Derleme
BibTex RIS Kaynak Göster

Past, Present, Future and Environmental Treatment of the Pesticide Triclosan

Yıl 2024, , 191 - 212, 31.12.2024
https://doi.org/10.54370/ordubtd.1411365

Öz

Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol] or with its trade name “Irgasan” is known as a broad-spectrum powerful antimicrobial agent. It is registered as a “pesticide” by the United States Environmental Protection Agency (USEPA). It is estimated that around 450 tonnes of triclosan are used each year in Europe. 85% of triclosan is widely used in personal care products, 5% in the textile industry, and 10% in the production of plastics and food contact materials. Due to its extensive use, accumulation of triclosan has been detected in humans and the environment. Triclosan is an environmentally toxic substance, studies are being conducted on its toxicity and its toxic effect mechanism is elucidated in different living groups. This article reviews data on triclosan's environmental fate, exposure in humans and other organisms, efficacy of antimicrobial activity, toxicity, and environmental treatment mechanisms.

Proje Numarası

122Z742

Kaynakça

  • Aiello, A. E., Marshall, B., Levy, S. B., Della-Latta, P. ve Larson, E. (2004). Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrobial Agents and Chemotherapy, 48(8), 2973-2979. http://doi.org/10.1128/AAC.48.8.2973-2979.2004
  • Aliaga A., Castells A. ve Kriznik D. (1983). An overview of two comparative multicentre trials with halometasone/triclosan cream in acute superficial bacterial skin infections. The Journal of International Medical Research, 11(1), 53–57. https://europepmc.org/article/med/6339294
  • Allmyr M., Adolfsson-Erici M., McLachlan M.S., ve Sandborgh-Englund G. (2006). Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ, 372, 87–93. http://doi.org/10.1016/j.scitotenv.2006.08.007
  • Allmyr M., Harden F., Toms L.M., Mueller J.F., McLachlan M.S., Adolfsson-Erici M. ve Sandborgh-Englund G. (2008). The influence of age and gender on triclosan con-centrations in Australian human blood serum. Sci Total Environ, 393, 162–167. http://doi.org/10.1016/j.scitotenv.2007.12.006
  • Aranami K. ve Readman J. W. (2007). Photolytic degradation of triclosan in freshwater and seawater. Chemosphere, 66(6), 1052–1056. http://doi.org/10.1016/j.chemosphere.2006.07.010
  • Arrhenius E., Renberg L., Johansson L. ve Zetterqvist M.A. (1977). Disruption of microsomal detoxification mechanisms in the liver by chlorphenol pesticides. Chemico-Biological Interactions, 18(1), 35–46. http://doi.org/10.1016/0009-2797(77)90139-9
  • Ashrap, P., Zheng, G., Wan, Y., Li, T., Hu, W., Li, W., ... ve Hu, J. (2017). Discovery of a widespread metabolic pathway within and among phenolic xenobiotics. Proceedings of the National Academy of Sciences, 114(23), 6062-6067. http://doi.org/10.1073/pnas.1700558114
  • Atar, N., Eren, T., Yola, M. L. ve Wang, S. (2015). A sensitive molecular imprinted surface plasmon resonance nanosensor for selective determination of trace triclosan in wastewater. Sensors and Actuators B: Chemical, 216, 638-644. http://doi.org/10.1016/j.snb.2015.04.076
  • Bayston, R., Ashraf, W. ve Smith, T. (2007). Triclosan resistance in methicillin-resistant Staphylococcus aureus expressed as small colony variants: A novel mode of evasion of susceptibility to antiseptics. Journal of antimicrobial chemotherapy, 59(5), 848-853. https://doi.org/10.1093/jac/dkm031
  • Bedoux G., Roig B., Thomas O., Dupont V. ve Le Bot B. (2012). Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut R, 19(4), 1044–1065. https://doi.org/10.1007/s11356-011-0632-z
  • Behera, S. K., Oh, S. Y. ve Park, H. S. (2010). Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. Journal of Hazardous Materials, 179(1-3), 684-691. https://doi.org/10.1007/s11356-011-0632-z
  • Bellamy, K., Alcock, R., Babb, J. R., Davies, J. G. ve Ayliffe, G. A. J. (1993). A test for the assessment of ‘hygienic’hand disinfection using rotavirus. Journal of Hospital Infection, 24(3), 201-210. https://doi.org/10.1016/0195-6701(93)90049-6
  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D. ve Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environmental science & technology, 43(3), 597-603. https://doi.org/10.1021/es801845a
  • Betts, J. C., McLaren, A., Lennon, M. G., Kelly, F. M., Lukey, P. T., Blakemore, S. J. ve Duncan, K. (2003). Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 47(9), 2903-2913. https://doi.org/10.1128/AAC.47.9.2903-2913.2003
  • Bhargava, H. N. ve Leonard, P. A. (1996). Triclosan: Applications and safety. American Journal of Infection Control, 24(3), 209-218. https://doi.org/10.1016/S0196-6553(96)90017-6
  • Birosová, L. ve Mikulásová, M. (2009). Evolution of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol, 58, 436–441. https://doi.org/10.1099/jmm.0.003657-0
  • Braoudaki, M. ve Hilton, A.C. (2004). Low level of crossresistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol Lett, 235, 305–309. https://doi.org/10.1016/j.femsle.2004.04.049
  • Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H. ve Mawhinney, D.B. (2006). Occurrence of antibiotics in hospital, residential, and dairy, effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment, 366, 772–783. https://doi.org/10.1016/j.scitotenv.2005.10.007
  • Calafat, A.M., Ye, X., Wong, L.Y., Reidy, J.A. ve Needham, L.L. (2008). Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environ Health Persp, 116, 303–307. https://doi.org/10.1289/ehp.10768
  • Capdevielle, M., Van Egmond, R., Whelan, M., Versteeg, D., Hofmann‐Kamensky, M., Inauen, J., ... ve Woltering, D. (2008). Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integrated environmental assessment and management, 4(1), 15-23. https://doi.org/10.1897/ieam_2007-022.1
  • Cayan, D., Unur, E., Nisari, M., Patat, D., Dağli, E. ve Akalin, H. (2020). The effect of triclosan on in vitro embryonic development in rat. Kafkas Univ Vet Fak Derg, 26(5), 595–602. https://doi.org/10.9775/kvfd.2020.23873
  • Chau, W. C., Wu, J. L. ve Cai, Z. (2008). Investigation of levels and fate of triclosan in environmental waters from the analysis of gas chromatography coupled with ion trap mass spectrometry. Chemosphere, 73(1), S13-S17. https://doi.org/10.1016/j.chemosphere.2007.01.087
  • Chen, X., Nielsen, J. L., Furgal, K., Liu, Y., Lolas, I. B. ve Bester, K. (2011). Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere, 84(4), 452-456. https://doi.org/10.1016/j.chemosphere.2011.03.042
  • Chen, Y., Pi, B., Zhou, H., Yu, Y. ve Li, L. (2009). Triclosan resistance in clinical isolates of Acinetobacter baumannii. Journal of medical microbiology, 58(8), 1086-1091. https://doi.org/10.1099/jmm.0.008524-0
  • Chen, Z., Le, J., Wang, S., Jie, Q., Kang, L., Xu, L., Shi, Y. ve Yan, Y. (2010). Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity, Bioresour Technol, 101: 3423–3429. https://doi.org/10.1016/j.biortech.2009.12.083
  • Cherednichenko, G., Zhang, R., Bannister, R. A., Timofeyev, V., Li, N., Fritsch, E. B., ... ve Pessah, I. N. (2012). Triclosan impairs excitation–contraction coupling and Ca2+ dynamics in striated muscle. Proceedings of the National Academy of Sciences, 109(35), 14158-14163. https://doi.org/10.1073/pnas.12113141
  • Chiaia-Hernandez, A. C., Ashauer, R., Moest, M., Hollingshaus, T., Jeon, J., Spaak, P. ve Hollender, J. (2013). Bioconcentration of organic contaminants in Daphnia resting eggs. Environmental science & technology, 47(18), 10667-10675. https://doi.org/10.1021/es401763d
  • Chow, A. Y. K., Hirsch, G. H. ve Buttar, H. S. (1977). Nephrotoxic and hepatotoxic effects of triclosan and chlorhexidine in rats. Toxicology and applied pharmacology, 42(1), 1-10. https://doi.org/10.1016/0041-008x(77)90191-0
  • Clarke, B.O. ve Smith, S.R. (2011). Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Intl, 37, 226–247. https://doi.org/10.1016/j.envint.2010.06.004
  • Condell, O., Sheridan, A., Power, K. A., Bonilla-Santiago, R., Sergeant, K., Renaut, J., ... ve Nally, J. E. (2012). Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. Journal of proteomics, 75(14), 4505-4519. https://doi.org/10.1016/j.jprot.2012.04.044
  • Constantin, L. A., Nitoi, I., Cristea, N. I. ve Constantin, M. A. (2018). Possible degradation pathways of triclosan from aqueous systems via TiO2 assisted photocatalyis. Journal of Industrial and Engineering Chemistry, 58, 155-162. https://doi.org/10.5505/pajes.2020.66066
  • Crofton, K. M., Paul, K. B., DeVito, M. J. ve Hedge, J. M. (2007). Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environmental toxicology and pharmacology, 24(2), 194-197. https://doi.org/10.1016/j.etap.2007.04.008
  • Çiftçi, G., Türkeli, Ü. D., Özen, E. Y., Özdemir, M., Sanin, F. D. ve İmamoğlu, İ. (2023). Microplastics and organics–A comparative study of sorption of triclosan and malachite green onto polyethylene. Water Science & Technology, 87(5), 1072-1081. https://doi.org/10.2166/wst.2023.040
  • Dann, A.B. ve Hontela, A. (2011). Triclosan: environmental exposure, toxicity and mechanisms of action, J Appl Toxicol, 31(4), 285–311. https://doi.org/10.1002/jat.1660
  • Dayan, A.D. (2007). Risk assessment of triclosan [Irgasan®] in human breast milk. Food Chem Toxicol, 45, 125–129. https://doi.org/10.1016/j.fct.2006.08.009
  • Delorenzo, M.E., Keller, J.M., Arthur, C.D., Finnegan, M.C., Harper, H.E., Winder, V.L. ve Zdankiewicz, D.L. (2008). Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environmental Toxicology, 23, 224–232. https://doi.org/10.1002/tox.20327
  • DEPA (2016). Survey of triclosan in cosmetic products. No.152,The Danish Environmental Protection Agency.
  • Ding, T., Lin, K., Yang, M., Bao, L., Li, J., Yang, B. ve Gan, J. (2018). Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. J Hazard Mater 344: 200–209. https://doi.org/10.1016/j.jhazmat.2017.09.033
  • Drury, B., Scott, J., Rosi-Marshall, E. J. ve Kelly, J. J. (2013). Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environmental science & technology, 47(15), 8923-8930. https://doi.org/10.1021/es401919k
  • Ebrahimi, A., Lin, K.Y.A. ve Moazeni, M. (2024). A comparative investigation on the decomposition of triclosan via synthesized heterogeneous nano-catalysts in the presence of peroxymonosulfate. Catalysis Communications, 186, 106820. https://doi.org/10.1016/j.catcom.2023.106820
  • EPA (2008). Pesticides and toxic substances. United States Environmental Protection Agency.
  • Ertit Taştan, B., Özdemir, C. ve Tekinay, T. (2016). Effects of different culture media on biodegradation of triclosan by Rhodotorula mucilaginosa and Penicillium sp. Water Science and Technology, 74(2), 473-481. https://doi.org/10.2166/wst.2016.221
  • Etzel, T. M., Calafat, A. M., Ye, X., Chen, A., Lanphear, B. P., Savitz, D. A., ... ve Braun, J. M. (2017). Urinary triclosan concentrations during pregnancy and birth outcomes. Environmental research, 156, 505-511. doi: 10.1016/j.envres.2017.04.015.
  • Falkenburger, B.H., Jensen, J.B. ve Hille, B. (2010). Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells. J Gen Physiol, 135, 99–114. https://doi.org/10.1085/jgp.200910345
  • Fang, J. L., Stingley, R. L., Beland, F. A., Harrouk, W., Lumpkins, D. L. ve Howard, P. (2010). Occurrence, efficacy, metabolism, and toxicity of triclosan. Journal of Environmental Science and Health, Part C, 28(3), 147-171. https://doi.org/10.1080/10590501.2010.504978
  • Fang, J. L., Vanlandingham, M., da Costa, G. G. ve Beland, F. A. (2016). Absorption and metabolism of triclosan after application to the skin of B 6 C 3 F 1 mice. Environmental toxicology, 31(5), 609-623. https://doi.org/10.1002/tox.22074
  • Franz, E. ve Weidner-Strahl, S. (1978). The effectiveness of topical antibacterials in acne: a double-blind clinical study. The Journal of International Medical Research, 6(1), 72–77. https://doi.org/10.1177/030006057800600113
  • Fritsch, E. B., Connon, R. E., Werner, I., Davies, R. E., Beggel, S., Feng, W. ve Pessah, I. N. (2013). Triclosan impairs swimming behavior and alters expression of excitation-contraction coupling proteins in fathead minnow (Pimephales promelas). Environmental science & technology, 47(4), 2008-2017. https://doi.org/10.1021/es303790b
  • Fuchsman, P., Lyndall, J., Bock, M., Lauren, D., Barber, T., Leigh, K., ... ve Capdevielle, M. (2010). Terrestrial ecological risk evaluation for triclosan in land‐applied biosolids. Integrated Environmental Assessment and Management, 6(3), 405-418. https://doi.org/10.1897/IEAM_2009-071.1
  • Gee, R. H., Charles, A., Taylor, N. ve Darbre, P. D. (2008). Oestrogenic and androgenic activity of triclosan in breast cancer cells. Journal of Applied Toxicology: An International Journal, 28(1), 78-91. https://doi.org/10.1002/jat.1316
