Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Different Iron Fertilization on Iron and Some Nutrient Concentrations of Broad Bean under Acid, Alkaline and Calcareous Soil Conditions

Yıl 2024, , 321 - 332, 31.12.2024
https://doi.org/10.54370/ordubtd.1460598

Öz

In this study, different iron (Fe) sources (Fe-DTPA, Fe-EDTA, Fe-EDDHA, Fe-HBED, Fe-HUMATE, Fe-NANO, Fe-SULFATE and Fe-CITRATE) were applied to broad bean from soil and their effects on active and total Fe concentrations and some nutrient concentrations of the plant were investigated. The experiment was conducted with 4 replicates according to the completely randomized design and, 10 mg kg-1 Fe was applied to the soil. The highest dry weight of broad bean were obtained from Fe-EDDHA application in alkaline and calcareous soils, and Fe-DTPA application in acid soil. The highest total and active Fe concentration in the plant leaves was determined in Fe-EDDHA and Fe-EDTA treatments in acid and alkaline soils and and Fe-EDDHA and Fe-DTPA treatments in calcareous soil. The phosphorus (P) and potassium (K) concentrations of the plants were lower than the control with Fe treatments and the plants were found to be unsufficient in terms of P. It was determined that manganase (Mn) concentration of plants grown in acid soil was about 5-8 times higher; and Mn, zinc (Zn) and copper (Cu) concentrations of the plant were generally the highest in Fe-EDTA and Fe-EDDHA treatments. According to the results, Fe-EDDHA and Fe-EDTA in alkaline soil, Fe-EDTA and Fe-DTPA in acid soil, Fe-EDDHA and Fe-HBED applications in calcareous soil can be recommended.

