Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapay Zekanın Sağlık Hizmetlerine Entegrasyonunda Karşılaşılan Zorluklar: Bir Karar Verme Yaklaşımı

Yıl 2025, Cilt: 22 Sayı: 1, 23 - 32
https://doi.org/10.26466/opusjsr.1583315

Öz

Bu çalışma, sağlık sektöründe yapay zekânın kullanımına özgü zorlukların ve risklerin birbirine bağlı etkilerini ortaya koymayı amaçlamaktadır. Literatürden elde edilen on farklı zorluk ve risk, sağlık yönetiminde yer alan beş uzman tarafından değerlendirilmiştir. Katılımcılar, sağlık alanında en az on yıllık akademik veya profesyonel deneyime sahip olmalarına göre seçilmiştir. Katılımcılar konuyla ilgili değerlendirmelerini yapılandırılmış formlar üzerinden yapmıştır. Belirlenen entegrasyon zorlukları arasındaki neden-sonuç ilişkilerini araştırmak için DEMATEL tekniği kullanılmıştır. DEMATEL analizi sonuçlarına göre önem derecesi açısından emniyet ve güvenlik riski (SSR) ilk sırada yer alırken, yetersiz hasta risk değerlendirmeleri (IPRA), veri kalitesi riskleri (DQR), doğrulanabilirlik riskleri (VR), paydaşların algıladığı güvensizlikler (SPM), entegrasyon zorlukları (IC), etik hususlar (EC), algoritma/karar verme yanlılığı (AMB) ve iş değiştirme riskleri (JDR) sonraki sıralarda yer almaktadır. Ek olarak, DQR, AMB, SSR, VR, IPRA, DPR nedensel değişken olarak; EC, IC, JDR ve SPM ise etki olarak değerlendirilmiştir. Bu faktörler, verilerin bütünlüğünü, risk değerlendirmelerinin doğruluğunu ve yapay zekanın karar alma süreçlerinin şeffaflığını sağlamak için güçlü argümanlara olan ihtiyacı vurgulamaktadır. Etik, kapsayıcılık, istihdam ve paydaşlar arasındaki güven üzerindeki olumsuz etkiler, veri kalitesi, risk değerlendirmesi ve algoritmalardaki yanlılıklar gibi temel nedenlerin ele alınması ve bunlara yönelik politikaların geliştirilmesi ile azaltılabilir.

Etik Beyan

Bu çalışma İstanbul Medipol Üniversitesi Girişimsel Olmayan Klinik Araştırmalar Etik Kurulu tarafından onaylanmıştır (Sayı: E-10840098-202.3.02-4783, Karar Sayısı: 753, Tarih: 01.08.2024).