  • Geens, T., Neels, H. ve Covaci, A. (2012). Distribution of bisphenol-A, triclosan and n nonylphenol in human adipose tissue, liver and brain. Chemosphere, 87: 796–802. https://doi.org/10.1016/j.chemosphere.2012.01.002
  • Gómez-Pacheco, C. V., Sánchez-Polo, M., Rivera-Utrilla, J. ve López-Peñalver, J. (2011). Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chemical engineering journal, 178, 115-121. https://doi.org/10.1016/j.cej.2011.10.023
  • González-Pleiter, M., Rioboo, C., Reguera, M., Abreu, I., Leganés, F., Cid, Á. ve Fernández-Piñas, F. (2017). Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan. Aquatic toxicology, 186, 50-66. https://doi.org/10.1016/j.aquatox.2017.02.021
  • Halden, R. U. ve Paull, D. H. (2005). Co-occurrence of triclocarban and triclosan in US water resources. Environmental science & technology, 39(6), 1420-1426. https://doi.org/10.1021/es058014y
  • Han, L., Ro, K. S., Sun, K., Sun, H., Wang, Z., Libra, J. A. ve Xing, B. (2016). New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environmental science & technology, 50(24), 13274-13282. https://doi.org/10.1021/acs.est.6b02401
  • Harada, A., Komori, K., Nakada, N., Kitamura, K. ve Suzuki, Y. (2008). Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Science and Technology, 58(8), 1541-1546. https://doi.org/10.2166/wst.2008.742
  • Hundt, K. A. I., Martin, D., Hammer, E., Jonas, U., Kindermann, M. K. ve Schauer, F. (2000). Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Applied and Environmental Microbiology, 66(9), 4157-4160. https://doi.org/10.1128/AEM.66.9.4157-4160.2000
  • Inoue, Y., Hata, T., Kawai, S., Okamura, H. ve Nishida, T. (2010). Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. Journal of Hazardous materials, 180(1-3), 764-767. https://doi.org/10.1016/j.jhazmat.2010.04.024
  • Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., ... ve Arizono, K. (2004). Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicology, 67(2), 167-179. https://doi.org/10.1016/j.aquatox.2003.12.005
  • Kalliomaki, P. ve Kuokkanen, K. (1979). Comparative study on the efficacy and tolerance of the ointments CGP433 and GP41353 in the treatment of infectious dermatitis. Zeitschrift für Hautkrankheiten, 54(14), 668–670.
  • Keen, O. S., Baik, S., Linden, K. G., Aga, D. S. ve Love, N. G. (2012). Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation. Environmental science & technology, 46(11), 6222-6227. https://doi.org/10.1021/es300897u
  • Kim, S. H., Hwang, K. A., Shim, S. M. ve Choi, K. C. (2015). Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway. Environmental Toxicology and Pharmacology, 39(2), 568-576. https://doi.org/10.1016/j.etap.2015.01.003
  • Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. ve Buxton, H.T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national expedition. Environ Sci Technol, 36, 1202–1211. https://doi.org/10.1021/es011055j
  • Kolpin, D.W., Skopec, M., Meyer, M.T., Furlong, E.T. ve Zaugg, S.D. (2004). Urban contribution of pharmaceuticals other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ, 328, 119–130. https://doi.org/10.1016/j.scitotenv.2004.01.015
  • Kumar, K.S., Priya, S.M., Peck, A.M. ve Sajwan, K.S. (2010). Mass loadings of triclosan and triclocarban from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch Environ Contam Toxicol, 58, 275–285. https://doi.org/10.1007/s00244-009-9383-y
  • Kummerer, K. (2004). Resistance in the environment. Antimicrobial Chemotherapy, 54, 311–320. https://doi.org/10.1093/jac/dkh325
  • Lan, Z., Hyung Kim, T., Shun Bi, K., Hui Chen, X. ve Sik Kim, H. (2015). Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male sprague‐dawley rats. Environmental toxicology, 30(1), 83-91. https://doi.org/10.1002/tox.21897
  • Lassen, T. H., Frederiksen, H., Kyhl, H. B., Swan, S. H., Main, K. M., Andersson, A. M., ... ve Jensen, T. K. (2016). Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environmental Health Perspectives, 124(8), 1261-1268. https://doi.org/10.1289/ehp.1409637
  • Latch, D.E., Packer, J.L., Stender, B.L., VanOverbeke, J., Arnold, W.A. ve McNeill, K. (2005). Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ Toxicol Chem, 24, 517–525. https://doi.org/10.1897/04-243r.1
  • Li, J., Wu, D., Zhang, H., Wang, L., Wang, H., Ba, Z. (2023). Insights into a removal mechanism of triclosan using an electroactivated persulfate-coupled carbon membrane system. Catalysts, 13, 10, 1321. https://doi.org/10.3390/catal13101321
  • Li, J., Peng, J., Zhang, Y., Ji, Y., Shi, H., Mao, L. ve Gao, S. (2016). Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification. Journal of hazardous materials, 310, 152-160. https://doi.org/10.1016/j.jhazmat.2016.02.037
  • Li, X., Ying, G. G., Zhao, J. L., Chen, Z. F., Lai, H. J. ve Su, H. C. (2013). 4-Nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China, and the effects of drinking these bottled materials on the levels. Environment international, 52, 81-86. https://doi.org/10.1016/j.envint.2011.03.026
  • Lin, Y.J. (2000). Buccal absorption of triclosan following topical mouthrinse application. Am J Dent, 13, 215–217. https://pubmed.ncbi.nlm.nih.gov/11763935/
  • Lindström, A., Buerge, I.J., Poiger, T., Bergqvist, P.A., Müller, M.D. ve Buser, H.R. (2002). Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol, 36(11), 2322–9. https://doi.org/10.1021/es0114254
  • Lipnick, R.L. (1995). Computational chemistry in environmental toxicology QSAR. Environ Res, 4(2-3): 125–130. https://doi.org/10.1080/10629369508029909
  • Liu, F., Ying, G.G., Yang, L.H. ve Zhou, Q.X. (2009). Terrestrial ecotoxicological effects of the antimicrobial agent triclosan. Ecotoxicology and Environmental Safety, 72(1), 86–92. https://doi.org/10.1016/j.ecoenv.2008.06.009
  • Loraine, G.A. ve Pettigrove., M.E. (2006). Pharmaceutical and personal use in drinking water and recycled wastewater in Southern California seasonal variations in the concentration of care products. Environ Sci Technol, 40, 687–695. https://doi.org/10.1021/es051380x
  • Lorusso, D. J., Miller, T. L. ve Deinzer, M. L. (1981). Effect of hydroxychlorodiphenyl ethers (chlorinated pre‐and isopredioxins) on erythrocyte membrane adenosinetriphosphatase activity. Journal of Toxicology and Environmental Health, Part A Current Issues, 8(1-2), 215-223. https://doi.org/10.1080/15287398109530065
  • Lozano, N., Rice, C. P., Ramirez, M. ve Torrents, A. (2013). Fate of triclocarban, triclosan and methyltriclosan during wastewater and biosolids treatment processes. Water research, 47(13), 4519-4527. https://doi.org/10.1016/j.watres.2013.05.015
  • Luo, Z., He, Y., Zhi, D., Luo, L., Sun, Y., Khan, E., Wang, L., Peng, Y., Zhou, Y. ve Tsang, D.C.W. (2019). Current progress in treatment techniques of triclosan from wastewater: A review, Sci Total Environ, 696, 133990. https://doi.org/10.1016/j.scitotenv.2019.133990
  • Ma, Z., Liu, H. ve Yu, H. (2019). Triclosan affects Ca2+ regulatory module and musculature development in skeletal myocyte during early life stages of zebrafish (Danio rerio). Environmental Science & Technology, 53(20), 11988-11998. https://doi.org/10.1021/acs.est.9b03231
  • Maillard, J.Y. (2007). Bacterial resistance to biocides in the healthcare setting: should we be worried? J Hospital Infection, 65, 60–72. https://doi.org/10.1016/S0195-6701(07)60018-8
  • McMurry, L. M., Oethinger, M. ve Levy, S. B. (1998). Triclosan targets lipid synthesis. Nature, 394(6693), 531-532. https://doi.org/10.1038/28970
  • Miller, T. L. ve Deinzer, M. L. (1980). Effects of nonachloropredioxin and other hydroxychlorodiphenyl ethers on biological membranes. Journal of Toxicology and Environmental Health, Part A Current Issues, 6(1), 11-25. https://doi.org/10.1080/15287398009529827
  • Miller, T. L., Lorusso, D. J. ve Deinzer, M. L. (1982). The acute toxicity of nonachloropredioxin and 3‐and 4‐hydroxynonachlorodiphenyl ether in mice. Journal of Toxicology and Environmental Health, Part A Current Issues, 10(4-5), 699-707. https://doi.org/10.1080/15287398209530288
  • Miller, T. L., Lorusso, D. J., Walsh, M. L. ve Deinzer, M. L. (1983). The acute toxicity of penta‐, hexa‐, and heptachlorohydroxydiphenyl ethers in mice. Journal of Toxicology and Environmental Health, Part A Current Issues, 12(2-3), 245-253. https://doi.org/1080/15287398309530423
  • Mohd Khori, N. K. E., Hadibarata, T., Elshikh, M. S., Al‐Ghamdi, A. A., Salmiati, ve Yusop, Z. (2018). Triclosan removal by adsorption using activated carbon derived from waste biomass: Isotherms and kinetic studies. Journal of the Chinese Chemical Society, 65(8), 951-959. https://doi.org/10.1002/jccs.201700427
  • Moss, T., Howes, D. ve Williams, F. M. (2000). Percutaneous penetration and dermal metabolism of triclosan (2, 4, 4′-trichloro-2′-hydroxydiphenyl ether). Food and chemical toxicology, 38(4), 361-370. https://doi.org/10.1016/s0278-6915(99)00164-7
  • Murugesan, K., Chang, Y. Y., Kim, Y. M., Jeon, J. R., Kim, E. J. ve Chang, Y. S. (2010). Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Research, 44(1), 298-308. https://doi.org/10.1016/j.watres.2009.09.058
  • Mvula, E. ve von Sonntag, C. (2003). Ozonolysis of phenols in aqueous solution. Org Biomol Chem, 1, 1749–1756. https://doi.org/10.1039/B301824P
  • Nassan, F. L., Mínguez-Alarcón, L., Williams, P. L., Dadd, R., Petrozza, J. C., Ford, J. B., ... ve EARTH Study Team. (2019). Urinary triclosan concentrations and semen quality among men from a fertility clinic. Environmental research, 177, 108633. https://doi.org/10.1016/j.envres.2019.108633
  • Nietch, C. T., Quinlan, E. L., Lazorchak, J. M., Impellitteri, C. A., Raikow, D. ve Walters, D. (2013). Effects of a chronic lower range of triclosan exposure on a stream mesocosm community. Environmental Toxicology and Chemistry, 32(12), 2874-2887. https://doi.org/10.1002/etc.2385
  • Olaniyan, L. W. B., Mkwetshana, N. ve Okoh, A. I. (2016). Triclosan in water, implications for human and environmental health. Springerplus, 5, 1-17. https://doi.org/10.1186/s40064-016-3287-x
  • Olgun, U., Tunç, K. ve Özaslan, V. (2011). Preparation of antimicrobial polycaprolactone‐silica composite films with nanosilver rods and triclosan using roll‐milling method. Polymers for Advanced Technologies, 22(2), 232-236. https://doi.org/10.1002/pat.1524
  • Orhon, K. B., Orhon, A. K., Dilek, F. B. ve Yetis, U. (2017). Triclosan removal from surface water by ozonation-Kinetics and by-products formation. Journal of environmental management, 204, 327-336. https://doi.org/10.1016/j.jenvman.2017.09.025
  • Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A. ve Cunningham, V. (2002). Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry: An International Journal, 21(7), 1338-1349. https://doi.org/10.1002/etc.5620210703
  • Parikh S.L., Xiao G. ve Tong P.J. (2000). Inhibition of InhA, an enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry, 39, 7645–7650. https://doi.org/10.1002/mco2.353
  • Park, B. K., Gonzales, E. L. T., Yang, S. M., Bang, M., Choi, C. S. ve Shin, C. Y. (2016). Effects of triclosan on neural stem cell viability and survival. Biomolecules & therapeutics, 24(1), 99. https://doi.org/10.4062/biomolther.2015.164
  • Peng, X., Xiong, S., Ou, W., Wang, Z., Tan, J., Jin, J., ... ve Fan, Y. (2017). Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China. Journal of Hazardous Materials, 323, 139-146. https://doi.org/10.1016/j.jhazmat.2016.05.020
  • Philippat, C., Botton, J., Calafat, A. M., Ye, X., Charles, M. A., Slama, R. ve EDEN Study Group. (2014). Prenatal exposure to phenols and growth in boys. Epidemiology, 25(5), 625-635. https://doi.org/10.1097/EDE.0000000000000132
  • Pirard, C., Sagot, C., Deville, M., Dubois, N. ve Charlier, C. (2012). Urinary levels of bisphenol A, triclosan and 4-nonylphenol in a general Belgian population. Environment international, 48, 78-83. https://doi.org/10.1016/j.envint.2012.07.003
  • Provencher, G., Bérubé, R., Dumas, P., Bienvenu, J. F., Gaudreau, É., Bélanger, P. ve Ayotte, P. (2014). Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1348, 97-104. https://doi.org/10.1016/j.chroma.2014.04.072
  • Pullaguri, N., Nema, S., Bhargava, Y. ve Bhargava, A. (2020). Triclosan alters adult zebrafish behavior and targets acetylcholinesterase activity and expression. Environmental Toxicology and Pharmacology, 75, 103311. https://doi.org/10.1016/j.etap.2019.103311
  • Pycke BFG, Roll IB, Brownawell BJ, Kinney CA, Furlong ET ve Kolpin DW (2014). Triclocarban in sewage sludge in the United States and conversion products of triclosan and human metabolites. Environmental Sci Technol, 48(14), 7881–7890. https://doi.org/10.3390/molecules26092811