Proje Numarası

B-2109

Kaynakça

  • Abd El-Razek, UA., Dorgham, EA. ve Morsy, SM. (2013). Effect of certain micronutrients on some agronomic characters, chemical constituents and alternaria leaf spot disease of faba bean. Asian Journal of Crop Science, 5(4), 426-435, http://doi.org/10.3923/ajcs.2013.426.435
  • Abdel-Salam, M.A. (2018). Implications of applying nano-hydroxyapatite and nano-iron oxide on faba bean (Vicia faba L.) productivity. Journal of Soil Sciences and Agricultural Engineering, 9(11), 543–548. http://doi.org/10.21608/JSSAE.2018.36469
  • Akınoğlu, G. ve Korkmaz, A. (2021). Demir sülfat formundaki demirden yararlanabilme kabiliyetleri yönünden bazı çeltik çeşitlerinin karşılaştırılmaları üzerine bir araştırma. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, 1, 78-86. https://doi.org/10.47137/usufedbid.901099
  • AL-Bayati, HJM., Al-Deen Al-Leela, WB., Rejab, FF. ve Hasan, SY. (2019). Effect of chemical and organic fertilizer on three varieties of broad bean. Mesopotamia Journal of Agriculture, 47(2), 73-82. http://doi.org/10.33899/MAGRJ.2019.163181
  • Aras, S., Arıkan, Ş., İpek, M., Eşitken, A., Pırlak, L., Dönmez, M.F. ve Turan, M. (2018). Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiologiae Plantarum, 40, 120. https://doi.org/10.1007/s11738-018-2693-9
  • Argaw, A. ve Akuma, A. (2016). The effect of ıron fertilization on nodulation, yield and yield traits of soybean genotypes with different maturity groups as affected by brady rhizobium ınoculations. Ethiop. J. Agric. Sci., 26(2), 37-56. https://www.ajol.info/index.php/ejas/article/view/142803
  • Arıkan, Ş., Eşitken, A., İpek, M., Aras, S., Şahin, M., Pırlak, L., Dönmez, M.F. ve Turan, M. (2018). Effect of plant growth promoting Rhizobacteria on Fe acquisition in peach (Prunus persica L) under calcareous soil conditions. Journal of Plant Nutrition, 41(17), 2141-2150. http://doi.org/10.1080/01904167.2018.1482910
  • Bastani, S., Hajiboland, R., Khatamian, M. ve Saket-Oskoui, M. (2018). Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. Journal of Soil Science and Plant Nutrition, 18(2), 524-541. http://doi.org/10.4067/S0718-95162018005001602
  • Bergmann, W. (1992). Nutritional disorders of plants; Development, visual and analytical diagnosis. Offizin Andersen Nexo, Leipzig, Germany.
  • Borowski, E. ve Michalek, S. (2011). The effect of foliar fertilization of french bean with iron salts and urea on some physiological processes in plants relative to iron uptake and translocation in leaves. Acta Scientiarum Polonorum Hortorum Cultus, 10(2), 183-193. http://actascipol.upwr.edu.pl/pl/action/getfull.php?id=2788
  • Brear, E.M., David, A.D. ve Smith, P.M.C. (2013). Iron: An essential micronutrient for the legume-rhizobium symbiosis. Frontiers in Plant Science, 4, 359. http://doi.org/10.3389/fpls.2013.00359
  • Brear, E.M., Bedon, F., Gavrin, A., Kryvoruchko, I.S., Torres-Jerez, I., Udvardi, M.K., Day, D.A. ve Smith P.M.C. (2020). GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytologist Journal, 228, 667-681. http://doi.org/10.1111/nph.16734
  • Cantera, R.G., Zamarreno, A.M. ve Garcia-Mina, J.M. (2002). Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil. Journal of Agricultural and Food Chemistry, 50, 7609-7615. http://doi.org/10.1021/jf025745y
  • Chatterjee, A., Lovas, S., Rasmussen, H. ve Goos, R.J. (2017). Foliar application of iron fertilizers to control iron deficiency chlorosis of Soybean. Crop, Forage Turfgrass Management, 1-7. http://doi.org/ 10.2134/cftm2017.05.0037
  • Chen, H., Hu, Z., Li, X., Zhang, F., Chen, J. ve Zhang, M. (2016) Iron fertilizers applied to calcareous soil on the growth of peanut in a pot experiment. Archives of Agronomy and Soil Science, 62(12), 1753-1764. http://doi.org/10.1080/03650340.2016.1173674
  • Crane, J.H., Schaffer, B., Li, Y., A. Evans, E.A., Montas, W. ve Li, C. (2008). Effect of foliarly applied acids and ferrous sulfate on leaf ferrous iron content and leaf greenness of Lychee trees. Proceedings of the Florida State Horticultural Society, 121, 19–23. http://journals.fcla.edu/fshs/article/view/87333
  • Darwesh, D.A. (2011). Effect of soil and foliar application of iron chelate on nutrient balance in lentil (Lens esculenta L.) by using modified dris equation. Mesopotamia Journal of Agriculture, 39(3), 39-49. http://doi.org/10.33899/MAGRJ.2011.31111
  • De Conti, L., Cesco, S., Mimmo, T., Pii, Y., Valentinuzzi, F., Melo, G.W.B., Ceretta, C.A., Trentin, E., Marques A.C.R. ve Brunetto, G. (2020). Iron fertilization to enhance tolerance mechanisms to copper toxicity of ryegrass plants used as cover crop in vineyards. Chemosphere, 243, 125298. https://doi.org/10.1016/j.chemosphere.2019.125298
