Araştırma Makalesi
BibTex RIS Kaynak Göster

İzopropil-Tiyosemikarbazon Bazlı Yeni İzatin Türevleri: Sentez, Spektroskopik Karakterizasyon ve Teorik Çalışmalar

Yıl 2025, Cilt: 15 Sayı: 2, 339 - 351, 27.12.2025
https://doi.org/10.54370/ordubtd.1771474

Öz

İzopropil-tiyosemikarbazon (1–8) bazlı bir dizi izatin türevi, çeşitli izatin türevlerinin N-izopropilhidrazinkarbotiyoamid ile reaksiyonu yoluyla sentezlendi. Tiyosemikarbazit ara ürünü, izopropil izotiyosiyanatın hidrazin monohidrat ile reaksiyona sokulmasıyla elde edildi. Sentezlenen bileşiklerin yapısal karakterizasyonu ve saflık değerlendirmesi, 1H ve 13C NMR, FT-IR spektroskopisi ve elementel analiz kullanılarak gerçekleştirildi. Ayrıca, bileşiklerin kararlılığı ve reaktivitesini aydınlatmak için DFT hesaplamaları yapıldı ve sonuçlar, bileşiklerin yapısal ve elektronik karakterizasyonunu karşılaştırmalı olarak analiz etmek için kullanıldı.

Proje Numarası

No, there is no project support.