  • Quan, B., Li, X., Zhang, H., Zhang, C., Ming, Y., Huang, Y., ... ve Tang, Y. (2019). Technology and principle of removing triclosan from aqueous media: A review. Chemical engineering journal, 378, 122185. https://doi.org/10.1016/j.cej.2019.122185
  • Regös, J., Zak, O., Solf, R., Vischer, W. A. ve Weirich, E. G. (1979). Antimicrobial spectrum of triclosan, a broad-spectrum antimicrobial agent for topical application: ii. comparison with some other antimicrobial agents. Dermatology, 158(1), 72-79. https://doi.org/10.1159/000250746
  • Reiss, R., Mackay, N., Habig, C. ve Griffin, J. (2002). An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environmental Toxicology and Chemistry: An International Journal, 21(11), 2483-2492. https://doi.org/10.1002/etc.5620211130
  • Ricart, M., Guasch, H., Alberch, M., Barceló, D., Bonnineau, C., Geiszinger, A., ... ve Sabater, S. (2010). Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquatic Toxicology, 100(4), 346-353. https://doi.org/10.1016/j.aquatox.2010.08.010
  • Roed‐Petersen, J., Auken, G. ve Hjorth, N. (1975). Contact sensitivity to Irgasan DP 300. Contact Dermatitis, 1(5), 293-294. https://doi.org/10.1111/j.1600-0536.1975.tb05439.x
  • Russell, L. B., & Montgomery, C. S. (1980). Use of the mouse spot test to investigate the mutagenic potential of triclosan (Irgasan® DP300). Mutation Research/Genetic Toxicology, 79(1), 7-12. https://doi.org/10.1016/0165-1218(80)90142-1
  • Sabaliunas, D., Webb, S. F., Hauk, A., Jacob, M. ve Eckhoff, W. S. (2003). Environmental fate of triclosan in the River Aire Basin, UK. Water research, 37(13), 3145-3154. https://doi.org/10.1016/S0043-1354(03)00164-7
  • Sanchís, J., Olmos, M., Vincent, P., Farre, M. ve Barcelo, D. (2016). New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environmental science & technology, 50(2), 961-969. https://doi.org/10.1021/acs.est.5b03966
  • Sandborgh-Englund, G., Adolfsson-Erici, M., Odham, G. ve Ekstrand, J. (2006). Pharmacokinetics of triclosan following oral ingestion in humans. Journal of Toxicology and Environmental Health, Part A, 69(20), 1861-1873. https://doi.org/10.1080/15287390600631706
  • Santos, D., Luzio, A. ve Coimbra, A. M. (2017). Zebrafish sex differentiation and gonad development: a review on the impact of environmental factors. Aquatic toxicology, 191, 141-163. https://doi.org/10.1016/j.aquatox.2017.08.005
  • Shi, Y., Liu, X., Zhang, J. ve Shao, B. (2013). Analysis of triclosan and triclocarban in human nails using isotopic dilution liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 934, 97-101. https://doi.org/10.1016/j.jchromb.2013.07.003
  • Singer, H., Müller, S., Tixier, C. ve Pillonel, L. (2002). Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environmental science & technology, 36(23), 4998-5004. https://doi.org/10.1021/es025750i
  • Skaare, A., Eide, G., Herlofson, B. ve Barkvoll, P. (1996). The effect of toothpaste containing triclosan on oral mucosal desquamation: A model study. Journal of clinical periodontology, 23(12), 1100-1103. https://doi.org/10.1111/j.1600-051x.1996.tb01810.x
  • Skarha, J., Mínguez-Alarcón, L., Williams, P. L., Korevaar, T. I., de Poortere, R. A., Broeren, M. A., ... ve Braun, J. M. (2019). Cross-sectional associations between urinary triclosan and serum thyroid function biomarker concentrations in women. Environment international, 122, 256-262. https://doi.org/10.1016/j.envint.2018.11.015
  • Spanier, A. J., Fausnight, T., Camacho, T. F. ve Braun, J. M. (2014, November). The associations of triclosan and paraben exposure with allergen sensitization and wheeze in children. In Allergy and asthma proceedings (Vol. 35, No. 6, p. 475). OceanSide Publications. https://doi.org/10.2500/aap.2014.35.3803
  • Stasinakis, A. S., Mamais, D., Thomaidis, N. S., Danika, E., Gatidou, G. ve Lekkas, T. D. (2008). Inhibitory effect of triclosan and nonylphenol on respiration rates and ammonia removal in activated sludge systems. Ecotoxicology and Environmental Safety, 70(2), 199-206. https://doi.org/10.1016/j.ecoenv.2007.12.011
  • Stasinakis, A. S., Petalas, A. V., Mamais, D., Thomaidis, N. S., Gatidou, G. ve Lekkas, T. D. (2007). Investigation of triclosan fate and toxicity in continuous-flow activated sludge systems. Chemosphere, 68(2), 375-381. https://doi.org/10.1016/j.chemosphere.2007.01.047
  • Stenzel, A., Wirt, H., Patten, A., Theodore, B. ve King-Heiden, T. (2019). Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish. Reproductive Toxicology, 87, 79-86. https://doi.org/10.1016/j.reprotox.2019.05.055
  • Stewart A.J. ve Stewart R.F. (2008). Phenols. In Reference module in earth systems and environmental sciences from encyclopedia of ecology (pp. 2682–2689). https://doi.org/10.1016/B978-008045405-4.00417-1
  • Sun, P., Meng, T., Wang, Z., Zhang, R., Yao, H., Yang, Y. ve Zhao, L. (2019). Degradation of organic micropollutants in UV/NH2Cl advanced oxidation process. Environmental Science & Technology, 53(15), 9024-9033. https://doi.org/10.1021/acs.est.9b00749
  • Tabari, S. A., Esfahani, M. L., Hosseini, S. M. ve Rahimi, A. (2019). Neurobehavioral toxicity of triclosan in mice. Food and Chemical Toxicology, 130, 154-160. https://doi.org/10.1016/j.fct.2019.05.025
  • Taştan, B. E. ve Dönmez, G. (2015). Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pesticide Biochemistry and Physiology, 118, 33-37. https://doi.org/10.1016/j.pestbp.2014.11.002
  • Tastan, B.E., Ozdemir, C. ve Tekinay, T. (2016). Effects of different culture media on biodegradation of triclosan by Rhodotorula mucilaginosa and Penicillium sp. Water Sci Technol, 74(2), 473–481. https://doi.org/10.2166/wst.2016.221
  • Taştan, B. E., Tekinay, T., Celik, H. S., Özdemir, C. ve Cakir, D. N. (2017). Toxicity assessment of pesticide triclosan by aquatic organisms and degradation studies. Regulatory Toxicology and Pharmacology, 91, 208-215. https://doi.org/10.1016/j.yrtph.2017.10.030
  • Tatarazako, N., Ishibashi, H., Teshima, K., Kishi, K. ve Arizono, K. (2004). Effects of triclosan on various aquatic organisms. Environmental sciences: An international journal of environmental physiology and toxicology, 11(2), 133-140. https://pubmed.ncbi.nlm.nih.gov/15746894/
  • Toms, L. M. L., Allmyr, M., Mueller, J. F., Adolfsson-Erici, M., McLachlan, M., Murby, J. ve Harden, F. A. (2011). Triclosan in individual human milk samples from Australia. Chemosphere, 85(11), 1682-1686. https://doi.org/10.1016/j.chemosphere.2011.08.009
  • Topaloğlu A.K. ve Kahraman B.F. (2023). Textile dye removal in wastewater by peroxymonosulfate (PMS) activation on a zero-valent iron nanoparticle-modified ultrafiltration catalytic membrane (nZVI@PES). Environ Sci Pollut Res, 30, 94779–94789. https://doi.org/10.1007/s11356-023-29100-9
  • Üstün-Odabaşı, S., Maryam, B., Özdemir, N. ve Büyükgüngör, H. (2020). Occurrence and seasonal variations of pharmaceuticals and personal care products in drinking water and wastewater treatment plants in Samsun, Turkey. Environmental Earth Sciences, 79(12), 311. https://doi.org/10.1007/s12665-020-09047-7
  • Villalaín, J., Mateo, C. R., Aranda, F. J., Shapiro, S. ve Micol, V. (2001). Membranotropic effects of the antibacterial agent triclosan. Archives of biochemistry and biophysics, 390(1), 128-136. https://doi.org/10.1006/abbi.2001.2356
  • Waller, N. J. ve Kookana, R. S. (2009). Effect of triclosan on microbial activity in Australian soils. Environmental Toxicology and Chemistry: An International Journal, 28(1), 65-70. https://doi.org/10.1897/08-224.1
  • Wang, X.., Chen, X., Feng, X., Chang, F., Chen, M., Xia, Y. ve Chen, L. (2015). Triclosan causes spontaneous abortion accompanied by decline of estrogen sulfotransferase activity in humans and mice. Sci Rep, 2015(5), 18252. https://doi.org/10.1038/srep18252
  • Wang, C. F. ve Tian, Y. (2015). Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. Environmental pollution, 206, 195-201. https://doi.org/10.1016/j.envpol.2015.07.001
  • Wang, F., Lu, X., Peng, W., Deng, Y., Zhang, T., Hu, Y. ve Li, X. Y. (2017). Sorption behavior of bisphenol A and triclosan by graphene: comparison with activated carbon. ACS omega, 2(9), 5378-5384. https://doi.org/10.1021/acsomega.7b00616
  • Wang, Q. ve Kelly, B. C. (2017). Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore. Chemosphere, 183, 257-265. https://doi.org/10.1016/j.chemosphere.2017.05.113
  • Wang, S., Poon, K. ve Cai, Z. (2018). Removal and metabolism of triclosan by three different microalgal species in aquatic environment. Journal of hazardous materials, 342, 643-650. https://doi.org/10.1016/j.jhazmat.2017.09.004
  • Wang, S., Wang, X., Poon, K., Wang, Y., Li, S., Liu, H., ... ve Cai, Z. (2013). Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere, 92(11), 1498-1505. https://doi.org/10.1016/j.chemosphere.2013.03.067
  • Wang, S., Yin, Y. ve Wang, J. (2017). Enhanced bio degradation of triclosan by means of gamma irradiation. Chemosphere, 167, 406-414. https://doi.org/10.1016/j.chemosphere.2016.10.028
  • Wang, Y. ve Liang, W. (2021). Occurrence, toxicity, and removal methods of triclosan: A timely review. Current Pollution Reports, 7, 31-39. https://doi.org/10.1007/s40726-021-00173-9
  • Weatherly, L. M. ve Gosse, J. A. (2017). Triclosan exposure, transformation, and human health effects. Journal of Toxicology and Environmental Health, Part B, 20(8), 447-469. https://doi.org/10.1080/10937404.2017.1399306
  • Wu, J. L., Lam, N. P., Martens, D., Kettrup, A. ve Cai, Z. (2007). Triclosan determination in water related to wastewater treatment. Talanta, 72(5), 1650-1654. https://doi.org/10.1016/j.talanta.2007.03.024
  • Wu, J. L., Leung, K. F., Tong, S. F. ve Lam, C. W. (2012). Organochlorine isotopic pattern‐enhanced detection and quantification of triclosan and its metabolites in human serum by ultra‐high‐performance liquid chromatography/quadrupole time‐of‐flight/mass spectrometry. Rapid Communications in Mass Spectrometry, 26(2), 123-132. https://doi.org/10.1002/rcm.5303
  • Xu, J., Wu, L. ve Chang, A. C. (2009). Degradation and adsorption of selectedpharmaceuticals and personal care products (PPCPs) in agricul-tural soils. Chemosphere, 77, 1299–1305. https://doi.org/10.1016/j.chemosphere.2009.09.063
  • Xu, R., Si, Y., Wu, X., Li, F. ve Zhang, B. (2014). Triclosan removal by laccase immobilized on mesoporous nanofibers: strong adsorption and efficient degradation. Chemical Engineering Journal, 255, 63-70. https://doi.org/10.1016/j.cej.2014.06.060
  • Yang, J., Zhang, L., Qiao, W. ve Luo, Y. (2023). Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm, 4(5), e353. https://doi.org/10.1002/mco2.353
  • Yin, J., Wei, L., Shi, Y., Zhang, J., Wu, Q. ve Shao, B. (2016). Chinese population exposure to triclosan and triclocarban as measured via human urine and nails. Environ Geochem Health, 38(5), 1125–1135. https://doi.org/10.1007/s10653-015-9777-x
  • Ying, G. G. ve Kookana, R. S. (2007). Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environment international, 33(2), 199-205. https://doi.org/10.1016/j.envint.2006.09.008
  • Ying, G. G., Yu, X. Y. ve Kookana, R. S. (2007). Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environmental Pollution, 150(3), 300-305. https://doi.org/10.1016/j.envpol.2007.02.013
  • Yueh, M. F., Taniguchi, K., Chen, S., Evans, R. M., Hammock, B. D., Karin, M. ve Tukey, R. H. (2014). The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proceedings of the National Academy of Sciences, 111(48), 17200-17205. https://doi.org/10.1073/pnas.1419119111
  • Zhang, C., Jia, L., Wang, S., Qu, J., Li, K., Xu, L., ... ve Yan, Y. (2010). Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresource technology, 101(10), 3423-3429. https://doi.org/10.1016/j.colsurfa.2018.11.037
  • Zhang, X., Song, K., Liu, J., Zhang, Z., Wang, C. ve Li, H. (2019). Sorption of triclosan by carbon nanotubes in dispersion: The importance of dispersing properties using different surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 280-288. https://doi.org/10.1016/j.colsurfa.2018.11.037
  • Zhang, Z., Li, J., Luan, C., Wang, H., Cheng, X., Fang, L., ... ve Xu, J. (2020). Preparation and characterization of palladium/polypyrrole-reduced graphene oxide/foamed nickel composite electrode and its electrochemical dechlorination of triclosan. Arabian Journal of Chemistry, 13(2), 3963-3973. https://doi.org/10.1016/j.arabjc.2019.04.006
  • Zhao, F., Rezenom, Y. H., Russell, D. H. ve Chu, K. H. (2012). Biodegradation of triclosan by a wastewater microorganism. Water Research, 46(13), 4226-4234. https://doi.org/10.1016/j.watres.2012.05.025
  • Zhu, Z. L., Wang, S. C., Zhao, F. F., Wang, S. G., Liu, F. F. ve Liu, G. Z. (2019). Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environmental pollution, 246, 509-517. https://doi.org/10.1016/j.envpol.2018.12.044