  • El-Ghamry, A.M., Abd El-Hai, K.M. ve Ghoneem, K.M. (2009). Amino and humic acids promote growth, yield and disease resistance of faba bean cultivated in clayey soil. Australian Journal of Basic and Applied Sciences, 3(2), 731-739. http://www.insipub.com/ajbas/2009/731-739.pdf
  • El-Gizawy, N. ve Mehasen, S.A.S. (2009). Response of faba bean to bio, mineral phosphorus fertilizers and foliar application with zinc. World Applied Sciences Journal, 6(10), 1359-1365. http://www.idosi.org/wasj/wasj6(10)/8.pdf
  • Erdal, İ., Kaplankiran, B., Evren, E., Küçükyumuk, Z. ve Türkan, Ş.A. (2014). Farklı demir içeriklerine sahip besin çözeltisiyle beslenen domates bitkisinin gelişimi, toplam demir, aktif demir, klorofil ve SPAD değerleri arasındaki ilişkiler. Yüzüncüyıl Üniversitesi Tarım Bilimleri Dergisi, 24(1), 36-41. https://doi.org/10.29133/yyutbd.235914
  • Fadhil, A.H. ve Jader, J.J. (2020). The effect of foliar spraying with boron and chelating iron on growth and yield of broad bean (Vicia faba L.). Plant Archives, 20(1), 425-430. http://doi.org/10.13140/RG.2.2.10694.22084
  • Flores, APE. (2020). Pyritic Lignite as a source of iron for soybean as influenced by variety and soil pH. [Yayımlanmamış Yüksek lisans tezi]. Mississippi State University, USA. https://hdl.handle.net/11668/18464
  • Gönül, İ., Delikanlı, A. ve Serin, S. (2019). Yüksek pH dayanımlı yeni tip demir şelat formülünün hazırlanması ve yerfıstığı üzerine etkilerinin incelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), 261-270. https://doi.org/10.21605/cukurovaummfd.638191
  • Güneş, A., Alpaslan, M. ve İnal, A. (2000). Bitki besleme ve gübreleme. Ankara Üniversitesi, Ziraat Fakültesi, Yayın No: 1514, Ders Kitabı: 467. Ankara Üniversitesi Basımevi.
  • Güzel, N., Gülüt, K.Y. ve Büyük, G. (2004). Toprak verimliliği ve gübreler. (2.baskı). Çukurova Üniversitesi, Ziraat Fakültesi Ofset.
  • Hergert, G.W., Nielsen, R.A., Schild, J.A., Hawley, R.L. ve Darapuneni, M.K. (2018) Row-applied iron chelate for correcting iron deficiency chlorosis in Dry Bean. Agronomy Journal, 111(1), 362-367. http://doi.org/10.2134/agronj2018.02.0079
  • Horuz, A., Korkmaz, A., Akınoğlu, G. ve Boz, E. (2016). Bitkilerde demir klorozunun nedenleri ve giderilme yöntemleri. Toprak Bilimi ve Bitki Besleme Dergisi, 4(1), 32-42. https://dergipark.org.tr/tr/download/article-file/263607
  • Hussein, R.M. (2019). Effects of iron application to soil on growth and yield of broad bean plant ın Erbil city of North Iraq. Russian Journal of Agricultural and Socio-Economic Sciences, 95(11), 197-199. http://doi.org/10.18551/rjoas.2019-11.27
  • Jones, Jr.J.B., Wolf, B. ve Mills, H.A. (1991). Plant analysis handbook. Micro-Macro Publishing, USA.
  • Kacar, B. ve Katkat, AV. (2007). Gübreler ve gübreleme tekniği. Nobel Yayınları
  • Kacar, B. (2016). Fiziksel ve kimyasal toprak analizleri (1.Baskı). Nobel Yayınları
  • Kacar, B. ve İnal, A. (2008). Bitki analizleri (1.Baskı). Nobel Yayınları.
  • Kacar, B. ve Katkat, A.V. (2007). Bitki besleme (3.Baskı). Nobel Yayınları.
  • Karaman, M. R., Brohi, A. R., İnal, A. ve Taban, S. (1999). Kelkit çayından siltasyon ile tarıma yeni kazandırılan topraklarda demir-çinko gübrelemesinin fasulye (Phaseolus vulgaris L.) bitkisinin büyüme ve mineral besin elementi konsantrasyonuna etkisi. Turkish Journal of Agriculture and Forestry, 23, 341-348.
  • Karimi, S., Tavallali, V., Ferguson, L. ve Mirzaei, S. (2020). Developing a nano-fe complex to supply iron and improve salinity tolerance of pistachio under calcium bicarbonate stress. Communications in Soil Science and Plant Analysis, 51(14), 1835-1851. http://doi.org/10.1080/00103624.2020.1798985
  • Karimi, Z., Pourakbar, L. ve Feizi, H. (2014). Comparison effect of nano-iron chelate and iron chelate on growth parameters and antioxidant enzymes activity of mung bean (Vigna radiate L.). Advances in Environmental Biology, 8(13), 916-930. http://www.aensiweb.com/old/aeb/August%202014/916-930.pdf
  • Khalil, NA., Al-Murshidy, WA. ve El-Tokhy, F. (2012). Studies on fertilizer requirements of faba bean. Journal Plant Production, 3(6), 1027-1038. http://doi.org/10.21608/JPP.2012.84276
  • Korkmaz, A., Yılmaz, F.G., Harmankaya, M. ve Gezgin, S. (2023a). Reduction of lime-based iron chlorosis in apple trees. Akademik Ziraat Dergisi, 12(1), 127-134. http://dx.doi.org/10.29278/azd.1263559
  • Korkmaz, H.E., Akgün, M., Çelebi, M.S. ve Korkmaz, K. (2023b). Fındık zurufu ve biyoçarından üretilen demir nanopartiküllerinin (FeONP) yaşlanmış börülce tohumlarında çimlenme üzerine etkisi. Akademik Ziraat Dergisi, 12 (Özel Sayı), 193-202. https://doi.org/10.29278/azd.1336772
  • Lucena, J.J. (2003). Fe chelates for remediation of Fe chlorosis in strategy I plants. Journal of Plant Nutrition, 26(10-11), 1969-1984. http://doi.org/10.1081/PLN-120024257