Kaynakça

  • Al-Amiery, A. A., Al-Majedy, Y. K., Ibrahim, H. H., & Al-Tamimi, A. A. (2012). Antioxidant, antimicrobial, and theoretical studies of the thiosemicarbazone derivative Schiff base 2-(2-imino-1-methylimidazolidin-4-ylidene) hydrazinecarbothioamide (IMHC). Organic and medicinal chemistry letters, 2(4), 1-7. https://doi.org/10.1186/2191-2858-2-4
  • Altunoluk, O. C., Özbek, O., Kalay, E., Tokalı, F. S., & Aslan, O. N. (2024). Surface characterization of barium (II)‐selective potentiometric sensor based on a newly synthesized thiosemicarbazone derivative molecule. Electroanalysis, 36(7), e202300407. https://doi.org/10.1002/elan.202300407
  • Arafath, M. A. (2024). Thiosemicarbazone Schiff base ligands and their complexes with nickel, palladium and platinum show anticancer and antibacterial activities. Journal of Sulfur Chemistry, 45(1), 138-171. https://doi.org/10.1080/17415993.2023.2255711
  • Bal, T. R., Anand, B., Yogeeswari, P., & Sriram, D. (2005). Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorganic and Medicinal Chemistry Letters, 15(20), 4451-4455. https://doi.org/10.1016/j.bmcl.2005.07.046
  • Cramer, C. J. (2013). Essentials of computational chemistry: theories and models. John Wiley & Sons.
  • Czylkowska, A., Pitucha, M., Raducka, A., Fornal, E., Kordialik-Bogacka, E., Ścieszka, S., Smoluch, M., Burdan, F., Jędrzejec, M., & Szymański, P. (2024). Thiosemicarbazone-based compounds: A promising scaffold for developing antibacterial, antioxidant, and anticancer therapeutics. Molecules, 30(1), 129. https://doi.org/10.3390/molecules30010129
  • Çavuş, M. S. (2025). Synthesis of new 5-iodoisatin derivatives: Predicting antioxidant inhibition activity with DFT studies. Journal of Molecular Structure, 1323, 140826. https://doi.org/10.1016/j.molstruc.2024.140826
  • Deng, X. Q., & Song, M. X. (2014). Design and synthesis of pyrazolyl thiosemicarbazones as new anticonvulsants. Bulletin of the Korean Chemical Society, 35(9), 2733-2737. https://doi.org/10.5012/bkcs.2014.35.9.2733
  • Fleming, I., & Williams, D. (2020). Spectroscopic methods in organic chemistry (Seventh Edition ed.). Springer Nature. https://doi.org/10.1007/978-3-030-18252-6
  • Govender, H., Mocktar, C., Kumalo, H. M., & Koorbanally, N. A. (2019). Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. Phosphorus, Sulfur, and Silicon and the Related Elements, 194(11), 1074-1081. https://doi.org/10.1080/10426507.2019.1618298
  • Gündüz, M. G., Kaya, B., Özkul, C., Şahin, O., Rekha, E. M., Sriram, D., & Ülküseven, B. (2021). S-alkylated thiosemicarbazone derivatives: Synthesis, crystal structure determination, antimicrobial activity evaluation and molecular docking studies. Journal of Molecular Structure, 1242, 130674. https://doi.org/10.1016/j.molstruc.2021.130674
  • Hall, M. D., Brimacombe, K. R., Varonka, M. S., Pluchino, K. M., Monda, J. K., Li, J., Walsh, M. J., Boxer, M. B., Warren, T. H., & Fales, H. M. (2011). Synthesis and structure–activity evaluation of isatin-β-thiosemicarbazones with improved selective activity toward multidrug-resistant cells expressing P-glycoprotein. Journal of Medicinal Chemistry, 54(16), 5878-5889. https://doi.org/10.1021/jm2006047
  • Hameed, A., Khan, K. M., Zehra, S. T., Ahmed, R., Shafiq, Z., Bakht, S. M., Yaqub, M., Hussain, M., de León, A. d. l. V., & Furtmann, N. (2015). Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorganic Chemistry, 61, 51-57. https://doi.org/10.1016/j.bioorg.2015.06.004
  • Hernández, W., Carrasco, F., Vaisberg, A., Spodine, E., Icker, M., Krautscheid, H., Beyer, L., Tamariz-Angeles, C., & Olivera-Gonzales, P. (2023). Novel thiosemicarbazone derivatives from furan-2-carbaldehyde: synthesis, characterization, crystal structures, and antibacterial, antifungal, antioxidant, and antitumor activities. Journal of chemistry, 2023, 1-20. https://doi.org/10.1155/2023/5413236
  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. https://doi.org/10.1103/PhysRev.136.B864
  • Islam, M., Khan, A., Shehzad, M. T., Hameed, A., Ahmed, N., Halim, S. A., Khiat, M., Anwar, M. U., Hussain, J., & Csuk, R. (2019). Synthesis and characterization of new thiosemicarbazones, as potent urease inhibitors: In vitro and in silico studies. Bioorganic Chemistry, 87, 155-162. https://doi.org/10.1016/j.bioorg.2019.03.008
  • Karakuş, F. G., Tunalı, S., Bal-demirci, T., Ülküseven, B., & Yanardağ, R. (2024). Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats. Sakarya University Journal of Science, 28(1), 133-144. https://doi.org/10.16984/saufenbilder.1289079
  • Koch, W., & Holthausen, M. C. (2015). A chemist's guide to density functional theory. John Wiley & Sons. Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density functional theory of electronic structure. Journal of Physical Chemistry, 100(31), 12974-12980. https://doi.org/10.1021/jp960669l
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