Triklosan Pestisitinin Dünü, Bugünü, Geleceği ve Çevresel Arıtımı

Yıl 2024, , 191 - 212, 31.12.2024
https://doi.org/10.54370/ordubtd.1411365

Öz

Triklosan [5-chloro-2-(2,4-dichlorophenoxy) phenol] ya da ticari ismiyle “Irgasan” geniş spektrumlu güçlü bir antimikrobiyal ajan olarak bilinmektedir. Amerika Birleşik Devletleri Çevre Koruma Ajansı (USEPA) tarafından “pestisit” olarak tescillenmiştir. Avrupa’da her yıl yaklaşık 450 ton triklosanın kullanıldığı tahmin edilmektedir. Triklosanın % 85’i kişisel bakım ürünlerinde, % 5’i tekstil endüstrisinde ve % 10’u da plastik ve gıda ile temas eden maddelerin üretiminde yaygın olarak kullanılmaktadır. Kapsamlı kullanımı nedeniyle, insanlarda ve çevrede triklosan birikimi tespit edilmiştir. Triklosan çevresel açıdan toksik bir madde olup, toksisitesi ile çalışmalar yürütülmekte ve farklı canlı gruplarında toksik etki mekanizması aydınlatılmaktadır. Bu makale, triklosan’ın çevresel akıbeti, insan ve diğer canlı gruplarında maruziyeti, anti-mikrobiyal aktivitenin etkinliği, toksisitesi ve çevresel arıtım mekanizmaları hakkındaki verileri gözden geçirmektedir.