  • Lucena, P.R., Apaolaza, L.H. ve Lucena, J.J. (2010). Comparison of iron chelates and complexes supplied as foliar sprays and in nutrient solution to correct iron chlorosis of soybean. Journal of Plant Nutrition, 173, 120-126. http://doi.org/10.1002/jpln.200800256
  • Luo, Y.W. ve Xie, W.H. (2016). Effects of polyphenol oxidation on in vitro iron availability in faba bean (Vicia faba L.) flour. International Journal of Food Science and Technology, 48, 701–706. http://doi.org/10.1111/ijfs.12016
  • Nadal, P., Garcİa-Delgado, C., Hernandez, D., Lopez-Rayo, S. ve Lucena, J.L. (2012). Evaluation of Fe-N,N′-Bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetate (HBED/Fe3+) as Fe carrier for soybean (Glycine max) plants grown in calcareous soil. Plant Soil, 360, 349-362. http://doi.org/10.1007/s11104-012-1246-z
  • Nadi, E., Aynehband, A. ve Mojaddam, M. (2013). Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of faba bean (Vicia faba L.). International Journal of Biosciences, 3(9), 267-272.doi: http://dx.doi.org/10.12692/ijb/3.9.267-272
  • Ning, X., Lin, M., Huang, G., Mao, J., Gao, Z. ve Wang. X. (2023). Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in Plant Science, 14, 1190768. http://doi.org/10.3389/fpls.2023.1190768
  • Pijnenborg, J.M.W. ve Lie, T.A. (1990). Effect of lime pelleting on the nodulation of Lucerne (Medicago sativa L.) in acid soil: a comparative study carried out in the field, in pots an in rhizotrons. Plant Soil, 121, 225-234. http://doi.org/10.1007/BF00012316
  • Rajaie, M. ve Tavakoly, A.R. (2018). Iron and/or acid foliar spray versus soil application of Fe-EDDHA for prevention of iron deficiency in Valencia orange grown on a calcareous soil. Journal of Plant Nutrition, 41(2), 150-158. http://doi.org/10.1080/01904167.2017.1382523
  • Rasmussen, H.R. (2015). Foliar application of iron chelated fertilizer and surfactans for management of iron deficiency chlorosis in soybeans. [Yayımlanmamış yüksek lisans tezi]. North Dakota State University. https://hdl.handle.net/10365/27708
  • Rombola, A.D., Dallari, S., Quartieri, M. ve Scudellari, D. (2002). Effect of foliar-applied Fe sources, organic acids and sorbitol on the re-greening of kiwifruit leaves affected by lime induced iron cholorosis. Acta Horticulturae, 594, 349-355. https://doi.org/10.17660/ActaHortic.2002.594.43
  • Sahrawat, K.L. (2016). Soil and plant testing for ıron: an appraisal. Communications in Soil Science and Plant Analysis, 47(3), 280-283. http://doi.org/10.1080/00103624.2015.1122805
  • Schenkeveld, W.D.C., Reichwein, A.M., Temminghoff, E.J.M. ve Riemsdijk, W.H.V. (2014). Considerations on the shuttle mechanism of Fe-EDDHA chelates at the soil-root interface in case of Fe deficiency. Plant and Soil, 379(1-2), 373-387. http://doi.org/10.1007/sl 1104-014-2057-1
  • Shahsavandi, F. ve Eshghi, S. (2021). Effects of bicarbonate and Fe sources on vegetative growth and physiological traits of four grapevine cultivars. Communications in Soil Science and Plant Analysis, 52(20), 2401-2413. http://doi.org/10.1080/00103624.2021.1928172
  • Souri, M.K. ve Aslani, A. (2018). Beneficial effects of foliar application of organic chelate fertilizers on French bean production under field conditions in a calcareous soil. Advances in Horticultural Science, 32(2), 265-272. http://doi.org/10.13128/ahs-21988
  • Şahin, C.B. ve İşler, N. (2021). Foliar applied zinc and iron effects on yield and yield components of Soybean: determination by PCA analysis. Communications in Soil Science and Plant Analysis, 52(3),212-221. https://doi.org/10.1080/00103624.2020.1854297
  • Şimşek, O. ve Çelik, H. (2021). Effects of iron fortification on growth and nutrient amounts of spinach (Spinaciaoleracea L.). Journal of Plant Nutrition, 44(18), 2770-2782. http://doi.org/10.1080/01904167.2021.1927083
  • Takkar, P.N. ve Kaur, N.P. (1984). HCl method Fe+2 estimation to resolve iron chlorisis in plants. Journal of Plant Nutrition, 7(1-5), 81-90. https://doi.org/10.1080/01904168409363176
  • Tang, C., Robson, A.D. ve Dilworth, M.J. (1991). Which stage of nodule initiation in Lupinus angustifolius L. is sensitive to iron deficiency. New Phytologist Journal, 117, 243-250. https://doi.org/10.1111/j.1469-8137.1991.tb04905.x
  • Ueno, D., Matsumoto, K., Enami, T., Nishiyama, N., Kato, S.I. ve Iwasaki, K. (2019). Efficacy of an artificial microbial siderophore-Fe (III) with high redox potential on correcting Fe chlorosis in rice. Soil Science and Plant Nutrition, 65(5), 471-478. http://doi.org/10.1080/00380768.2019.1648180
  • Yalçın, Ö. (2019). Farklı demir kaynaklarının mısır bitkisinin gelişimine ve demir alımına etkisi. [Yayımlanmamış yüksek lisans tezi]. Selçuk Üniversitesi.
  • Ylivainio, K. (2009). Environmentally benign Fe chelates in plant nutrition. [Yayımlanmamış doktora tezi]. University of Helsinki. http://www.mtt.fi/mtttiede/pdf/mtttiede5.pdf