Kaynakça

  • Abid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., Ariza-Montes, A., & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: How artificial intelligence can boost disaster management. Sustainability, 13(22), 12560. https://doi.org/10.3390/su132212560
  • Amedior, N. (2023). Ethical implications of artificial intelligence in the healthcare sector. Advances in Multidisciplinary Science Research Journal, 36, 1–12. https://doi.org/10.22624/aims-/accrabespoke2023p1
  • Arigbabu, A. (2024). Data governance in AI-enabled healthcare systems: A case of the project Nightingale. Asian Journal of Research in Computer Science, 17(5), 85–107. https://doi.org/10.9734/ajrcos/2024/v17i5441
  • Badal, K., Lee, C. M., & Esserman, L. J. (2023). Guiding principles for the responsible development of artificial intelligence tools for healthcare. Communications Medicine (London), 3(1), 10–19. https://doi.org/10.1038/s43856-023-00279-9
  • Chen, Z., Lu, M., Ming, X., Zhang, X., & Zhou, T. (2020). Explore and evaluate innovative value propositions for smart product service systems: A novel graphics-based rough-fuzzy DEMATEL method. Journal of Cleaner Production, 243, 118672. https://doi.org/10.1016/j.jclepro.2019.118672
  • Chikhaoui, E., Alajmi, A., & Marie-Sainte, S. L. (2022). Artificial intelligence applications in healthcare sector: Ethical and legal challenges. Emerging Science Journal, 6(4), 717–738. https://doi.org/10.28991/esj-2022-06-04-05
  • Dhar, T., Dey, N., Borra, S., & Sherratt, R. (2023). Challenges of deep learning in medical image analysis—improving explainability and trust. IEEE Transactions on Technology and Society, 4(1), 68–75. https://doi.org/10.1109/tts.2023.3234203
  • Douglas, D., Lacey, J., & Howard, D. (2022). Ethical risks of AI-designed products: Bespoke surgical tools as a case study. AI & Ethics, 3(4), 1117–1133. https://doi.org/10.1007/s43681-022-00219-8
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., Medaglia, R., Le Meunier-FitzHugh, K., Le Meunier-FitzHugh, L. C., Misra, S., Mogaji, E., Sharma, S. K., Singh, J. B., Raghavan, V., Raman, R., Rana, N. P., Samothrakis, S., Spencer, J., Tamilmani, K., Tubadji, A., Walton, P., Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: A survey study from consumers' perspectives. BMC Medical Informatics and Decision Making, 20(1), 218. https://doi.org/10.1186/s12911-020-01191-1
  • Hung, Y. H., Chou, S. C. T., & Tzeng, G. H. (2006). Using a fuzzy group decision approach-knowledge management adoption. In APRU DLI 2006 Conference, University of Tokyo, Japan (pp. 48–52).
  • Jawaid, S. A. (2023). AI and its application on human health. Journal of Advanced Artificial Intelligence, 1(1), 57–66. https://doi.org/10.18178/JAAI.2023.1.1.57-66
  • Kar, S., Kar, A., & Gupta, M. (2021). Modeling drivers and barriers of artificial intelligence adoption: Insights from a strategic management perspective. Intelligent Systems in Accounting, Finance, and Management, 28(4), 217–238. https://doi.org/10.1002/isaf.1503
  • Kelly, C., Karthikesalingam, A., Suleyman, M., Corrado, G. S., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195. https://doi.org/10.1186/s12916-019-1426-2
  • Li, K., Cui, Y., Li, W., et al. (2023). When internet of things meets metaverse: Convergence of physical and cyber worlds. IEEE Internet of Things Journal, 10(5), 4148–4173. https://doi.org/10.1109/jiot.2022.3232845
  • Lin, C. L., & Tzeng, G. H. (2009). A value-created system of science (technology) park by using DEMATEL. Expert Systems with Applications, 36(6), 9683–9697. https://doi.org/10.1016/j.eswa.2009.01.042
  • Ma, M. (2022). Research on the development of hospital intelligent finance based on artificial intelligence. Computational Intelligence and Neuroscience, 2022, 1–6. https://doi.org/10.1155/2022/6549766
  • Massella, M., Dri, D., & Gramaglia, D. (2022). Regulatory considerations on the use of machine learning-based tools in clinical trials. Health Technology (Berlin), 12(6), 1085–1096. https://doi.org/10.1007/s12553-022-00708-0
  • Matheny, M. E., Whicher, D., & Israni, S. T. (2020). Artificial intelligence in healthcare. JAMA, 323(6), 509. https://doi.org/10.1001/jama.2019.21579
  • Mosaiyebzadeh, F., Pouriyeh, S., Parizi, R. M., Sheng, Q. Z., Han, M., Zhao, L., Sannino, G., Ranieri, C. M., Ueyama, J., & Batista, D. M. (2023). Privacy-enhancing technologies in federated learning for the internet of healthcare things: A survey. Electronics, 12(12), 2703. https://doi.org/10.3390/electronics12122703
  • Nia, N., Kaplanoğlu, E., & Nasab, A. (2023). Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artificial Intelligence, 3(1), 1–10. https://doi.org/10.1007/s44163-023-00049-5
  • Nizam, V., & Aslekar, A. (2021). Challenges of applying AI in healthcare in India. Journal of Pharmaceutical Research International, 33(36B), 203–209. https://doi.org/10.9734/jpri/2021/v33i36b31969
  • Petersson, L., Larsson, I., Nygren, J. M., Nilsen, P., Neher, M., Reed, J., Tyskbo, D., & Svedberg, P. (2022). Challenges to implementing artificial intelligence in healthcare: A qualitative interview study with healthcare leaders in Sweden. BMC Health Services Research, 22(1), 799. https://doi.org/10.1186/s12913-022-08215-8
  • Sevim, B., Uslu, Y., & Yılmaz, E. (2024). Organizational Conflict in Health Facilities: An Evaluation with DEMATEL Method. Firat University Journal of Social Sciences, 34(3), 1355-1366. https://doi.org/10.18069/firatsbed.1440449
  • Shahriar, S., Allana, S., Fard, M., & Dara, R. (2023). A survey of privacy risks and mitigation strategies in the artificial intelligence life cycle. IEEE Access, 11, 61829–61854. https://doi.org/10.1109/access.2023.3287195
  • Sreenivasan, A. (2024). Conformal prediction enables disease course prediction and allows individualized diagnostic uncertainty in multiple sclerosis. medRxiv. https://doi.org/10.1101/2024.03.01.24303566
  • Sunarti, S., Rahman, F. F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial intelligence in healthcare: Opportunities and risks for the future. Gaceta Sanitaria, 35, 10–15. https://doi.org/10.1016/j.gaceta.2021.05.002
  • Temsah, M. (2024). Exploring early perceptions and experiences of ChatGPT in pediatric critical care: A qualitative study among healthcare professionals. medRxiv. https://doi.org/10.1101/2024.03.18.24304453
  • Tobore, I., Li, J., Yuhang, L., Al-Handarish, Y., Kandwal, A., Nie, Z., & Wang, L. (2019). Deep learning intervention for healthcare challenges: Some biomedical domain considerations. JMIR Mhealth and Uhealth, 7(8), e14661. https://doi.org/10.2196/14661
  • Tsai, W. H., & Chou, W. C. (2009). Selecting management systems for sustainable development in SMEs: A novel hybrid model based on DEMATEL, ANP, and ZOGP. Expert Systems with Applications, 36(2), 1444–1458. https://doi.org/10.1016/j.eswa.2008.01.020
  • Velev, D., & Zlateva, P. (2023). Challenges of artificial intelligence application for disaster risk management. International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences, XLVIII-M-1, 387–394. https://doi.org/10.5194/isprs-archives-xlviii-m-1-2023-387-2023
  • Wang, Y., & Liu, X. M. (2023). Navigating the ethical landscape of AI in healthcare: Insights from a content analysis. TechRxiv. https://doi.org/10.36227/techrxiv.22294513.v2
  • Williamson, S. (2024). Balancing privacy and progress: A review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences (Basel), 14(2), 675. https://doi.org/10.3390/app14020675
  • Wu, W. W. (2008). Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications, 35(3), 828–835. https://doi.org/10.1016/j.eswa.2007.07.025
  • Wu, W. W., & Lee, Y. T. (2007). Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499–507. https://doi.org/10.1016/j.eswa.2005.12.005
  • Yılmaz, E. (2024). Analysis of Personal Health Data Breaches: Prioritization with BWM Approach. Journal of Original Studies, 5(2), 73-84. https://doi.org/10.47243/jos.2612
  • Zhou, W., & Liu, Z. (2022). Design and optimization of hotel management information system based on artificial intelligence. Scientific Programming, 2022, 1–9. https://doi.org/10.1155/2022/2445343