Etik Beyan

Bu makalenin yayınlanmasıyla ilgili herhangi bir etik sorun bulunmamaktadır.

Destekleyen Kurum

Bu çalışma 122Z742 nolu TÜBİTAK 1001 projesi kapsamında hazırlanmıştır.

Proje Numarası

122Z742

Kaynakça

  • Aiello, A. E., Marshall, B., Levy, S. B., Della-Latta, P. ve Larson, E. (2004). Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrobial Agents and Chemotherapy, 48(8), 2973-2979. http://doi.org/10.1128/AAC.48.8.2973-2979.2004
  • Aliaga A., Castells A. ve Kriznik D. (1983). An overview of two comparative multicentre trials with halometasone/triclosan cream in acute superficial bacterial skin infections. The Journal of International Medical Research, 11(1), 53–57. https://europepmc.org/article/med/6339294
  • Allmyr M., Adolfsson-Erici M., McLachlan M.S., ve Sandborgh-Englund G. (2006). Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ, 372, 87–93. http://doi.org/10.1016/j.scitotenv.2006.08.007
  • Allmyr M., Harden F., Toms L.M., Mueller J.F., McLachlan M.S., Adolfsson-Erici M. ve Sandborgh-Englund G. (2008). The influence of age and gender on triclosan con-centrations in Australian human blood serum. Sci Total Environ, 393, 162–167. http://doi.org/10.1016/j.scitotenv.2007.12.006
  • Aranami K. ve Readman J. W. (2007). Photolytic degradation of triclosan in freshwater and seawater. Chemosphere, 66(6), 1052–1056. http://doi.org/10.1016/j.chemosphere.2006.07.010
  • Arrhenius E., Renberg L., Johansson L. ve Zetterqvist M.A. (1977). Disruption of microsomal detoxification mechanisms in the liver by chlorphenol pesticides. Chemico-Biological Interactions, 18(1), 35–46. http://doi.org/10.1016/0009-2797(77)90139-9
  • Ashrap, P., Zheng, G., Wan, Y., Li, T., Hu, W., Li, W., ... ve Hu, J. (2017). Discovery of a widespread metabolic pathway within and among phenolic xenobiotics. Proceedings of the National Academy of Sciences, 114(23), 6062-6067. http://doi.org/10.1073/pnas.1700558114
  • Atar, N., Eren, T., Yola, M. L. ve Wang, S. (2015). A sensitive molecular imprinted surface plasmon resonance nanosensor for selective determination of trace triclosan in wastewater. Sensors and Actuators B: Chemical, 216, 638-644. http://doi.org/10.1016/j.snb.2015.04.076
  • Bayston, R., Ashraf, W. ve Smith, T. (2007). Triclosan resistance in methicillin-resistant Staphylococcus aureus expressed as small colony variants: A novel mode of evasion of susceptibility to antiseptics. Journal of antimicrobial chemotherapy, 59(5), 848-853. https://doi.org/10.1093/jac/dkm031
  • Bedoux G., Roig B., Thomas O., Dupont V. ve Le Bot B. (2012). Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut R, 19(4), 1044–1065. https://doi.org/10.1007/s11356-011-0632-z
  • Behera, S. K., Oh, S. Y. ve Park, H. S. (2010). Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. Journal of Hazardous Materials, 179(1-3), 684-691. https://doi.org/10.1007/s11356-011-0632-z
  • Bellamy, K., Alcock, R., Babb, J. R., Davies, J. G. ve Ayliffe, G. A. J. (1993). A test for the assessment of ‘hygienic’hand disinfection using rotavirus. Journal of Hospital Infection, 24(3), 201-210. https://doi.org/10.1016/0195-6701(93)90049-6
  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D. ve Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environmental science & technology, 43(3), 597-603. https://doi.org/10.1021/es801845a
  • Betts, J. C., McLaren, A., Lennon, M. G., Kelly, F. M., Lukey, P. T., Blakemore, S. J. ve Duncan, K. (2003). Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 47(9), 2903-2913. https://doi.org/10.1128/AAC.47.9.2903-2913.2003
  • Bhargava, H. N. ve Leonard, P. A. (1996). Triclosan: Applications and safety. American Journal of Infection Control, 24(3), 209-218. https://doi.org/10.1016/S0196-6553(96)90017-6
  • Birosová, L. ve Mikulásová, M. (2009). Evolution of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol, 58, 436–441. https://doi.org/10.1099/jmm.0.003657-0
  • Braoudaki, M. ve Hilton, A.C. (2004). Low level of crossresistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol Lett, 235, 305–309. https://doi.org/10.1016/j.femsle.2004.04.049
  • Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H. ve Mawhinney, D.B. (2006). Occurrence of antibiotics in hospital, residential, and dairy, effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment, 366, 772–783. https://doi.org/10.1016/j.scitotenv.2005.10.007
  • Calafat, A.M., Ye, X., Wong, L.Y., Reidy, J.A. ve Needham, L.L. (2008). Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environ Health Persp, 116, 303–307. https://doi.org/10.1289/ehp.10768
  • Capdevielle, M., Van Egmond, R., Whelan, M., Versteeg, D., Hofmann‐Kamensky, M., Inauen, J., ... ve Woltering, D. (2008). Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integrated environmental assessment and management, 4(1), 15-23. https://doi.org/10.1897/ieam_2007-022.1
  • Cayan, D., Unur, E., Nisari, M., Patat, D., Dağli, E. ve Akalin, H. (2020). The effect of triclosan on in vitro embryonic development in rat. Kafkas Univ Vet Fak Derg, 26(5), 595–602. https://doi.org/10.9775/kvfd.2020.23873
  • Chau, W. C., Wu, J. L. ve Cai, Z. (2008). Investigation of levels and fate of triclosan in environmental waters from the analysis of gas chromatography coupled with ion trap mass spectrometry. Chemosphere, 73(1), S13-S17. https://doi.org/10.1016/j.chemosphere.2007.01.087
  • Chen, X., Nielsen, J. L., Furgal, K., Liu, Y., Lolas, I. B. ve Bester, K. (2011). Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere, 84(4), 452-456. https://doi.org/10.1016/j.chemosphere.2011.03.042
  • Chen, Y., Pi, B., Zhou, H., Yu, Y. ve Li, L. (2009). Triclosan resistance in clinical isolates of Acinetobacter baumannii. Journal of medical microbiology, 58(8), 1086-1091. https://doi.org/10.1099/jmm.0.008524-0
  • Chen, Z., Le, J., Wang, S., Jie, Q., Kang, L., Xu, L., Shi, Y. ve Yan, Y. (2010). Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity, Bioresour Technol, 101: 3423–3429. https://doi.org/10.1016/j.biortech.2009.12.083
  • Cherednichenko, G., Zhang, R., Bannister, R. A., Timofeyev, V., Li, N., Fritsch, E. B., ... ve Pessah, I. N. (2012). Triclosan impairs excitation–contraction coupling and Ca2+ dynamics in striated muscle. Proceedings of the National Academy of Sciences, 109(35), 14158-14163. https://doi.org/10.1073/pnas.12113141
  • Chiaia-Hernandez, A. C., Ashauer, R., Moest, M., Hollingshaus, T., Jeon, J., Spaak, P. ve Hollender, J. (2013). Bioconcentration of organic contaminants in Daphnia resting eggs. Environmental science & technology, 47(18), 10667-10675. https://doi.org/10.1021/es401763d
  • Chow, A. Y. K., Hirsch, G. H. ve Buttar, H. S. (1977). Nephrotoxic and hepatotoxic effects of triclosan and chlorhexidine in rats. Toxicology and applied pharmacology, 42(1), 1-10. https://doi.org/10.1016/0041-008x(77)90191-0
  • Clarke, B.O. ve Smith, S.R. (2011). Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Intl, 37, 226–247. https://doi.org/10.1016/j.envint.2010.06.004
  • Condell, O., Sheridan, A., Power, K. A., Bonilla-Santiago, R., Sergeant, K., Renaut, J., ... ve Nally, J. E. (2012). Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. Journal of proteomics, 75(14), 4505-4519. https://doi.org/10.1016/j.jprot.2012.04.044
  • Constantin, L. A., Nitoi, I., Cristea, N. I. ve Constantin, M. A. (2018). Possible degradation pathways of triclosan from aqueous systems via TiO2 assisted photocatalyis. Journal of Industrial and Engineering Chemistry, 58, 155-162. https://doi.org/10.5505/pajes.2020.66066
  • Crofton, K. M., Paul, K. B., DeVito, M. J. ve Hedge, J. M. (2007). Short-term in vivo exposure to the water contaminant triclosan: evidence for disruption of thyroxine. Environmental toxicology and pharmacology, 24(2), 194-197. https://doi.org/10.1016/j.etap.2007.04.008
  • Çiftçi, G., Türkeli, Ü. D., Özen, E. Y., Özdemir, M., Sanin, F. D. ve İmamoğlu, İ. (2023). Microplastics and organics–A comparative study of sorption of triclosan and malachite green onto polyethylene. Water Science & Technology, 87(5), 1072-1081. https://doi.org/10.2166/wst.2023.040
  • Dann, A.B. ve Hontela, A. (2011). Triclosan: environmental exposure, toxicity and mechanisms of action, J Appl Toxicol, 31(4), 285–311. https://doi.org/10.1002/jat.1660
  • Dayan, A.D. (2007). Risk assessment of triclosan [Irgasan®] in human breast milk. Food Chem Toxicol, 45, 125–129. https://doi.org/10.1016/j.fct.2006.08.009
  • Delorenzo, M.E., Keller, J.M., Arthur, C.D., Finnegan, M.C., Harper, H.E., Winder, V.L. ve Zdankiewicz, D.L. (2008). Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environmental Toxicology, 23, 224–232. https://doi.org/10.1002/tox.20327
  • DEPA (2016). Survey of triclosan in cosmetic products. No.152,The Danish Environmental Protection Agency.
  • Ding, T., Lin, K., Yang, M., Bao, L., Li, J., Yang, B. ve Gan, J. (2018). Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. J Hazard Mater 344: 200–209. https://doi.org/10.1016/j.jhazmat.2017.09.033
  • Drury, B., Scott, J., Rosi-Marshall, E. J. ve Kelly, J. J. (2013). Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environmental science & technology, 47(15), 8923-8930. https://doi.org/10.1021/es401919k
  • Ebrahimi, A., Lin, K.Y.A. ve Moazeni, M. (2024). A comparative investigation on the decomposition of triclosan via synthesized heterogeneous nano-catalysts in the presence of peroxymonosulfate. Catalysis Communications, 186, 106820. https://doi.org/10.1016/j.catcom.2023.106820