Asit, Alkalin ve Kireçli Toprak Koşullarında Farklı Demir Gübrelemesinin Baklanın Demir ve Bazı Besin Elementi İçerikleri Üzerine Etkisi

Yıl 2024, , 321 - 332, 31.12.2024
https://doi.org/10.54370/ordubtd.1460598

Öz

Bu çalışmada, bakla bitkisine topraktan farklı demir (Fe) kaynakları (Fe-DTPA, Fe-EDTA, Fe-EDDHA, Fe-HBED, Fe-HUMAT, Fe-NANO Fe-SÜLFAT ve Fe-SİTRAT) uygulanmış, bitkinin aktif ve toplam Fe içerikleri ile bazı besin element içerikleri üzerine etkisi araştırılmıştır. Deneme tesadüf parselleri deneme deseninde dört paralelli olarak yürütülmüş, denemede toprağa 10 mg kg-1 düzeyinde Fe uygulanmıştır. Bakla bitkisinde en yüksek kuru ağırlık alkalin reaksiyonlu ve kireçli toprakta Fe-EDDHA, asit reaksiyonlu toprakta ise Fe-DTPA uygulamalarından elde edilmiştir. Bitki yapraklarında en yüksek toplam ve aktif Fe, alkalin ve asit reaksiyonlu toprakta Fe-EDDHA ve Fe-EDTA, kireçli toprakta ise Fe-EDDHA ve Fe-DTPA uygulamalarında saptanmıştır. Demir uygulamaları ile birlikte bitkinin fosfor (P) ve potasyum (K) içeriklerinin kontrolden düşük olduğu ve bitkilerin P bakımından yetersiz beslendiği saptanmıştır. Asit toprakta yetiştirilen bitkilerin mangan (Mn) içeriğinin yaklaşık 5-8 kat daha fazla olduğu belirlenmiş olup; Fe-EDTA ve Fe-EDDHA uygulamalarında bitkinin Mn, çinko (Zn) ve bakır (Cu) içeriklerinin genellikle en yüksek olduğu saptanmıştır. Sonuçlara göre, alkalin reaksiyonlu toprakta Fe-EDDHA ve Fe-EDTA, asit reaksiyonlu toprakta Fe-EDTA ve Fe-DTPA, kireçli toprakta ise Fe-EDDHA ve Fe-HBED gübreleri önerilebilir.

Etik Beyan

Makalenin yayınlanmasında herhangi bir etik sorun yoktur.

Destekleyen Kurum

Ordu Üniversitesi Bilimsel Araştırma Projesi Koordinasyon Birimi (B-2109) tarafından desteklenmiştir.

Proje Numarası

B-2109

Teşekkür

Bu çalışma, Ceyhan Tarakçıoğlu danışmanlığında Sinem Uzun tarafından tamamlanan “Farklı demir kaynaklarının bakla bitkisinin besin maddesi içerikleri üzerine etkisi” başlıklı yüksek lisans tezinden (Tez No: 752326) üretilmiştir.