Challenges for the Integration of Artificial Intelligence in Healthcare Services: A Decision-Making Approach

Yıl 2025, Cilt: 22 Sayı: 1, 23 - 32
https://doi.org/10.26466/opusjsr.1583315

Öz

This study aims to elucidate the interdependent effects of the challenges and risks of using artificial intelligence in the healthcare sector. The ten challenges and risks obtained by literature were assessed by five professionals involved in managing health. Participants were selected based on having at least ten years of academic or professional experience in health. The participants made their judgments on the topic of structured forms. DEMATEL (The Decision-Making Trial and Evaluation Laboratory) technique investigated the cause-effect relationships between the identified integration challenges. According to DEMATEL analysis results in terms of the degree of importance, safety and security risk (SSR) is ranked in the first place, and inadequate patient risk assessments (IPRA), data quality risks (DQR), verifiability risks (VR), stakeholders perceived mistrust (SPM), integration challenges (IC), ethical considerations (EC), algorithm/decision-making bias (AMB) and job displacement risks (JDR) are ranked in the following places. In addition, DQR, AMB, SSR, VR, IPRA, and DPR are causal variables; EC, IC, JDR, and SPM are regarded as effects. These factors highlight the need for robust mechanisms to ensure the integrity of data, the accuracy of risk assessments, and the transparency of the decision-making processes of AI. Negative impacts on ethics, inclusion, employment, and trust between stakeholders will likely be reduced by addressing the root causes, such as data quality, risk assessment, and algorithmic bias, and developing policies to address them.

Etik Beyan

This study was approved by the Istanbul Medipol University Ethics Committee for Non-Interventional Clinical Researches (Number: E-10840098-202.3.02-4783, Decision Number: 753, Date: 01.08.2024).