  • EPA (2008). Pesticides and toxic substances. United States Environmental Protection Agency.
  • Ertit Taştan, B., Özdemir, C. ve Tekinay, T. (2016). Effects of different culture media on biodegradation of triclosan by Rhodotorula mucilaginosa and Penicillium sp. Water Science and Technology, 74(2), 473-481. https://doi.org/10.2166/wst.2016.221
  • Etzel, T. M., Calafat, A. M., Ye, X., Chen, A., Lanphear, B. P., Savitz, D. A., ... ve Braun, J. M. (2017). Urinary triclosan concentrations during pregnancy and birth outcomes. Environmental research, 156, 505-511. doi: 10.1016/j.envres.2017.04.015.
  • Falkenburger, B.H., Jensen, J.B. ve Hille, B. (2010). Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells. J Gen Physiol, 135, 99–114. https://doi.org/10.1085/jgp.200910345
  • Fang, J. L., Stingley, R. L., Beland, F. A., Harrouk, W., Lumpkins, D. L. ve Howard, P. (2010). Occurrence, efficacy, metabolism, and toxicity of triclosan. Journal of Environmental Science and Health, Part C, 28(3), 147-171. https://doi.org/10.1080/10590501.2010.504978
  • Fang, J. L., Vanlandingham, M., da Costa, G. G. ve Beland, F. A. (2016). Absorption and metabolism of triclosan after application to the skin of B 6 C 3 F 1 mice. Environmental toxicology, 31(5), 609-623. https://doi.org/10.1002/tox.22074
  • Franz, E. ve Weidner-Strahl, S. (1978). The effectiveness of topical antibacterials in acne: a double-blind clinical study. The Journal of International Medical Research, 6(1), 72–77. https://doi.org/10.1177/030006057800600113
  • Fritsch, E. B., Connon, R. E., Werner, I., Davies, R. E., Beggel, S., Feng, W. ve Pessah, I. N. (2013). Triclosan impairs swimming behavior and alters expression of excitation-contraction coupling proteins in fathead minnow (Pimephales promelas). Environmental science & technology, 47(4), 2008-2017. https://doi.org/10.1021/es303790b
  • Fuchsman, P., Lyndall, J., Bock, M., Lauren, D., Barber, T., Leigh, K., ... ve Capdevielle, M. (2010). Terrestrial ecological risk evaluation for triclosan in land‐applied biosolids. Integrated Environmental Assessment and Management, 6(3), 405-418. https://doi.org/10.1897/IEAM_2009-071.1
  • Gee, R. H., Charles, A., Taylor, N. ve Darbre, P. D. (2008). Oestrogenic and androgenic activity of triclosan in breast cancer cells. Journal of Applied Toxicology: An International Journal, 28(1), 78-91. https://doi.org/10.1002/jat.1316
  • Geens, T., Neels, H. ve Covaci, A. (2012). Distribution of bisphenol-A, triclosan and n nonylphenol in human adipose tissue, liver and brain. Chemosphere, 87: 796–802. https://doi.org/10.1016/j.chemosphere.2012.01.002
  • Gómez-Pacheco, C. V., Sánchez-Polo, M., Rivera-Utrilla, J. ve López-Peñalver, J. (2011). Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chemical engineering journal, 178, 115-121. https://doi.org/10.1016/j.cej.2011.10.023
  • González-Pleiter, M., Rioboo, C., Reguera, M., Abreu, I., Leganés, F., Cid, Á. ve Fernández-Piñas, F. (2017). Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan. Aquatic toxicology, 186, 50-66. https://doi.org/10.1016/j.aquatox.2017.02.021
  • Halden, R. U. ve Paull, D. H. (2005). Co-occurrence of triclocarban and triclosan in US water resources. Environmental science & technology, 39(6), 1420-1426. https://doi.org/10.1021/es058014y
  • Han, L., Ro, K. S., Sun, K., Sun, H., Wang, Z., Libra, J. A. ve Xing, B. (2016). New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environmental science & technology, 50(24), 13274-13282. https://doi.org/10.1021/acs.est.6b02401
  • Harada, A., Komori, K., Nakada, N., Kitamura, K. ve Suzuki, Y. (2008). Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Science and Technology, 58(8), 1541-1546. https://doi.org/10.2166/wst.2008.742
  • Hundt, K. A. I., Martin, D., Hammer, E., Jonas, U., Kindermann, M. K. ve Schauer, F. (2000). Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Applied and Environmental Microbiology, 66(9), 4157-4160. https://doi.org/10.1128/AEM.66.9.4157-4160.2000
  • Inoue, Y., Hata, T., Kawai, S., Okamura, H. ve Nishida, T. (2010). Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. Journal of Hazardous materials, 180(1-3), 764-767. https://doi.org/10.1016/j.jhazmat.2010.04.024
  • Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., ... ve Arizono, K. (2004). Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicology, 67(2), 167-179. https://doi.org/10.1016/j.aquatox.2003.12.005
  • Kalliomaki, P. ve Kuokkanen, K. (1979). Comparative study on the efficacy and tolerance of the ointments CGP433 and GP41353 in the treatment of infectious dermatitis. Zeitschrift für Hautkrankheiten, 54(14), 668–670.
  • Keen, O. S., Baik, S., Linden, K. G., Aga, D. S. ve Love, N. G. (2012). Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation. Environmental science & technology, 46(11), 6222-6227. https://doi.org/10.1021/es300897u
  • Kim, S. H., Hwang, K. A., Shim, S. M. ve Choi, K. C. (2015). Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway. Environmental Toxicology and Pharmacology, 39(2), 568-576. https://doi.org/10.1016/j.etap.2015.01.003
  • Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. ve Buxton, H.T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national expedition. Environ Sci Technol, 36, 1202–1211. https://doi.org/10.1021/es011055j
  • Kolpin, D.W., Skopec, M., Meyer, M.T., Furlong, E.T. ve Zaugg, S.D. (2004). Urban contribution of pharmaceuticals other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ, 328, 119–130. https://doi.org/10.1016/j.scitotenv.2004.01.015
  • Kumar, K.S., Priya, S.M., Peck, A.M. ve Sajwan, K.S. (2010). Mass loadings of triclosan and triclocarban from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch Environ Contam Toxicol, 58, 275–285. https://doi.org/10.1007/s00244-009-9383-y
  • Kummerer, K. (2004). Resistance in the environment. Antimicrobial Chemotherapy, 54, 311–320. https://doi.org/10.1093/jac/dkh325
  • Lan, Z., Hyung Kim, T., Shun Bi, K., Hui Chen, X. ve Sik Kim, H. (2015). Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male sprague‐dawley rats. Environmental toxicology, 30(1), 83-91. https://doi.org/10.1002/tox.21897
  • Lassen, T. H., Frederiksen, H., Kyhl, H. B., Swan, S. H., Main, K. M., Andersson, A. M., ... ve Jensen, T. K. (2016). Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environmental Health Perspectives, 124(8), 1261-1268. https://doi.org/10.1289/ehp.1409637
  • Latch, D.E., Packer, J.L., Stender, B.L., VanOverbeke, J., Arnold, W.A. ve McNeill, K. (2005). Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ Toxicol Chem, 24, 517–525. https://doi.org/10.1897/04-243r.1
  • Li, J., Wu, D., Zhang, H., Wang, L., Wang, H., Ba, Z. (2023). Insights into a removal mechanism of triclosan using an electroactivated persulfate-coupled carbon membrane system. Catalysts, 13, 10, 1321. https://doi.org/10.3390/catal13101321
  • Li, J., Peng, J., Zhang, Y., Ji, Y., Shi, H., Mao, L. ve Gao, S. (2016). Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification. Journal of hazardous materials, 310, 152-160. https://doi.org/10.1016/j.jhazmat.2016.02.037
  • Li, X., Ying, G. G., Zhao, J. L., Chen, Z. F., Lai, H. J. ve Su, H. C. (2013). 4-Nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China, and the effects of drinking these bottled materials on the levels. Environment international, 52, 81-86. https://doi.org/10.1016/j.envint.2011.03.026
  • Lin, Y.J. (2000). Buccal absorption of triclosan following topical mouthrinse application. Am J Dent, 13, 215–217. https://pubmed.ncbi.nlm.nih.gov/11763935/
  • Lindström, A., Buerge, I.J., Poiger, T., Bergqvist, P.A., Müller, M.D. ve Buser, H.R. (2002). Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol, 36(11), 2322–9. https://doi.org/10.1021/es0114254
  • Lipnick, R.L. (1995). Computational chemistry in environmental toxicology QSAR. Environ Res, 4(2-3): 125–130. https://doi.org/10.1080/10629369508029909
  • Liu, F., Ying, G.G., Yang, L.H. ve Zhou, Q.X. (2009). Terrestrial ecotoxicological effects of the antimicrobial agent triclosan. Ecotoxicology and Environmental Safety, 72(1), 86–92. https://doi.org/10.1016/j.ecoenv.2008.06.009
  • Loraine, G.A. ve Pettigrove., M.E. (2006). Pharmaceutical and personal use in drinking water and recycled wastewater in Southern California seasonal variations in the concentration of care products. Environ Sci Technol, 40, 687–695. https://doi.org/10.1021/es051380x
  • Lorusso, D. J., Miller, T. L. ve Deinzer, M. L. (1981). Effect of hydroxychlorodiphenyl ethers (chlorinated pre‐and isopredioxins) on erythrocyte membrane adenosinetriphosphatase activity. Journal of Toxicology and Environmental Health, Part A Current Issues, 8(1-2), 215-223. https://doi.org/10.1080/15287398109530065
  • Lozano, N., Rice, C. P., Ramirez, M. ve Torrents, A. (2013). Fate of triclocarban, triclosan and methyltriclosan during wastewater and biosolids treatment processes. Water research, 47(13), 4519-4527. https://doi.org/10.1016/j.watres.2013.05.015
  • Luo, Z., He, Y., Zhi, D., Luo, L., Sun, Y., Khan, E., Wang, L., Peng, Y., Zhou, Y. ve Tsang, D.C.W. (2019). Current progress in treatment techniques of triclosan from wastewater: A review, Sci Total Environ, 696, 133990. https://doi.org/10.1016/j.scitotenv.2019.133990
  • Ma, Z., Liu, H. ve Yu, H. (2019). Triclosan affects Ca2+ regulatory module and musculature development in skeletal myocyte during early life stages of zebrafish (Danio rerio). Environmental Science & Technology, 53(20), 11988-11998. https://doi.org/10.1021/acs.est.9b03231