Kaynakça

  • Abd El-Razek, UA., Dorgham, EA. ve Morsy, SM. (2013). Effect of certain micronutrients on some agronomic characters, chemical constituents and alternaria leaf spot disease of faba bean. Asian Journal of Crop Science, 5(4), 426-435, http://doi.org/10.3923/ajcs.2013.426.435
  • Abdel-Salam, M.A. (2018). Implications of applying nano-hydroxyapatite and nano-iron oxide on faba bean (Vicia faba L.) productivity. Journal of Soil Sciences and Agricultural Engineering, 9(11), 543–548. http://doi.org/10.21608/JSSAE.2018.36469
  • Akınoğlu, G. ve Korkmaz, A. (2021). Demir sülfat formundaki demirden yararlanabilme kabiliyetleri yönünden bazı çeltik çeşitlerinin karşılaştırılmaları üzerine bir araştırma. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, 1, 78-86. https://doi.org/10.47137/usufedbid.901099
  • AL-Bayati, HJM., Al-Deen Al-Leela, WB., Rejab, FF. ve Hasan, SY. (2019). Effect of chemical and organic fertilizer on three varieties of broad bean. Mesopotamia Journal of Agriculture, 47(2), 73-82. http://doi.org/10.33899/MAGRJ.2019.163181
  • Aras, S., Arıkan, Ş., İpek, M., Eşitken, A., Pırlak, L., Dönmez, M.F. ve Turan, M. (2018). Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiologiae Plantarum, 40, 120. https://doi.org/10.1007/s11738-018-2693-9
  • Argaw, A. ve Akuma, A. (2016). The effect of ıron fertilization on nodulation, yield and yield traits of soybean genotypes with different maturity groups as affected by brady rhizobium ınoculations. Ethiop. J. Agric. Sci., 26(2), 37-56. https://www.ajol.info/index.php/ejas/article/view/142803
  • Arıkan, Ş., Eşitken, A., İpek, M., Aras, S., Şahin, M., Pırlak, L., Dönmez, M.F. ve Turan, M. (2018). Effect of plant growth promoting Rhizobacteria on Fe acquisition in peach (Prunus persica L) under calcareous soil conditions. Journal of Plant Nutrition, 41(17), 2141-2150. http://doi.org/10.1080/01904167.2018.1482910
  • Bastani, S., Hajiboland, R., Khatamian, M. ve Saket-Oskoui, M. (2018). Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. Journal of Soil Science and Plant Nutrition, 18(2), 524-541. http://doi.org/10.4067/S0718-95162018005001602
  • Bergmann, W. (1992). Nutritional disorders of plants; Development, visual and analytical diagnosis. Offizin Andersen Nexo, Leipzig, Germany.
  • Borowski, E. ve Michalek, S. (2011). The effect of foliar fertilization of french bean with iron salts and urea on some physiological processes in plants relative to iron uptake and translocation in leaves. Acta Scientiarum Polonorum Hortorum Cultus, 10(2), 183-193. http://actascipol.upwr.edu.pl/pl/action/getfull.php?id=2788
  • Brear, E.M., David, A.D. ve Smith, P.M.C. (2013). Iron: An essential micronutrient for the legume-rhizobium symbiosis. Frontiers in Plant Science, 4, 359. http://doi.org/10.3389/fpls.2013.00359
  • Brear, E.M., Bedon, F., Gavrin, A., Kryvoruchko, I.S., Torres-Jerez, I., Udvardi, M.K., Day, D.A. ve Smith P.M.C. (2020). GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation. New Phytologist Journal, 228, 667-681. http://doi.org/10.1111/nph.16734
  • Cantera, R.G., Zamarreno, A.M. ve Garcia-Mina, J.M. (2002). Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil. Journal of Agricultural and Food Chemistry, 50, 7609-7615. http://doi.org/10.1021/jf025745y
  • Chatterjee, A., Lovas, S., Rasmussen, H. ve Goos, R.J. (2017). Foliar application of iron fertilizers to control iron deficiency chlorosis of Soybean. Crop, Forage Turfgrass Management, 1-7. http://doi.org/ 10.2134/cftm2017.05.0037
  • Chen, H., Hu, Z., Li, X., Zhang, F., Chen, J. ve Zhang, M. (2016) Iron fertilizers applied to calcareous soil on the growth of peanut in a pot experiment. Archives of Agronomy and Soil Science, 62(12), 1753-1764. http://doi.org/10.1080/03650340.2016.1173674
  • Crane, J.H., Schaffer, B., Li, Y., A. Evans, E.A., Montas, W. ve Li, C. (2008). Effect of foliarly applied acids and ferrous sulfate on leaf ferrous iron content and leaf greenness of Lychee trees. Proceedings of the Florida State Horticultural Society, 121, 19–23. http://journals.fcla.edu/fshs/article/view/87333
  • Darwesh, D.A. (2011). Effect of soil and foliar application of iron chelate on nutrient balance in lentil (Lens esculenta L.) by using modified dris equation. Mesopotamia Journal of Agriculture, 39(3), 39-49. http://doi.org/10.33899/MAGRJ.2011.31111
  • De Conti, L., Cesco, S., Mimmo, T., Pii, Y., Valentinuzzi, F., Melo, G.W.B., Ceretta, C.A., Trentin, E., Marques A.C.R. ve Brunetto, G. (2020). Iron fertilization to enhance tolerance mechanisms to copper toxicity of ryegrass plants used as cover crop in vineyards. Chemosphere, 243, 125298. https://doi.org/10.1016/j.chemosphere.2019.125298
  • El-Ghamry, A.M., Abd El-Hai, K.M. ve Ghoneem, K.M. (2009). Amino and humic acids promote growth, yield and disease resistance of faba bean cultivated in clayey soil. Australian Journal of Basic and Applied Sciences, 3(2), 731-739. http://www.insipub.com/ajbas/2009/731-739.pdf