Kaynakça

  • Abid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., Ariza-Montes, A., & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: How artificial intelligence can boost disaster management. Sustainability, 13(22), 12560. https://doi.org/10.3390/su132212560
  • Amedior, N. (2023). Ethical implications of artificial intelligence in the healthcare sector. Advances in Multidisciplinary Science Research Journal, 36, 1–12. https://doi.org/10.22624/aims-/accrabespoke2023p1
  • Arigbabu, A. (2024). Data governance in AI-enabled healthcare systems: A case of the project Nightingale. Asian Journal of Research in Computer Science, 17(5), 85–107. https://doi.org/10.9734/ajrcos/2024/v17i5441
  • Badal, K., Lee, C. M., & Esserman, L. J. (2023). Guiding principles for the responsible development of artificial intelligence tools for healthcare. Communications Medicine (London), 3(1), 10–19. https://doi.org/10.1038/s43856-023-00279-9
  • Chen, Z., Lu, M., Ming, X., Zhang, X., & Zhou, T. (2020). Explore and evaluate innovative value propositions for smart product service systems: A novel graphics-based rough-fuzzy DEMATEL method. Journal of Cleaner Production, 243, 118672. https://doi.org/10.1016/j.jclepro.2019.118672
  • Chikhaoui, E., Alajmi, A., & Marie-Sainte, S. L. (2022). Artificial intelligence applications in healthcare sector: Ethical and legal challenges. Emerging Science Journal, 6(4), 717–738. https://doi.org/10.28991/esj-2022-06-04-05
  • Dhar, T., Dey, N., Borra, S., & Sherratt, R. (2023). Challenges of deep learning in medical image analysis—improving explainability and trust. IEEE Transactions on Technology and Society, 4(1), 68–75. https://doi.org/10.1109/tts.2023.3234203
  • Douglas, D., Lacey, J., & Howard, D. (2022). Ethical risks of AI-designed products: Bespoke surgical tools as a case study. AI & Ethics, 3(4), 1117–1133. https://doi.org/10.1007/s43681-022-00219-8
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., Medaglia, R., Le Meunier-FitzHugh, K., Le Meunier-FitzHugh, L. C., Misra, S., Mogaji, E., Sharma, S. K., Singh, J. B., Raghavan, V., Raman, R., Rana, N. P., Samothrakis, S., Spencer, J., Tamilmani, K., Tubadji, A., Walton, P., Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: A survey study from consumers' perspectives. BMC Medical Informatics and Decision Making, 20(1), 218. https://doi.org/10.1186/s12911-020-01191-1
  • Hung, Y. H., Chou, S. C. T., & Tzeng, G. H. (2006). Using a fuzzy group decision approach-knowledge management adoption. In APRU DLI 2006 Conference, University of Tokyo, Japan (pp. 48–52).
  • Jawaid, S. A. (2023). AI and its application on human health. Journal of Advanced Artificial Intelligence, 1(1), 57–66. https://doi.org/10.18178/JAAI.2023.1.1.57-66
  • Kar, S., Kar, A., & Gupta, M. (2021). Modeling drivers and barriers of artificial intelligence adoption: Insights from a strategic management perspective. Intelligent Systems in Accounting, Finance, and Management, 28(4), 217–238. https://doi.org/10.1002/isaf.1503
  • Kelly, C., Karthikesalingam, A., Suleyman, M., Corrado, G. S., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195. https://doi.org/10.1186/s12916-019-1426-2
  • Li, K., Cui, Y., Li, W., et al. (2023). When internet of things meets metaverse: Convergence of physical and cyber worlds. IEEE Internet of Things Journal, 10(5), 4148–4173. https://doi.org/10.1109/jiot.2022.3232845
  • Lin, C. L., & Tzeng, G. H. (2009). A value-created system of science (technology) park by using DEMATEL. Expert Systems with Applications, 36(6), 9683–9697. https://doi.org/10.1016/j.eswa.2009.01.042
  • Ma, M. (2022). Research on the development of hospital intelligent finance based on artificial intelligence. Computational Intelligence and Neuroscience, 2022, 1–6. https://doi.org/10.1155/2022/6549766
  • Massella, M., Dri, D., & Gramaglia, D. (2022). Regulatory considerations on the use of machine learning-based tools in clinical trials. Health Technology (Berlin), 12(6), 1085–1096. https://doi.org/10.1007/s12553-022-00708-0
  • Matheny, M. E., Whicher, D., & Israni, S. T. (2020). Artificial intelligence in healthcare. JAMA, 323(6), 509. https://doi.org/10.1001/jama.2019.21579
  • Mosaiyebzadeh, F., Pouriyeh, S., Parizi, R. M., Sheng, Q. Z., Han, M., Zhao, L., Sannino, G., Ranieri, C. M., Ueyama, J., & Batista, D. M. (2023). Privacy-enhancing technologies in federated learning for the internet of healthcare things: A survey. Electronics, 12(12), 2703. https://doi.org/10.3390/electronics12122703