  • Maillard, J.Y. (2007). Bacterial resistance to biocides in the healthcare setting: should we be worried? J Hospital Infection, 65, 60–72. https://doi.org/10.1016/S0195-6701(07)60018-8
  • McMurry, L. M., Oethinger, M. ve Levy, S. B. (1998). Triclosan targets lipid synthesis. Nature, 394(6693), 531-532. https://doi.org/10.1038/28970
  • Miller, T. L. ve Deinzer, M. L. (1980). Effects of nonachloropredioxin and other hydroxychlorodiphenyl ethers on biological membranes. Journal of Toxicology and Environmental Health, Part A Current Issues, 6(1), 11-25. https://doi.org/10.1080/15287398009529827
  • Miller, T. L., Lorusso, D. J. ve Deinzer, M. L. (1982). The acute toxicity of nonachloropredioxin and 3‐and 4‐hydroxynonachlorodiphenyl ether in mice. Journal of Toxicology and Environmental Health, Part A Current Issues, 10(4-5), 699-707. https://doi.org/10.1080/15287398209530288
  • Miller, T. L., Lorusso, D. J., Walsh, M. L. ve Deinzer, M. L. (1983). The acute toxicity of penta‐, hexa‐, and heptachlorohydroxydiphenyl ethers in mice. Journal of Toxicology and Environmental Health, Part A Current Issues, 12(2-3), 245-253. https://doi.org/1080/15287398309530423
  • Mohd Khori, N. K. E., Hadibarata, T., Elshikh, M. S., Al‐Ghamdi, A. A., Salmiati, ve Yusop, Z. (2018). Triclosan removal by adsorption using activated carbon derived from waste biomass: Isotherms and kinetic studies. Journal of the Chinese Chemical Society, 65(8), 951-959. https://doi.org/10.1002/jccs.201700427
  • Moss, T., Howes, D. ve Williams, F. M. (2000). Percutaneous penetration and dermal metabolism of triclosan (2, 4, 4′-trichloro-2′-hydroxydiphenyl ether). Food and chemical toxicology, 38(4), 361-370. https://doi.org/10.1016/s0278-6915(99)00164-7
  • Murugesan, K., Chang, Y. Y., Kim, Y. M., Jeon, J. R., Kim, E. J. ve Chang, Y. S. (2010). Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Research, 44(1), 298-308. https://doi.org/10.1016/j.watres.2009.09.058
  • Mvula, E. ve von Sonntag, C. (2003). Ozonolysis of phenols in aqueous solution. Org Biomol Chem, 1, 1749–1756. https://doi.org/10.1039/B301824P
  • Nassan, F. L., Mínguez-Alarcón, L., Williams, P. L., Dadd, R., Petrozza, J. C., Ford, J. B., ... ve EARTH Study Team. (2019). Urinary triclosan concentrations and semen quality among men from a fertility clinic. Environmental research, 177, 108633. https://doi.org/10.1016/j.envres.2019.108633
  • Nietch, C. T., Quinlan, E. L., Lazorchak, J. M., Impellitteri, C. A., Raikow, D. ve Walters, D. (2013). Effects of a chronic lower range of triclosan exposure on a stream mesocosm community. Environmental Toxicology and Chemistry, 32(12), 2874-2887. https://doi.org/10.1002/etc.2385
  • Olaniyan, L. W. B., Mkwetshana, N. ve Okoh, A. I. (2016). Triclosan in water, implications for human and environmental health. Springerplus, 5, 1-17. https://doi.org/10.1186/s40064-016-3287-x
  • Olgun, U., Tunç, K. ve Özaslan, V. (2011). Preparation of antimicrobial polycaprolactone‐silica composite films with nanosilver rods and triclosan using roll‐milling method. Polymers for Advanced Technologies, 22(2), 232-236. https://doi.org/10.1002/pat.1524
  • Orhon, K. B., Orhon, A. K., Dilek, F. B. ve Yetis, U. (2017). Triclosan removal from surface water by ozonation-Kinetics and by-products formation. Journal of environmental management, 204, 327-336. https://doi.org/10.1016/j.jenvman.2017.09.025
  • Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A. ve Cunningham, V. (2002). Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry: An International Journal, 21(7), 1338-1349. https://doi.org/10.1002/etc.5620210703
  • Parikh S.L., Xiao G. ve Tong P.J. (2000). Inhibition of InhA, an enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry, 39, 7645–7650. https://doi.org/10.1002/mco2.353
  • Park, B. K., Gonzales, E. L. T., Yang, S. M., Bang, M., Choi, C. S. ve Shin, C. Y. (2016). Effects of triclosan on neural stem cell viability and survival. Biomolecules & therapeutics, 24(1), 99. https://doi.org/10.4062/biomolther.2015.164
  • Peng, X., Xiong, S., Ou, W., Wang, Z., Tan, J., Jin, J., ... ve Fan, Y. (2017). Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China. Journal of Hazardous Materials, 323, 139-146. https://doi.org/10.1016/j.jhazmat.2016.05.020
  • Philippat, C., Botton, J., Calafat, A. M., Ye, X., Charles, M. A., Slama, R. ve EDEN Study Group. (2014). Prenatal exposure to phenols and growth in boys. Epidemiology, 25(5), 625-635. https://doi.org/10.1097/EDE.0000000000000132
  • Pirard, C., Sagot, C., Deville, M., Dubois, N. ve Charlier, C. (2012). Urinary levels of bisphenol A, triclosan and 4-nonylphenol in a general Belgian population. Environment international, 48, 78-83. https://doi.org/10.1016/j.envint.2012.07.003
  • Provencher, G., Bérubé, R., Dumas, P., Bienvenu, J. F., Gaudreau, É., Bélanger, P. ve Ayotte, P. (2014). Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1348, 97-104. https://doi.org/10.1016/j.chroma.2014.04.072
  • Pullaguri, N., Nema, S., Bhargava, Y. ve Bhargava, A. (2020). Triclosan alters adult zebrafish behavior and targets acetylcholinesterase activity and expression. Environmental Toxicology and Pharmacology, 75, 103311. https://doi.org/10.1016/j.etap.2019.103311
  • Pycke BFG, Roll IB, Brownawell BJ, Kinney CA, Furlong ET ve Kolpin DW (2014). Triclocarban in sewage sludge in the United States and conversion products of triclosan and human metabolites. Environmental Sci Technol, 48(14), 7881–7890. https://doi.org/10.3390/molecules26092811
  • Quan, B., Li, X., Zhang, H., Zhang, C., Ming, Y., Huang, Y., ... ve Tang, Y. (2019). Technology and principle of removing triclosan from aqueous media: A review. Chemical engineering journal, 378, 122185. https://doi.org/10.1016/j.cej.2019.122185
  • Regös, J., Zak, O., Solf, R., Vischer, W. A. ve Weirich, E. G. (1979). Antimicrobial spectrum of triclosan, a broad-spectrum antimicrobial agent for topical application: ii. comparison with some other antimicrobial agents. Dermatology, 158(1), 72-79. https://doi.org/10.1159/000250746
  • Reiss, R., Mackay, N., Habig, C. ve Griffin, J. (2002). An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environmental Toxicology and Chemistry: An International Journal, 21(11), 2483-2492. https://doi.org/10.1002/etc.5620211130
  • Ricart, M., Guasch, H., Alberch, M., Barceló, D., Bonnineau, C., Geiszinger, A., ... ve Sabater, S. (2010). Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquatic Toxicology, 100(4), 346-353. https://doi.org/10.1016/j.aquatox.2010.08.010
  • Roed‐Petersen, J., Auken, G. ve Hjorth, N. (1975). Contact sensitivity to Irgasan DP 300. Contact Dermatitis, 1(5), 293-294. https://doi.org/10.1111/j.1600-0536.1975.tb05439.x
  • Russell, L. B., & Montgomery, C. S. (1980). Use of the mouse spot test to investigate the mutagenic potential of triclosan (Irgasan® DP300). Mutation Research/Genetic Toxicology, 79(1), 7-12. https://doi.org/10.1016/0165-1218(80)90142-1
  • Sabaliunas, D., Webb, S. F., Hauk, A., Jacob, M. ve Eckhoff, W. S. (2003). Environmental fate of triclosan in the River Aire Basin, UK. Water research, 37(13), 3145-3154. https://doi.org/10.1016/S0043-1354(03)00164-7
  • Sanchís, J., Olmos, M., Vincent, P., Farre, M. ve Barcelo, D. (2016). New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environmental science & technology, 50(2), 961-969. https://doi.org/10.1021/acs.est.5b03966
  • Sandborgh-Englund, G., Adolfsson-Erici, M., Odham, G. ve Ekstrand, J. (2006). Pharmacokinetics of triclosan following oral ingestion in humans. Journal of Toxicology and Environmental Health, Part A, 69(20), 1861-1873. https://doi.org/10.1080/15287390600631706
  • Santos, D., Luzio, A. ve Coimbra, A. M. (2017). Zebrafish sex differentiation and gonad development: a review on the impact of environmental factors. Aquatic toxicology, 191, 141-163. https://doi.org/10.1016/j.aquatox.2017.08.005
  • Shi, Y., Liu, X., Zhang, J. ve Shao, B. (2013). Analysis of triclosan and triclocarban in human nails using isotopic dilution liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 934, 97-101. https://doi.org/10.1016/j.jchromb.2013.07.003
  • Singer, H., Müller, S., Tixier, C. ve Pillonel, L. (2002). Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environmental science & technology, 36(23), 4998-5004. https://doi.org/10.1021/es025750i
  • Skaare, A., Eide, G., Herlofson, B. ve Barkvoll, P. (1996). The effect of toothpaste containing triclosan on oral mucosal desquamation: A model study. Journal of clinical periodontology, 23(12), 1100-1103. https://doi.org/10.1111/j.1600-051x.1996.tb01810.x
  • Skarha, J., Mínguez-Alarcón, L., Williams, P. L., Korevaar, T. I., de Poortere, R. A., Broeren, M. A., ... ve Braun, J. M. (2019). Cross-sectional associations between urinary triclosan and serum thyroid function biomarker concentrations in women. Environment international, 122, 256-262. https://doi.org/10.1016/j.envint.2018.11.015
  • Spanier, A. J., Fausnight, T., Camacho, T. F. ve Braun, J. M. (2014, November). The associations of triclosan and paraben exposure with allergen sensitization and wheeze in children. In Allergy and asthma proceedings (Vol. 35, No. 6, p. 475). OceanSide Publications. https://doi.org/10.2500/aap.2014.35.3803
  • Stasinakis, A. S., Mamais, D., Thomaidis, N. S., Danika, E., Gatidou, G. ve Lekkas, T. D. (2008). Inhibitory effect of triclosan and nonylphenol on respiration rates and ammonia removal in activated sludge systems. Ecotoxicology and Environmental Safety, 70(2), 199-206. https://doi.org/10.1016/j.ecoenv.2007.12.011