  • Kshirsagar, A., Toraskar, M. P., Kulkarni, V. M., Dhanashire, S., & Kadam, V. (2009). Microwave assisted synthesis of potential anti infective and anticonvulsant thiosemicarbazones. International Journal of ChemTech Research, 1(3), 696-701.
  • Muğlu, H. (2020). Synthesis, characterization, and antioxidant activity of some new N 4-arylsubstituted-5-methoxyisatin-β-thiosemicarbazone derivatives. Research on Chemical Intermediates, 46(4), 2083-2098. https://doi.org/10.1007/s11164-020-04079-x
  • Neese, F. (2022). Software update: The ORCA program system—Version 5.0. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(5), e1606. https://doi.org/10.1002/wcms.1606
  • Ozcan, E., Vagolu, S. K., Gunduz, M. G., Stevanovic, M., Kokbudak, Z., Tønjum, T., Nikodinovic-Runic, J., Çetinkaya, Y., & Dogan, S. D. (2023). Novel quinoline-based thiosemicarbazide derivatives: synthesis, DFT calculations, and investigation of antitubercular, antibacterial, and antifungal activities. ACS omega, 8(43), 40140-40152. https://doi.org/10.1021/acsomega.3c03018
  • Parr, R. G. (1989). Density functional theory of atoms and molecules. Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry Held at Kyoto, Japan, October 29-November 3, 1979.
  • Parr, R. G., & Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049-4050. https://doi.org/10.1021/ja00326a036
  • Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F.-u.-H., Choudhary, M. I., & Khan, K. M. (2008). In vitro cytotoxic, antibacterial, antifungal and urease inhibitory activities of some N 4-substituted isatin-3-thiosemicarbazones. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(6), 848-854. https://doi.org/10.1080/14756360701746179
  • Sevinçli, Z. Ş., Duran, G. N., Özbil, M., & Karalı, N. (2020). Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2, 3-dione 3-thiosemicarbazones. Bioorganic Chemistry, 104, 104202. https://doi.org/10.1016/j.bioorg.2020.104202
  • Shakya, B., & Yadav, P. N. (2020). Thiosemicarbazones as potent anticancer agents and their modes of action. Mini Reviews in Medicinal Chemistry, 20(8), 638-661. https://doi.org/10.2174/1389557519666191029130310
  • Shehzad, M. T., Khan, A., Islam, M., Hameed, A., Khiat, M., Halim, S. A., Anwar, M. U., Shah, S. R., Hussain, J., & Csuk, R. (2020). Synthesis and urease inhibitory activity of 1, 4-benzodioxane-based thiosemicarbazones: Biochemical and computational approach. Journal of Molecular Structure, 1209, 127922. https://doi.org/10.1016/j.molstruc.2020.127922
  • Subhashree, G., Haribabu, J., Saranya, S., Yuvaraj, P., Krishnan, D. A., Karvembu, R., & Gayathri, D. (2017). In vitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones. Journal of Molecular Structure, 1145, 160-169. https://doi.org/10.1016/j.molstruc.2017.05.054
  • Tokalı, F. S., Şenol, H., Katmerlikaya, T. G., Dağ, A., & Şendil, K. (2023a). Novel thiosemicarbazone and thiazolidin‐4‐one derivatives containing vanillin core: Synthesis, characterization, and anticancer activity studies. Journal of Heterocyclic Chemistry, 60(4), 645-656. https://doi.org/10.1002/jhet.4619
  • Tokalı, F. S., Taslimi, P., Tüzün, B., Karakuş, A., Sadeghian, N., & Gulçin, İ. (2023b). Synthesis of new carboxylates and sulfonates containing thiazolidin-4-one ring and evaluation of inhibitory properties against some metabolic enzymes. Journal of the Iranian Chemical Society, 20(10), 2631-2642. https://doi.org/10.1007/s13738-023-02861-3
  • Tokalı, F. S., Taslimi, P., Usanmaz, H., Karaman, M., & Şendil, K. (2021). Synthesis, characterization, biological activity and molecular docking studies of novel schiff bases derived from thiosemicarbazide: Biochemical and computational approach. Journal of Molecular Structure, 1231, 129666. https://doi.org/10.1016/j.molstruc.2020.129666
  • Yakan, H. (2020). Preparation, structure elucidation, and antioxidant activity of new bis (thiosemicarbazone) derivatives. Turkish Journal of Chemistry, 44(4), 1085-1099. https://doi.org/10.3906/kim-2002-76
  • Yakan, H., Azam, M., Kansız, S., Muğlu, H., Ergül, M., Taslimi, P., Koçyiğit, Ü. M., Karaman, M., Al-Resayes, S. I., & Min, K. (2023a). Isatin/thiosemicarbohydrazone hybrids: Facile synthesis, and their evaluation as anti-proliferatıve agents and metabolıc enzyme inhibitors. Bulletin of the Chemical Society of Ethiopia, 37(5), 1221-1236. https://doi.org/10.4314/bcse.v37i5.14
  • Yakan, H., Muğlu, H., Türkeş, C., Demir, Y., Erdoğan, M., Çavuş, M. S., & Beydemir, Ş. (2023b). A novel series of thiosemicarbazone hybrid scaffolds: Design, synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. Journal of Molecular Structure, 1280, 135077. https://doi.org/10.1016/j.molstruc.2023.135077
  • Zhang, Y.-M., Wang, D.-D., Lin, Q., & Wei, T.-B. (2007). Synthesis and anion recognition properties of thiosemicarbazone based molecular tweezers. Phosphorus, Sulfur, and Silicon and the Related Elements, 183(1), 44-55. https://doi.org/10.1080/10426500701555777