  • Nia, N., Kaplanoğlu, E., & Nasab, A. (2023). Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artificial Intelligence, 3(1), 1–10. https://doi.org/10.1007/s44163-023-00049-5
  • Nizam, V., & Aslekar, A. (2021). Challenges of applying AI in healthcare in India. Journal of Pharmaceutical Research International, 33(36B), 203–209. https://doi.org/10.9734/jpri/2021/v33i36b31969
  • Petersson, L., Larsson, I., Nygren, J. M., Nilsen, P., Neher, M., Reed, J., Tyskbo, D., & Svedberg, P. (2022). Challenges to implementing artificial intelligence in healthcare: A qualitative interview study with healthcare leaders in Sweden. BMC Health Services Research, 22(1), 799. https://doi.org/10.1186/s12913-022-08215-8
  • Sevim, B., Uslu, Y., & Yılmaz, E. (2024). Organizational Conflict in Health Facilities: An Evaluation with DEMATEL Method. Firat University Journal of Social Sciences, 34(3), 1355-1366. https://doi.org/10.18069/firatsbed.1440449
  • Shahriar, S., Allana, S., Fard, M., & Dara, R. (2023). A survey of privacy risks and mitigation strategies in the artificial intelligence life cycle. IEEE Access, 11, 61829–61854. https://doi.org/10.1109/access.2023.3287195
  • Sreenivasan, A. (2024). Conformal prediction enables disease course prediction and allows individualized diagnostic uncertainty in multiple sclerosis. medRxiv. https://doi.org/10.1101/2024.03.01.24303566
  • Sunarti, S., Rahman, F. F., Naufal, M., Risky, M., Febriyanto, K., & Masnina, R. (2021). Artificial intelligence in healthcare: Opportunities and risks for the future. Gaceta Sanitaria, 35, 10–15. https://doi.org/10.1016/j.gaceta.2021.05.002
  • Temsah, M. (2024). Exploring early perceptions and experiences of ChatGPT in pediatric critical care: A qualitative study among healthcare professionals. medRxiv. https://doi.org/10.1101/2024.03.18.24304453
  • Tobore, I., Li, J., Yuhang, L., Al-Handarish, Y., Kandwal, A., Nie, Z., & Wang, L. (2019). Deep learning intervention for healthcare challenges: Some biomedical domain considerations. JMIR Mhealth and Uhealth, 7(8), e14661. https://doi.org/10.2196/14661
  • Tsai, W. H., & Chou, W. C. (2009). Selecting management systems for sustainable development in SMEs: A novel hybrid model based on DEMATEL, ANP, and ZOGP. Expert Systems with Applications, 36(2), 1444–1458. https://doi.org/10.1016/j.eswa.2008.01.020
  • Velev, D., & Zlateva, P. (2023). Challenges of artificial intelligence application for disaster risk management. International Archives of Photogrammetry, Remote Sensing & Spatial Information Sciences, XLVIII-M-1, 387–394. https://doi.org/10.5194/isprs-archives-xlviii-m-1-2023-387-2023
  • Wang, Y., & Liu, X. M. (2023). Navigating the ethical landscape of AI in healthcare: Insights from a content analysis. TechRxiv. https://doi.org/10.36227/techrxiv.22294513.v2
  • Williamson, S. (2024). Balancing privacy and progress: A review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences (Basel), 14(2), 675. https://doi.org/10.3390/app14020675
  • Wu, W. W. (2008). Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications, 35(3), 828–835. https://doi.org/10.1016/j.eswa.2007.07.025
  • Wu, W. W., & Lee, Y. T. (2007). Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499–507. https://doi.org/10.1016/j.eswa.2005.12.005
  • Yılmaz, E. (2024). Analysis of Personal Health Data Breaches: Prioritization with BWM Approach. Journal of Original Studies, 5(2), 73-84. https://doi.org/10.47243/jos.2612
  • Zhou, W., & Liu, Z. (2022). Design and optimization of hotel management information system based on artificial intelligence. Scientific Programming, 2022, 1–9. https://doi.org/10.1155/2022/2445343
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sosyal Politikada Bölgesel Gelişme ve Küreselleşme, Sağlık Sosyolojisi
Bölüm Research Articles
Yazarlar

Erman Gedikli 0000-0002-5508-194X

Erken Görünüm Tarihi 16 Şubat 2025
Yayımlanma Tarihi
Gönderilme Tarihi 12 Kasım 2024
Kabul Tarihi 5 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 1

Kaynak Göster

APA Gedikli, E. (2025). Challenges for the Integration of Artificial Intelligence in Healthcare Services: A Decision-Making Approach. OPUS Journal of Society Research, 22(1), 23-32. https://doi.org/10.26466/opusjsr.1583315