A Review for Elite Individual Sports. Strength & Conditioning Journal, 41(6), 62-74. https://doi.org/10.1519/SSC.0000000000000493
  • Kranjec, J., Beguš, S., Geršak, G., & Drnovšek, J. (2014). Non-contact heart rate and heart rate variability measurements: A review. Biomedical Signal Processing and Control, 13, 102-112. https://doi.org/10.1016/j.bspc.2014.03.004
  • Lai, N., Camesasca, M., Saidel, G. M., Dash, R. K., & Cabrera, M. E. (2007). Linking Pulmonary Oxygen Uptake, Muscle Oxygen Utilization and Cellular Metabolism during Exercise. Annals of Biomedical Engineering, 35(6), 956-969. https://doi.org/10.1007/s10439-007-9271-4
  • Lentz-Nielsen, N., & Madeleine, P. (2023). Validation of football locomotion categories derived from inertial measurements. Sports Engineering, 26(1), 26. https://doi.org/10.1007/s12283-023-00414-8
  • Makar, P., Silva, A. F., Oliveira, R., Janusiak, M., Parus, P., Smoter, M., & Clemente, F. M. (2023). Assessing the agreement between a global navigation satellite system and an optical-tracking system for measuring total, high-speed running, and sprint distances in official soccer matches. Science Progress, 106(3). https://doi.org/10.1177/00368504231187501
  • Mosley, E., & Laborde, S. (2022). A scoping review of heart rate variability in sport and exercise psychology. International Review of Sport and Exercise Psychology, 1-75. https://doi.org/10.1080/1750984X.2022.2092884
  • Müller, A. M., Wang, N. X., Yao, J., Tan, C. S., Low, I. C. C., Lim, N., Tan, J., Tan, A., & Müller-Riemenschneider, F. (2019). Heart Rate Measures From Wrist-Worn Activity Trackers in a Laboratory and Free-Living Setting: Validation Study. JMIR mHealth and uHealth, 7(10), e14120. https://doi.org/10.2196/14120
  • Owen, A. L., Forsyth, J. J., Wong, D. P., Dellal, A., Connelly, S. P., & Chamari, K. (2015). Heart Rate–Based Training Intensity and Its Impact on Injury Incidence Among Elite-Level Professional Soccer Players. Journal of Strength and Conditioning Research, 29(6), 1705-1712. https://doi.org/10.1519/JSC.0000000000000810
  • Owen, A. L., Wong, D. P., McKenna, M., & Dellal, A. (2011). Heart Rate Responses and Technical Comparison Between Small- vs. Large-Sided Games in Elite Professional Soccer. Journal of Strength and Conditioning Research, 25(8), 2104-2110. https://doi.org/10.1519/JSC.0b013e3181f0a8a3
  • Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(3), R502-R516. https://doi.org/10.1152/ajpregu.00114.2004
  • Schaffarczyk, M., Rogers, B., Reer, R., & Gronwald, T. (2022). Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremental Exercise in Recreational Men and Women. Sensors, 22(17), 6536. https://doi.org/10.3390/s22176536
  • Scherr, J., Wolfarth, B., Christle, J. W., Pressler, A., Wagenpfeil, S., & Halle, M. (2013). Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. European Journal of Applied Physiology, 113(1), 147-155. https://doi.org/10.1007/s00421-012-2421-x
  • Silva, H., Nakamura, F. Y., Castellano, J., & Marcelino, R. (2023). Training Load Within a Soccer Microcycle Week—A Systematic Review. Strength & Conditioning Journal, 45(5), 568-577. https://doi.org/10.1519/SSC.0000000000000765
  • Silva, P., Santos, E. Dos, Grishin, M., & Rocha, J. M. (2018). Validity of Heart Rate-Based Indices to Measure Training Load and Intensity in Elite Football Players. Journal of Strength and Conditioning Research, 32(8), 2340-2347. https://doi.org/10.1519/JSC.0000000000002057
  • Speer, K. E., Semple, S., Naumovski, N., & McKune, A. J. (2020). Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study. European Journal of Investigation in Health, Psychology and Education, 10(1), 390-404. https://doi.org/10.3390/ejihpe10010029
  • Stagno, K. M., Thatcher, R., & van Someren, K. A. (2007). A modified TRIMP to quantify the in-season training load of team sport players. Journal of Sports Sciences, 25(6), 629-634. https://doi.org/10.1080/02640410600811817
  • Taksler, G. B., Keshner, M., Fagerlin, A., Hajizadeh, N., & Braithwaite, R. S. (2013). Personalized Estimates of Benefit From Preventive Care Guidelines. Annals of Internal Medicine, 159(3), 161-168. https://doi.org/10.7326/0003-4819-159-3-201308060-00005
  • Weakley, J., Black, G., McLaren, S., Scantlebury, S., Suchomel, T. J., McMahon, E., Watts, D., & Read, D. B. (2024). Testing and Profiling Athletes: Recommendations for Test Selection, Implementation, and Maximizing Information. Strength & Conditioning Journal, 46(2), 159-179. https://doi.org/10.1519/SSC.0000000000000784
  • Wing, C. (2018). Monitoring Athlete Load: Data Collection Methods and Practical Recommendations. Strength & Conditioning Journal, 40(4), 26-39. https://doi.org/10.1519/SSC.0000000000000384
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Antrenman
Bölüm Araştırma Makalesi
Yazarlar

Zeki Akyıldız 0000-0002-1743-5989

Deniz Şentürk 0000-0003-1736-6482

İlker Kirişci 0000-0001-5480-9241

Şenay Kabadayi 0000-0002-2094-4848

Osman Dişçeken 0000-0003-2500-4932

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 30 Temmuz 2024
Kabul Tarihi 5 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: 3

Kaynak Göster

APA Akyıldız, Z., Şentürk, D., Kirişci, İ., Kabadayi, Ş., vd. (2024). Catapult S7 ve X7 Mikro Elektro Mekanik Sistemlerinin Kalp Atım Hızı Ölçümlerindeki Farklılıklarının İncelenmesi. Spor Ve Performans Araştırmaları Dergisi, 15(3), 391-404. https://doi.org/10.17155/omuspd.1525108