Derleme
BibTex RIS Kaynak Göster

NANOPARTİCLES AS THE BASE OF NANOTECHNOLOGY AND PHTYOREMEDİATİON OF NANOPARTİCLES

Yıl 2015, Cilt: 5 Sayı: 2, 23 - 34, 12.02.2016

Öz

Nowadays nano-technological development has caused to a rapid increase of the concentration of nanoparticles in the environment. There is not enough information about the effects of nanoparticles on human health and the environment. So it's of great importance to identify and remediation of the nanomaterials in the environment. Nanoparticles can be synthesized by many biological,chemical and physical methods. Phytoremediation methods can be used in the removal of nanoparticles. Phytoremediation is environmentally friendly and inexpensive way to removal. With this review current developments relating to the phytoremediation of nanoparticles were studied and emphasized to the importance of new studies about this issue which has serious literature lacking. 

Kaynakça

  • Hanks N.A., J.A. Caruso P. Zhang. (2015), Journal of Environmental Management, : p. 41-45.
  • Haverkamp R.G. A.T. Marshall. (2009), Journal of Nanoparticle Research, 11, (6): p. 1463.
  • Haverkamp R.G., A.T. Marshall D. Van Agterveld. (2007), Journal of Nanoparticle Research, 9, (4): p. 697-700.
  • Siripattanakul-Ratpukdi S., C. Ploychankul, T. Limpiyakorn, A.S. Vangnai, C. Rongsayamanont E. Khan. (2014), Journal of Nanoparticle Research, 16, (2).
  • Asztemborska M., R. Steborowski, J. Kowalska G. Bystrzejewska-Piotrowska. (2015),
  • Water, Air, and Soil Pollution, 226, (4). Yáñez-Sedeño P. J.M. Pingarrón. (2005), Analytical and Bioanalytical Chemistry, 382, (4): p. 884-886.
  • Ma X. C. Wang. (2010), Environmental Engineering Science, 27, (11): p. 989-992.
  • Sun H., X. Zhang, Z. Zhang, Y. Chen J.C. Crittenden. (2009), Environmental Pollution, 157, (4): p. 1165-1170.
  • Monica R.C. R. Cremonini. (2009), Caryologia, 62, (2): p. 161-165.
  • Andreotti F., A.P. Mucha, C. Caetano, P. Rodrigues, C. Rocha Gomes C.M.R. Almeida. (2015), Ecotoxicology and Environmental Safety, 120: p. 303-309.
  • Üçüncü E., A.D. Özkan, T.T. Ölmez E. Tunca 2014. Phytoremediation of Multiply
  • Metal-Contaminated Environments: Synergistic and Competitive Effects between Heavy Metals during Uptake and Transport Heavy Metal Remediation: Transport and Accumulation in Plants p. 179-200. Oláh V., A. Hepp I. Mészáros. (2015), Chemosphere, 132: p. 40-46.
  • Eleftheriou E.P., I.D.S. Adamakis, E. Panteris M. Fatsiou. (2015), International
  • Journal of Molecular Sciences, 16, (7): p. 15852-15871.
  • Singh H.P., P. Mahajan, S. Kaur, D.R. Batish R.K. Kohli. (2013), Environmental