  • El-Gizawy, N. ve Mehasen, S.A.S. (2009). Response of faba bean to bio, mineral phosphorus fertilizers and foliar application with zinc. World Applied Sciences Journal, 6(10), 1359-1365. http://www.idosi.org/wasj/wasj6(10)/8.pdf
  • Erdal, İ., Kaplankiran, B., Evren, E., Küçükyumuk, Z. ve Türkan, Ş.A. (2014). Farklı demir içeriklerine sahip besin çözeltisiyle beslenen domates bitkisinin gelişimi, toplam demir, aktif demir, klorofil ve SPAD değerleri arasındaki ilişkiler. Yüzüncüyıl Üniversitesi Tarım Bilimleri Dergisi, 24(1), 36-41. https://doi.org/10.29133/yyutbd.235914
  • Fadhil, A.H. ve Jader, J.J. (2020). The effect of foliar spraying with boron and chelating iron on growth and yield of broad bean (Vicia faba L.). Plant Archives, 20(1), 425-430. http://doi.org/10.13140/RG.2.2.10694.22084
  • Flores, APE. (2020). Pyritic Lignite as a source of iron for soybean as influenced by variety and soil pH. [Yayımlanmamış Yüksek lisans tezi]. Mississippi State University, USA. https://hdl.handle.net/11668/18464
  • Gönül, İ., Delikanlı, A. ve Serin, S. (2019). Yüksek pH dayanımlı yeni tip demir şelat formülünün hazırlanması ve yerfıstığı üzerine etkilerinin incelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), 261-270. https://doi.org/10.21605/cukurovaummfd.638191
  • Güneş, A., Alpaslan, M. ve İnal, A. (2000). Bitki besleme ve gübreleme. Ankara Üniversitesi, Ziraat Fakültesi, Yayın No: 1514, Ders Kitabı: 467. Ankara Üniversitesi Basımevi.
  • Güzel, N., Gülüt, K.Y. ve Büyük, G. (2004). Toprak verimliliği ve gübreler. (2.baskı). Çukurova Üniversitesi, Ziraat Fakültesi Ofset.
  • Hergert, G.W., Nielsen, R.A., Schild, J.A., Hawley, R.L. ve Darapuneni, M.K. (2018) Row-applied iron chelate for correcting iron deficiency chlorosis in Dry Bean. Agronomy Journal, 111(1), 362-367. http://doi.org/10.2134/agronj2018.02.0079
  • Horuz, A., Korkmaz, A., Akınoğlu, G. ve Boz, E. (2016). Bitkilerde demir klorozunun nedenleri ve giderilme yöntemleri. Toprak Bilimi ve Bitki Besleme Dergisi, 4(1), 32-42. https://dergipark.org.tr/tr/download/article-file/263607
  • Hussein, R.M. (2019). Effects of iron application to soil on growth and yield of broad bean plant ın Erbil city of North Iraq. Russian Journal of Agricultural and Socio-Economic Sciences, 95(11), 197-199. http://doi.org/10.18551/rjoas.2019-11.27
  • Jones, Jr.J.B., Wolf, B. ve Mills, H.A. (1991). Plant analysis handbook. Micro-Macro Publishing, USA.
  • Kacar, B. ve Katkat, AV. (2007). Gübreler ve gübreleme tekniği. Nobel Yayınları
  • Kacar, B. (2016). Fiziksel ve kimyasal toprak analizleri (1.Baskı). Nobel Yayınları
  • Kacar, B. ve İnal, A. (2008). Bitki analizleri (1.Baskı). Nobel Yayınları.
  • Kacar, B. ve Katkat, A.V. (2007). Bitki besleme (3.Baskı). Nobel Yayınları.
  • Karaman, M. R., Brohi, A. R., İnal, A. ve Taban, S. (1999). Kelkit çayından siltasyon ile tarıma yeni kazandırılan topraklarda demir-çinko gübrelemesinin fasulye (Phaseolus vulgaris L.) bitkisinin büyüme ve mineral besin elementi konsantrasyonuna etkisi. Turkish Journal of Agriculture and Forestry, 23, 341-348.
  • Karimi, S., Tavallali, V., Ferguson, L. ve Mirzaei, S. (2020). Developing a nano-fe complex to supply iron and improve salinity tolerance of pistachio under calcium bicarbonate stress. Communications in Soil Science and Plant Analysis, 51(14), 1835-1851. http://doi.org/10.1080/00103624.2020.1798985
  • Karimi, Z., Pourakbar, L. ve Feizi, H. (2014). Comparison effect of nano-iron chelate and iron chelate on growth parameters and antioxidant enzymes activity of mung bean (Vigna radiate L.). Advances in Environmental Biology, 8(13), 916-930. http://www.aensiweb.com/old/aeb/August%202014/916-930.pdf
  • Khalil, NA., Al-Murshidy, WA. ve El-Tokhy, F. (2012). Studies on fertilizer requirements of faba bean. Journal Plant Production, 3(6), 1027-1038. http://doi.org/10.21608/JPP.2012.84276
  • Korkmaz, A., Yılmaz, F.G., Harmankaya, M. ve Gezgin, S. (2023a). Reduction of lime-based iron chlorosis in apple trees. Akademik Ziraat Dergisi, 12(1), 127-134. http://dx.doi.org/10.29278/azd.1263559
  • Korkmaz, H.E., Akgün, M., Çelebi, M.S. ve Korkmaz, K. (2023b). Fındık zurufu ve biyoçarından üretilen demir nanopartiküllerinin (FeONP) yaşlanmış börülce tohumlarında çimlenme üzerine etkisi. Akademik Ziraat Dergisi, 12 (Özel Sayı), 193-202. https://doi.org/10.29278/azd.1336772
  • Lucena, J.J. (2003). Fe chelates for remediation of Fe chlorosis in strategy I plants. Journal of Plant Nutrition, 26(10-11), 1969-1984. http://doi.org/10.1081/PLN-120024257
  • Lucena, P.R., Apaolaza, L.H. ve Lucena, J.J. (2010). Comparison of iron chelates and complexes supplied as foliar sprays and in nutrient solution to correct iron chlorosis of soybean. Journal of Plant Nutrition, 173, 120-126. http://doi.org/10.1002/jpln.200800256
  • Luo, Y.W. ve Xie, W.H. (2016). Effects of polyphenol oxidation on in vitro iron availability in faba bean (Vicia faba L.) flour. International Journal of Food Science and Technology, 48, 701–706. http://doi.org/10.1111/ijfs.12016