New Isatin Derivatives Based Isopropyl-Thiosemicarbazone: Synthesis, Spectroscopic Characterization, and Theoretical Studies

Yıl 2025, Cilt: 15 Sayı: 2, 339 - 351, 27.12.2025
https://doi.org/10.54370/ordubtd.1771474

Öz

A series of isatin derivatives based isopropyl-thiosemicarbazone (4–11) were synthesized through the reaction of various isatin derivatives with N-isopropylhydrazinecarbothioamide. The thiosemicarbazide intermediate was obtained by reacting isopropyl isothiocyanate with hydrazine monohydrate. Structural characterization and purity assessment of the synthesized compounds were performed using 1H and 13C NMR, FT-IR spectroscopy, and elemental analysis. Furthermore, to shed light on the stability and reactivity of the compounds, DFT calculations were performed, and the results were used to comparatively analyse the structural and electronic characterization of the compounds.

Etik Beyan

There are no ethical issues with the publication of this article.

Destekleyen Kurum

This study was not supported by any organization.

Proje Numarası

No, there is no project support.

Teşekkür

I would like to thank Prof. Dr. M. Serdar Çavuş for theoretical study.

Kaynakça

  • Al-Amiery, A. A., Al-Majedy, Y. K., Ibrahim, H. H., & Al-Tamimi, A. A. (2012). Antioxidant, antimicrobial, and theoretical studies of the thiosemicarbazone derivative Schiff base 2-(2-imino-1-methylimidazolidin-4-ylidene) hydrazinecarbothioamide (IMHC). Organic and medicinal chemistry letters, 2(4), 1-7. https://doi.org/10.1186/2191-2858-2-4
  • Altunoluk, O. C., Özbek, O., Kalay, E., Tokalı, F. S., & Aslan, O. N. (2024). Surface characterization of barium (II)‐selective potentiometric sensor based on a newly synthesized thiosemicarbazone derivative molecule. Electroanalysis, 36(7), e202300407. https://doi.org/10.1002/elan.202300407
  • Arafath, M. A. (2024). Thiosemicarbazone Schiff base ligands and their complexes with nickel, palladium and platinum show anticancer and antibacterial activities. Journal of Sulfur Chemistry, 45(1), 138-171. https://doi.org/10.1080/17415993.2023.2255711
  • Bal, T. R., Anand, B., Yogeeswari, P., & Sriram, D. (2005). Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorganic and Medicinal Chemistry Letters, 15(20), 4451-4455. https://doi.org/10.1016/j.bmcl.2005.07.046
  • Cramer, C. J. (2013). Essentials of computational chemistry: theories and models. John Wiley & Sons.
  • Czylkowska, A., Pitucha, M., Raducka, A., Fornal, E., Kordialik-Bogacka, E., Ścieszka, S., Smoluch, M., Burdan, F., Jędrzejec, M., & Szymański, P. (2024). Thiosemicarbazone-based compounds: A promising scaffold for developing antibacterial, antioxidant, and anticancer therapeutics. Molecules, 30(1), 129. https://doi.org/10.3390/molecules30010129
  • Çavuş, M. S. (2025). Synthesis of new 5-iodoisatin derivatives: Predicting antioxidant inhibition activity with DFT studies. Journal of Molecular Structure, 1323, 140826. https://doi.org/10.1016/j.molstruc.2024.140826
  • Deng, X. Q., & Song, M. X. (2014). Design and synthesis of pyrazolyl thiosemicarbazones as new anticonvulsants. Bulletin of the Korean Chemical Society, 35(9), 2733-2737. https://doi.org/10.5012/bkcs.2014.35.9.2733
  • Fleming, I., & Williams, D. (2020). Spectroscopic methods in organic chemistry (Seventh Edition ed.). Springer Nature. https://doi.org/10.1007/978-3-030-18252-6
  • Govender, H., Mocktar, C., Kumalo, H. M., & Koorbanally, N. A. (2019). Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. Phosphorus, Sulfur, and Silicon and the Related Elements, 194(11), 1074-1081. https://doi.org/10.1080/10426507.2019.1618298
  • Gündüz, M. G., Kaya, B., Özkul, C., Şahin, O., Rekha, E. M., Sriram, D., & Ülküseven, B. (2021). S-alkylated thiosemicarbazone derivatives: Synthesis, crystal structure determination, antimicrobial activity evaluation and molecular docking studies. Journal of Molecular Structure, 1242, 130674. https://doi.org/10.1016/j.molstruc.2021.130674