  • Chemistry Letters, 11, (3): p. 229-254. Liu J., H. Zhang, Y. Zhang T. Chai. (2013), Plant Physiology and Biochemistry, 68: p. 1-7.
  • Basile A., S. Sorbo, B. Conte, R.C. Cobianchi, F. Trinchella, C. Capasso V. Carginale. (2012), International Journal of Phytoremediation, 14, (4): p. 374-387. Manara A. (2012): p. 27-53.
  • Kidd P., J. Barceló, M.P. Bernal, F. Navari-Izzo, C. Poschenrieder, S. Shilev, R. Clemente C. Monterroso. (2009), Environmental and Experimental Botany, 67, (1): p. 259.
  • Paz-Alberto A.M. (2013), American Journal of Climate Change, 02, (01): p. 71-86.
  • Uskoković V. (2015), Materials Science and Engineering C, 57: p. 434-451.
  • Stone R.C., B.D. Fellows, B. Qi, D. Trebatoski, B. Jenkins, Y. Raval, T.R. Tzeng, T.F. Bruce, T. McNealy, M.J. Austin, T.C. Monson, D.L. Huber O.T. Mefford. (2015),
  • Journal of Colloid and Interface Science, 459: p. 175-182. Yu Y., M. Guo, M. Yuan, W. Liu J. Hu. (2016), Biosensors and Bioelectronics, 77: p. 215-219.
  • Yamada K., W. Choi, I. Lee, B.K. Cho S. Jun. (2016), Biosensors and Bioelectronics, : p. 137-143.
  • Li H., Y. Qiao, J. Li, H. Fang, D. Fan W. Wang. (2016), Biosensors and Bioelectronics, 77: p. 378-384.
  • Zhu K., M. Wu, H. Lai, C. Guo, J. Li, Y. Wang, Y. Chen, C. Wang J. Shi. (2016), Biomaterials, 74: p. 188-199.
  • Göbel G., R. Lange, J.M. Hollidt F. Lisdat. (2016), Talanta, 146: p. 49-54.
  • Schwaminger S.P., P.F. García, G.K. Merck, F.A. Bodensteiner, S. Heissler, S. Günther S. Berensmeier. (2015), Journal of Physical Chemistry C, 119, (40): p. 23032
  • Capaldi Arruda S.C., A.L. Diniz Silva, R. Moretto Galazzi, R. Antunes Azevedo M.A. Zezzi Arruda. (2015), Talanta, 131: p. 693-705.
  • Konishi Y., K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi T. Uruga. (2007), Journal of Biotechnology, 128, (3): p. 648-653.
  • Mohanpuria P., N.K. Rana S.K. Yadav. (2008), Journal of Nanoparticle Research, , (3): p. 507-517.
  • Thakkar K.N., S.S. Mhatre R.Y. Parikh. (2010), Nanomedicine: Nanotechnology,
  • Biology and Medicine, 6, (2): p. 257-262. Nasrollahzadeh M. S. Mohammad Sajadi. (2016), Journal of Colloid and Interface Science, 462: p. 243-251.
  • Mishra P., S. Ray, S. Sinha, B. Das, M.I. Khan, S.K. Behera, S.I. Yun, S.K. Tripathy A. Mishra. (2016), Biochemical Engineering Journal, 105: p. 264-272.
  • Harshiny M., C.N. Iswarya M. Matheswaran. (2015), Powder Technology, 286: p. 749.
  • Gardea-Torresdey J.L., E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani M. Jose-Yacaman. (2003), Langmuir, 19, (4): p. 1357-1361.
  • Gardea-Torresdey J.L., E. Rodriguez, J.G. Parsons, J.R. Peralta-Videa, G. Meitzner G. Cruz-Jimenez. (2005), Analytical and Bioanalytical Chemistry, 382, (2): p. 347-352.