  • Nadal, P., Garcİa-Delgado, C., Hernandez, D., Lopez-Rayo, S. ve Lucena, J.L. (2012). Evaluation of Fe-N,N′-Bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetate (HBED/Fe3+) as Fe carrier for soybean (Glycine max) plants grown in calcareous soil. Plant Soil, 360, 349-362. http://doi.org/10.1007/s11104-012-1246-z
  • Nadi, E., Aynehband, A. ve Mojaddam, M. (2013). Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of faba bean (Vicia faba L.). International Journal of Biosciences, 3(9), 267-272.doi: http://dx.doi.org/10.12692/ijb/3.9.267-272
  • Ning, X., Lin, M., Huang, G., Mao, J., Gao, Z. ve Wang. X. (2023). Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in Plant Science, 14, 1190768. http://doi.org/10.3389/fpls.2023.1190768
  • Pijnenborg, J.M.W. ve Lie, T.A. (1990). Effect of lime pelleting on the nodulation of Lucerne (Medicago sativa L.) in acid soil: a comparative study carried out in the field, in pots an in rhizotrons. Plant Soil, 121, 225-234. http://doi.org/10.1007/BF00012316
  • Rajaie, M. ve Tavakoly, A.R. (2018). Iron and/or acid foliar spray versus soil application of Fe-EDDHA for prevention of iron deficiency in Valencia orange grown on a calcareous soil. Journal of Plant Nutrition, 41(2), 150-158. http://doi.org/10.1080/01904167.2017.1382523
  • Rasmussen, H.R. (2015). Foliar application of iron chelated fertilizer and surfactans for management of iron deficiency chlorosis in soybeans. [Yayımlanmamış yüksek lisans tezi]. North Dakota State University. https://hdl.handle.net/10365/27708
  • Rombola, A.D., Dallari, S., Quartieri, M. ve Scudellari, D. (2002). Effect of foliar-applied Fe sources, organic acids and sorbitol on the re-greening of kiwifruit leaves affected by lime induced iron cholorosis. Acta Horticulturae, 594, 349-355. https://doi.org/10.17660/ActaHortic.2002.594.43
  • Sahrawat, K.L. (2016). Soil and plant testing for ıron: an appraisal. Communications in Soil Science and Plant Analysis, 47(3), 280-283. http://doi.org/10.1080/00103624.2015.1122805
  • Schenkeveld, W.D.C., Reichwein, A.M., Temminghoff, E.J.M. ve Riemsdijk, W.H.V. (2014). Considerations on the shuttle mechanism of Fe-EDDHA chelates at the soil-root interface in case of Fe deficiency. Plant and Soil, 379(1-2), 373-387. http://doi.org/10.1007/sl 1104-014-2057-1
  • Shahsavandi, F. ve Eshghi, S. (2021). Effects of bicarbonate and Fe sources on vegetative growth and physiological traits of four grapevine cultivars. Communications in Soil Science and Plant Analysis, 52(20), 2401-2413. http://doi.org/10.1080/00103624.2021.1928172
  • Souri, M.K. ve Aslani, A. (2018). Beneficial effects of foliar application of organic chelate fertilizers on French bean production under field conditions in a calcareous soil. Advances in Horticultural Science, 32(2), 265-272. http://doi.org/10.13128/ahs-21988
  • Şahin, C.B. ve İşler, N. (2021). Foliar applied zinc and iron effects on yield and yield components of Soybean: determination by PCA analysis. Communications in Soil Science and Plant Analysis, 52(3),212-221. https://doi.org/10.1080/00103624.2020.1854297
  • Şimşek, O. ve Çelik, H. (2021). Effects of iron fortification on growth and nutrient amounts of spinach (Spinaciaoleracea L.). Journal of Plant Nutrition, 44(18), 2770-2782. http://doi.org/10.1080/01904167.2021.1927083
  • Takkar, P.N. ve Kaur, N.P. (1984). HCl method Fe+2 estimation to resolve iron chlorisis in plants. Journal of Plant Nutrition, 7(1-5), 81-90. https://doi.org/10.1080/01904168409363176
  • Tang, C., Robson, A.D. ve Dilworth, M.J. (1991). Which stage of nodule initiation in Lupinus angustifolius L. is sensitive to iron deficiency. New Phytologist Journal, 117, 243-250. https://doi.org/10.1111/j.1469-8137.1991.tb04905.x
  • Ueno, D., Matsumoto, K., Enami, T., Nishiyama, N., Kato, S.I. ve Iwasaki, K. (2019). Efficacy of an artificial microbial siderophore-Fe (III) with high redox potential on correcting Fe chlorosis in rice. Soil Science and Plant Nutrition, 65(5), 471-478. http://doi.org/10.1080/00380768.2019.1648180
  • Yalçın, Ö. (2019). Farklı demir kaynaklarının mısır bitkisinin gelişimine ve demir alımına etkisi. [Yayımlanmamış yüksek lisans tezi]. Selçuk Üniversitesi.
  • Ylivainio, K. (2009). Environmentally benign Fe chelates in plant nutrition. [Yayımlanmamış doktora tezi]. University of Helsinki. http://www.mtt.fi/mtttiede/pdf/mtttiede5.pdf
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ceyhan Tarakçıoğlu 0000-0003-1846-2097

Sinem Uzun Bu kişi benim 0000-0002-4716-6759

Proje Numarası B-2109
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 28 Mart 2024
Kabul Tarihi 14 Ağustos 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tarakçıoğlu, C., & Uzun, S. (2024). Asit, Alkalin ve Kireçli Toprak Koşullarında Farklı Demir Gübrelemesinin Baklanın Demir ve Bazı Besin Elementi İçerikleri Üzerine Etkisi. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 14(2), 321-332. https://doi.org/10.54370/ordubtd.1460598