  • Hall, M. D., Brimacombe, K. R., Varonka, M. S., Pluchino, K. M., Monda, J. K., Li, J., Walsh, M. J., Boxer, M. B., Warren, T. H., & Fales, H. M. (2011). Synthesis and structure–activity evaluation of isatin-β-thiosemicarbazones with improved selective activity toward multidrug-resistant cells expressing P-glycoprotein. Journal of Medicinal Chemistry, 54(16), 5878-5889. https://doi.org/10.1021/jm2006047
  • Hameed, A., Khan, K. M., Zehra, S. T., Ahmed, R., Shafiq, Z., Bakht, S. M., Yaqub, M., Hussain, M., de León, A. d. l. V., & Furtmann, N. (2015). Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorganic Chemistry, 61, 51-57. https://doi.org/10.1016/j.bioorg.2015.06.004
  • Hernández, W., Carrasco, F., Vaisberg, A., Spodine, E., Icker, M., Krautscheid, H., Beyer, L., Tamariz-Angeles, C., & Olivera-Gonzales, P. (2023). Novel thiosemicarbazone derivatives from furan-2-carbaldehyde: synthesis, characterization, crystal structures, and antibacterial, antifungal, antioxidant, and antitumor activities. Journal of chemistry, 2023, 1-20. https://doi.org/10.1155/2023/5413236
  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. https://doi.org/10.1103/PhysRev.136.B864
  • Islam, M., Khan, A., Shehzad, M. T., Hameed, A., Ahmed, N., Halim, S. A., Khiat, M., Anwar, M. U., Hussain, J., & Csuk, R. (2019). Synthesis and characterization of new thiosemicarbazones, as potent urease inhibitors: In vitro and in silico studies. Bioorganic Chemistry, 87, 155-162. https://doi.org/10.1016/j.bioorg.2019.03.008
  • Karakuş, F. G., Tunalı, S., Bal-demirci, T., Ülküseven, B., & Yanardağ, R. (2024). Ameliorative Effect of a Vanadium-thiosemicarbazone Complex on Oxidative Stress in Stomach Tissue of Experimental Diabetic Rats. Sakarya University Journal of Science, 28(1), 133-144. https://doi.org/10.16984/saufenbilder.1289079
  • Koch, W., & Holthausen, M. C. (2015). A chemist's guide to density functional theory. John Wiley & Sons. Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density functional theory of electronic structure. Journal of Physical Chemistry, 100(31), 12974-12980. https://doi.org/10.1021/jp960669l
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
  • Kshirsagar, A., Toraskar, M. P., Kulkarni, V. M., Dhanashire, S., & Kadam, V. (2009). Microwave assisted synthesis of potential anti infective and anticonvulsant thiosemicarbazones. International Journal of ChemTech Research, 1(3), 696-701.
  • Muğlu, H. (2020). Synthesis, characterization, and antioxidant activity of some new N 4-arylsubstituted-5-methoxyisatin-β-thiosemicarbazone derivatives. Research on Chemical Intermediates, 46(4), 2083-2098. https://doi.org/10.1007/s11164-020-04079-x
  • Neese, F. (2022). Software update: The ORCA program system—Version 5.0. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(5), e1606. https://doi.org/10.1002/wcms.1606
  • Ozcan, E., Vagolu, S. K., Gunduz, M. G., Stevanovic, M., Kokbudak, Z., Tønjum, T., Nikodinovic-Runic, J., Çetinkaya, Y., & Dogan, S. D. (2023). Novel quinoline-based thiosemicarbazide derivatives: synthesis, DFT calculations, and investigation of antitubercular, antibacterial, and antifungal activities. ACS omega, 8(43), 40140-40152. https://doi.org/10.1021/acsomega.3c03018
  • Parr, R. G. (1989). Density functional theory of atoms and molecules. Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry Held at Kyoto, Japan, October 29-November 3, 1979.
  • Parr, R. G., & Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049-4050. https://doi.org/10.1021/ja00326a036
  • Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F.-u.-H., Choudhary, M. I., & Khan, K. M. (2008). In vitro cytotoxic, antibacterial, antifungal and urease inhibitory activities of some N 4-substituted isatin-3-thiosemicarbazones. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(6), 848-854. https://doi.org/10.1080/14756360701746179