  • Sasmaz M., E.I. Arslan Topal, E. Obek A. Sasmaz. (2015), Journal of Environmental Management, 163: p. 246-253.
  • Rezania S., M. Ponraj, A. Talaiekhozani, S.E. Mohamad, M.F. Md Din, S.M. Taib, F. Sabbagh F.M. Sairan. (2015), Journal of Environmental Management, 163: p. 125-133.
  • Bauddh K., K. Singh, B. Singh R.P. Singh. (2015), Ecological Engineering, 84: p. 652.
  • Zaheer I.E., S. Ali, M. Rizwan, M. Farid, M.B. Shakoor, R.A. Gill, U. Najeeb, N. Iqbal R. Ahmad. (2015), Ecotoxicology and Environmental Safety, 120: p. 310-317.
  • Boechat C.L., V.C. Pistóia, C. Gianelo F.A.D.O. Camargo. (2015), Environmental
  • Science and Pollution Research. Baker T.J., C.R. Tyler T.S. Galloway. (2014), Environmental Pollution, 186: p. 257
  • Al-Shalabi Z. P.M. Doran 2013. Metal Uptake and Nanoparticle Synthesis in Hairy
  • Root Cultures. Advances in Biochemical Engineering/Biotechnology, 134: p. 135-153. Jacob D.L., J.D. Borchardt, L. Navaratnam, M.L. Otte A.N. Bezbaruah. (2013),
  • International Journal of Phytoremediation, 15, (2): p. 142-153. Üçüncü E., A.D. Özkan, C. Kurşungöz, Z.E. Ülger, T.T. Ölmez, T. Tekinay, B. Ortaç E. Tunca. (2014), Chemosphere, 108: p. 251-257.
  • Barton L.E., M. Auffan, M. Durenkamp, S. McGrath, J.Y. Bottero M.R. Wiesner. (2015), Science of the Total Environment, 511: p. 535-543.
  • Martínez-Fernández D., M. Vítková, M.P. Bernal M. Komárek. (2015), Water, Air, and Soil Pollution, 226, (4).
  • Al-Hobaib A.S., K. Al-Sheetan L. El Mir. (2015), Materials Science in
  • Semiconductor Processing. Kinsinger N., R. Honda, V. Keene S.L. Walker. (2015), Environmental Engineering Science, 32, (4): p. 292-300.
  • Gui M., J.K. Papp, A.S. Colburn, N.D. Meeks, B. Weaver, I. Wilf D. Bhattacharyya. (2015), Journal of Membrane Science, 488: p. 79-91.
  • Esmaeili A. A. Aghababai Beni. (2015), International Journal of Environmental
  • Science and Technology, 12, (6): p. 2055-2064.
  • Phatak R.S. A.S. Hendre. (2015), Der Pharmacia Lettre, 7, (5): p. 313-324.
  • Suriyaprabha R., G. Karunakaran, R. Yuvakkumar, P. Prabu, V. Rajendran N. Kannan. (2012), Journal of Nanoparticle Research, 14, (12): p. 1-14.
  • Gubbins E.J., L.C. Batty J.R. Lead. (2011), Environmental Pollution, 159, (6): p. 1559.
  • Song G., Y. Gao, H. Wu, W. Hou, C. Zhang H. Ma. (2012), Environmental
  • Toxicology and Chemistry, 31, (9): p. 2147-2152.
  • Juhel G., E. Batisse, Q. Hugues, D. Daly, F.N.A.M. van Pelt, J. O'Halloran M.A.K. Jansen. (2011), Aquatic Toxicology, 105, (3-4): p. 328-336.
  • Rao A., A. Bankar, A.R. Kumar, S. Gosavi S. Zinjarde. (2013), Journal of contaminant hydrology, 146: p. 63-73.