  • Stasinakis, A. S., Petalas, A. V., Mamais, D., Thomaidis, N. S., Gatidou, G. ve Lekkas, T. D. (2007). Investigation of triclosan fate and toxicity in continuous-flow activated sludge systems. Chemosphere, 68(2), 375-381. https://doi.org/10.1016/j.chemosphere.2007.01.047
  • Stenzel, A., Wirt, H., Patten, A., Theodore, B. ve King-Heiden, T. (2019). Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish. Reproductive Toxicology, 87, 79-86. https://doi.org/10.1016/j.reprotox.2019.05.055
  • Stewart A.J. ve Stewart R.F. (2008). Phenols. In Reference module in earth systems and environmental sciences from encyclopedia of ecology (pp. 2682–2689). https://doi.org/10.1016/B978-008045405-4.00417-1
  • Sun, P., Meng, T., Wang, Z., Zhang, R., Yao, H., Yang, Y. ve Zhao, L. (2019). Degradation of organic micropollutants in UV/NH2Cl advanced oxidation process. Environmental Science & Technology, 53(15), 9024-9033. https://doi.org/10.1021/acs.est.9b00749
  • Tabari, S. A., Esfahani, M. L., Hosseini, S. M. ve Rahimi, A. (2019). Neurobehavioral toxicity of triclosan in mice. Food and Chemical Toxicology, 130, 154-160. https://doi.org/10.1016/j.fct.2019.05.025
  • Taştan, B. E. ve Dönmez, G. (2015). Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pesticide Biochemistry and Physiology, 118, 33-37. https://doi.org/10.1016/j.pestbp.2014.11.002
  • Tastan, B.E., Ozdemir, C. ve Tekinay, T. (2016). Effects of different culture media on biodegradation of triclosan by Rhodotorula mucilaginosa and Penicillium sp. Water Sci Technol, 74(2), 473–481. https://doi.org/10.2166/wst.2016.221
  • Taştan, B. E., Tekinay, T., Celik, H. S., Özdemir, C. ve Cakir, D. N. (2017). Toxicity assessment of pesticide triclosan by aquatic organisms and degradation studies. Regulatory Toxicology and Pharmacology, 91, 208-215. https://doi.org/10.1016/j.yrtph.2017.10.030
  • Tatarazako, N., Ishibashi, H., Teshima, K., Kishi, K. ve Arizono, K. (2004). Effects of triclosan on various aquatic organisms. Environmental sciences: An international journal of environmental physiology and toxicology, 11(2), 133-140. https://pubmed.ncbi.nlm.nih.gov/15746894/
  • Toms, L. M. L., Allmyr, M., Mueller, J. F., Adolfsson-Erici, M., McLachlan, M., Murby, J. ve Harden, F. A. (2011). Triclosan in individual human milk samples from Australia. Chemosphere, 85(11), 1682-1686. https://doi.org/10.1016/j.chemosphere.2011.08.009
  • Topaloğlu A.K. ve Kahraman B.F. (2023). Textile dye removal in wastewater by peroxymonosulfate (PMS) activation on a zero-valent iron nanoparticle-modified ultrafiltration catalytic membrane (nZVI@PES). Environ Sci Pollut Res, 30, 94779–94789. https://doi.org/10.1007/s11356-023-29100-9
  • Üstün-Odabaşı, S., Maryam, B., Özdemir, N. ve Büyükgüngör, H. (2020). Occurrence and seasonal variations of pharmaceuticals and personal care products in drinking water and wastewater treatment plants in Samsun, Turkey. Environmental Earth Sciences, 79(12), 311. https://doi.org/10.1007/s12665-020-09047-7
  • Villalaín, J., Mateo, C. R., Aranda, F. J., Shapiro, S. ve Micol, V. (2001). Membranotropic effects of the antibacterial agent triclosan. Archives of biochemistry and biophysics, 390(1), 128-136. https://doi.org/10.1006/abbi.2001.2356
  • Waller, N. J. ve Kookana, R. S. (2009). Effect of triclosan on microbial activity in Australian soils. Environmental Toxicology and Chemistry: An International Journal, 28(1), 65-70. https://doi.org/10.1897/08-224.1
  • Wang, X.., Chen, X., Feng, X., Chang, F., Chen, M., Xia, Y. ve Chen, L. (2015). Triclosan causes spontaneous abortion accompanied by decline of estrogen sulfotransferase activity in humans and mice. Sci Rep, 2015(5), 18252. https://doi.org/10.1038/srep18252
  • Wang, C. F. ve Tian, Y. (2015). Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. Environmental pollution, 206, 195-201. https://doi.org/10.1016/j.envpol.2015.07.001
  • Wang, F., Lu, X., Peng, W., Deng, Y., Zhang, T., Hu, Y. ve Li, X. Y. (2017). Sorption behavior of bisphenol A and triclosan by graphene: comparison with activated carbon. ACS omega, 2(9), 5378-5384. https://doi.org/10.1021/acsomega.7b00616
  • Wang, Q. ve Kelly, B. C. (2017). Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore. Chemosphere, 183, 257-265. https://doi.org/10.1016/j.chemosphere.2017.05.113
  • Wang, S., Poon, K. ve Cai, Z. (2018). Removal and metabolism of triclosan by three different microalgal species in aquatic environment. Journal of hazardous materials, 342, 643-650. https://doi.org/10.1016/j.jhazmat.2017.09.004
  • Wang, S., Wang, X., Poon, K., Wang, Y., Li, S., Liu, H., ... ve Cai, Z. (2013). Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere, 92(11), 1498-1505. https://doi.org/10.1016/j.chemosphere.2013.03.067
  • Wang, S., Yin, Y. ve Wang, J. (2017). Enhanced bio degradation of triclosan by means of gamma irradiation. Chemosphere, 167, 406-414. https://doi.org/10.1016/j.chemosphere.2016.10.028
  • Wang, Y. ve Liang, W. (2021). Occurrence, toxicity, and removal methods of triclosan: A timely review. Current Pollution Reports, 7, 31-39. https://doi.org/10.1007/s40726-021-00173-9
  • Weatherly, L. M. ve Gosse, J. A. (2017). Triclosan exposure, transformation, and human health effects. Journal of Toxicology and Environmental Health, Part B, 20(8), 447-469. https://doi.org/10.1080/10937404.2017.1399306
  • Wu, J. L., Lam, N. P., Martens, D., Kettrup, A. ve Cai, Z. (2007). Triclosan determination in water related to wastewater treatment. Talanta, 72(5), 1650-1654. https://doi.org/10.1016/j.talanta.2007.03.024
  • Wu, J. L., Leung, K. F., Tong, S. F. ve Lam, C. W. (2012). Organochlorine isotopic pattern‐enhanced detection and quantification of triclosan and its metabolites in human serum by ultra‐high‐performance liquid chromatography/quadrupole time‐of‐flight/mass spectrometry. Rapid Communications in Mass Spectrometry, 26(2), 123-132. https://doi.org/10.1002/rcm.5303
  • Xu, J., Wu, L. ve Chang, A. C. (2009). Degradation and adsorption of selectedpharmaceuticals and personal care products (PPCPs) in agricul-tural soils. Chemosphere, 77, 1299–1305. https://doi.org/10.1016/j.chemosphere.2009.09.063
  • Xu, R., Si, Y., Wu, X., Li, F. ve Zhang, B. (2014). Triclosan removal by laccase immobilized on mesoporous nanofibers: strong adsorption and efficient degradation. Chemical Engineering Journal, 255, 63-70. https://doi.org/10.1016/j.cej.2014.06.060
  • Yang, J., Zhang, L., Qiao, W. ve Luo, Y. (2023). Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm, 4(5), e353. https://doi.org/10.1002/mco2.353
  • Yin, J., Wei, L., Shi, Y., Zhang, J., Wu, Q. ve Shao, B. (2016). Chinese population exposure to triclosan and triclocarban as measured via human urine and nails. Environ Geochem Health, 38(5), 1125–1135. https://doi.org/10.1007/s10653-015-9777-x
  • Ying, G. G. ve Kookana, R. S. (2007). Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environment international, 33(2), 199-205. https://doi.org/10.1016/j.envint.2006.09.008
  • Ying, G. G., Yu, X. Y. ve Kookana, R. S. (2007). Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environmental Pollution, 150(3), 300-305. https://doi.org/10.1016/j.envpol.2007.02.013
  • Yueh, M. F., Taniguchi, K., Chen, S., Evans, R. M., Hammock, B. D., Karin, M. ve Tukey, R. H. (2014). The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proceedings of the National Academy of Sciences, 111(48), 17200-17205. https://doi.org/10.1073/pnas.1419119111
  • Zhang, C., Jia, L., Wang, S., Qu, J., Li, K., Xu, L., ... ve Yan, Y. (2010). Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresource technology, 101(10), 3423-3429. https://doi.org/10.1016/j.colsurfa.2018.11.037
  • Zhang, X., Song, K., Liu, J., Zhang, Z., Wang, C. ve Li, H. (2019). Sorption of triclosan by carbon nanotubes in dispersion: The importance of dispersing properties using different surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 280-288. https://doi.org/10.1016/j.colsurfa.2018.11.037
  • Zhang, Z., Li, J., Luan, C., Wang, H., Cheng, X., Fang, L., ... ve Xu, J. (2020). Preparation and characterization of palladium/polypyrrole-reduced graphene oxide/foamed nickel composite electrode and its electrochemical dechlorination of triclosan. Arabian Journal of Chemistry, 13(2), 3963-3973. https://doi.org/10.1016/j.arabjc.2019.04.006
  • Zhao, F., Rezenom, Y. H., Russell, D. H. ve Chu, K. H. (2012). Biodegradation of triclosan by a wastewater microorganism. Water Research, 46(13), 4226-4234. https://doi.org/10.1016/j.watres.2012.05.025
  • Zhu, Z. L., Wang, S. C., Zhao, F. F., Wang, S. G., Liu, F. F. ve Liu, G. Z. (2019). Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environmental pollution, 246, 509-517. https://doi.org/10.1016/j.envpol.2018.12.044
Toplam 157 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sucul Toksikoloji, Mikrobiyal Ekoloji, Çevre Kirliliği ve Önlenmesi, Sağlık ve Ekolojik Risk Değerlendirmesi
Bölüm Derleme Makaleler
Yazarlar

Elif Kağızman 0000-0002-0328-8623

Şeyda Fikirdesici Ergen 0000-0002-4623-1256

Burcu Taştan 0000-0003-4644-8305

Proje Numarası 122Z742
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 28 Aralık 2023
Kabul Tarihi 3 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kağızman, E., Fikirdesici Ergen, Ş., & Taştan, B. (2024). Triklosan Pestisitinin Dünü, Bugünü, Geleceği ve Çevresel Arıtımı. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 14(2), 191-212. https://doi.org/10.54370/ordubtd.1411365