  • Sevinçli, Z. Ş., Duran, G. N., Özbil, M., & Karalı, N. (2020). Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2, 3-dione 3-thiosemicarbazones. Bioorganic Chemistry, 104, 104202. https://doi.org/10.1016/j.bioorg.2020.104202
  • Shakya, B., & Yadav, P. N. (2020). Thiosemicarbazones as potent anticancer agents and their modes of action. Mini Reviews in Medicinal Chemistry, 20(8), 638-661. https://doi.org/10.2174/1389557519666191029130310
  • Shehzad, M. T., Khan, A., Islam, M., Hameed, A., Khiat, M., Halim, S. A., Anwar, M. U., Shah, S. R., Hussain, J., & Csuk, R. (2020). Synthesis and urease inhibitory activity of 1, 4-benzodioxane-based thiosemicarbazones: Biochemical and computational approach. Journal of Molecular Structure, 1209, 127922. https://doi.org/10.1016/j.molstruc.2020.127922
  • Subhashree, G., Haribabu, J., Saranya, S., Yuvaraj, P., Krishnan, D. A., Karvembu, R., & Gayathri, D. (2017). In vitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones. Journal of Molecular Structure, 1145, 160-169. https://doi.org/10.1016/j.molstruc.2017.05.054
  • Tokalı, F. S., Şenol, H., Katmerlikaya, T. G., Dağ, A., & Şendil, K. (2023a). Novel thiosemicarbazone and thiazolidin‐4‐one derivatives containing vanillin core: Synthesis, characterization, and anticancer activity studies. Journal of Heterocyclic Chemistry, 60(4), 645-656. https://doi.org/10.1002/jhet.4619
  • Tokalı, F. S., Taslimi, P., Tüzün, B., Karakuş, A., Sadeghian, N., & Gulçin, İ. (2023b). Synthesis of new carboxylates and sulfonates containing thiazolidin-4-one ring and evaluation of inhibitory properties against some metabolic enzymes. Journal of the Iranian Chemical Society, 20(10), 2631-2642. https://doi.org/10.1007/s13738-023-02861-3
  • Tokalı, F. S., Taslimi, P., Usanmaz, H., Karaman, M., & Şendil, K. (2021). Synthesis, characterization, biological activity and molecular docking studies of novel schiff bases derived from thiosemicarbazide: Biochemical and computational approach. Journal of Molecular Structure, 1231, 129666. https://doi.org/10.1016/j.molstruc.2020.129666
  • Yakan, H. (2020). Preparation, structure elucidation, and antioxidant activity of new bis (thiosemicarbazone) derivatives. Turkish Journal of Chemistry, 44(4), 1085-1099. https://doi.org/10.3906/kim-2002-76
  • Yakan, H., Azam, M., Kansız, S., Muğlu, H., Ergül, M., Taslimi, P., Koçyiğit, Ü. M., Karaman, M., Al-Resayes, S. I., & Min, K. (2023a). Isatin/thiosemicarbohydrazone hybrids: Facile synthesis, and their evaluation as anti-proliferatıve agents and metabolıc enzyme inhibitors. Bulletin of the Chemical Society of Ethiopia, 37(5), 1221-1236. https://doi.org/10.4314/bcse.v37i5.14
  • Yakan, H., Muğlu, H., Türkeş, C., Demir, Y., Erdoğan, M., Çavuş, M. S., & Beydemir, Ş. (2023b). A novel series of thiosemicarbazone hybrid scaffolds: Design, synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. Journal of Molecular Structure, 1280, 135077. https://doi.org/10.1016/j.molstruc.2023.135077
  • Zhang, Y.-M., Wang, D.-D., Lin, Q., & Wei, T.-B. (2007). Synthesis and anion recognition properties of thiosemicarbazone based molecular tweezers. Phosphorus, Sulfur, and Silicon and the Related Elements, 183(1), 44-55. https://doi.org/10.1080/10426500701555777
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Organik Kimyasal Sentez
Bölüm Araştırma Makalesi
Yazarlar

Hasan Yakan 0000-0002-4428-4696

Proje Numarası No, there is no project support.
Gönderilme Tarihi 24 Ağustos 2025
Kabul Tarihi 20 Kasım 2025
Yayımlanma Tarihi 27 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Yakan, H. (2025). New Isatin Derivatives Based Isopropyl-Thiosemicarbazone: Synthesis, Spectroscopic Characterization, and Theoretical Studies. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 15(2), 339-351. https://doi.org/10.54370/ordubtd.1771474