NANOTEKNOLOJİNİN TEMELİ NANOPARTİKÜLLER VE NANOPARTİKÜLLERİN FİTOREMEDİASYON U

Yıl 2015, Cilt: 5 Sayı: 2, 23 - 34, 12.02.2016

Öz

Nanoteknolojik gelişmeler, günümüzde nanopartiküllerin ortamdaki konsantrasyonlarının hızla artmasına sebep olmaktadır. İnsan sağlığı veya çevre üzerindeki etkileri hakkında yeterli bilgi olmayan bu materyallerin ortamlardaki tespiti ve remediasyonu büyük önem taşımaktadır. Pek çok fiziksel, kimyasal ya da biyolojik yöntemle sentezlenebilen nanopartiküllerin ortamlardan gideriminde, çevre dostu ve ucuz bir yöntem olan fitoremediasyon yöntemi kullanılabilmektedir. Bu derleme çalışması ile nanopartiküllerin fitoremediasyonu ile ilgili güncel gelişmeler incelenmiş, ciddi literatür eksiğinin bulunduğu bu konuda yapılacak yeni çalışmaların önemi vurgulanmak istenmiştir.

Kaynakça

  • Hanks N.A., J.A. Caruso P. Zhang. (2015), Journal of Environmental Management, : p. 41-45.
  • Haverkamp R.G. A.T. Marshall. (2009), Journal of Nanoparticle Research, 11, (6): p. 1463.
  • Haverkamp R.G., A.T. Marshall D. Van Agterveld. (2007), Journal of Nanoparticle Research, 9, (4): p. 697-700.
  • Siripattanakul-Ratpukdi S., C. Ploychankul, T. Limpiyakorn, A.S. Vangnai, C. Rongsayamanont E. Khan. (2014), Journal of Nanoparticle Research, 16, (2).
  • Asztemborska M., R. Steborowski, J. Kowalska G. Bystrzejewska-Piotrowska. (2015),
  • Water, Air, and Soil Pollution, 226, (4). Yáñez-Sedeño P. J.M. Pingarrón. (2005), Analytical and Bioanalytical Chemistry, 382, (4): p. 884-886.
  • Ma X. C. Wang. (2010), Environmental Engineering Science, 27, (11): p. 989-992.
  • Sun H., X. Zhang, Z. Zhang, Y. Chen J.C. Crittenden. (2009), Environmental Pollution, 157, (4): p. 1165-1170.
  • Monica R.C. R. Cremonini. (2009), Caryologia, 62, (2): p. 161-165.
  • Andreotti F., A.P. Mucha, C. Caetano, P. Rodrigues, C. Rocha Gomes C.M.R. Almeida. (2015), Ecotoxicology and Environmental Safety, 120: p. 303-309.
  • Üçüncü E., A.D. Özkan, T.T. Ölmez E. Tunca 2014. Phytoremediation of Multiply
  • Metal-Contaminated Environments: Synergistic and Competitive Effects between Heavy Metals during Uptake and Transport Heavy Metal Remediation: Transport and Accumulation in Plants p. 179-200. Oláh V., A. Hepp I. Mészáros. (2015), Chemosphere, 132: p. 40-46.
  • Eleftheriou E.P., I.D.S. Adamakis, E. Panteris M. Fatsiou. (2015), International
  • Journal of Molecular Sciences, 16, (7): p. 15852-15871.
  • Singh H.P., P. Mahajan, S. Kaur, D.R. Batish R.K. Kohli. (2013), Environmental
  • Chemistry Letters, 11, (3): p. 229-254. Liu J., H. Zhang, Y. Zhang T. Chai. (2013), Plant Physiology and Biochemistry, 68: p. 1-7.
  • Basile A., S. Sorbo, B. Conte, R.C. Cobianchi, F. Trinchella, C. Capasso V. Carginale. (2012), International Journal of Phytoremediation, 14, (4): p. 374-387. Manara A. (2012): p. 27-53.
  • Kidd P., J. Barceló, M.P. Bernal, F. Navari-Izzo, C. Poschenrieder, S. Shilev, R. Clemente C. Monterroso. (2009), Environmental and Experimental Botany, 67, (1): p. 259.
  • Paz-Alberto A.M. (2013), American Journal of Climate Change, 02, (01): p. 71-86.
  • Uskoković V. (2015), Materials Science and Engineering C, 57: p. 434-451.
  • Stone R.C., B.D. Fellows, B. Qi, D. Trebatoski, B. Jenkins, Y. Raval, T.R. Tzeng, T.F. Bruce, T. McNealy, M.J. Austin, T.C. Monson, D.L. Huber O.T. Mefford. (2015),
  • Journal of Colloid and Interface Science, 459: p. 175-182. Yu Y., M. Guo, M. Yuan, W. Liu J. Hu. (2016), Biosensors and Bioelectronics, 77: p. 215-219.
  • Yamada K., W. Choi, I. Lee, B.K. Cho S. Jun. (2016), Biosensors and Bioelectronics, : p. 137-143.
  • Li H., Y. Qiao, J. Li, H. Fang, D. Fan W. Wang. (2016), Biosensors and Bioelectronics, 77: p. 378-384.
  • Zhu K., M. Wu, H. Lai, C. Guo, J. Li, Y. Wang, Y. Chen, C. Wang J. Shi. (2016), Biomaterials, 74: p. 188-199.
  • Göbel G., R. Lange, J.M. Hollidt F. Lisdat. (2016), Talanta, 146: p. 49-54.
  • Schwaminger S.P., P.F. García, G.K. Merck, F.A. Bodensteiner, S. Heissler, S. Günther S. Berensmeier. (2015), Journal of Physical Chemistry C, 119, (40): p. 23032
  • Capaldi Arruda S.C., A.L. Diniz Silva, R. Moretto Galazzi, R. Antunes Azevedo M.A. Zezzi Arruda. (2015), Talanta, 131: p. 693-705.
  • Konishi Y., K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi T. Uruga. (2007), Journal of Biotechnology, 128, (3): p. 648-653.
  • Mohanpuria P., N.K. Rana S.K. Yadav. (2008), Journal of Nanoparticle Research, , (3): p. 507-517.
  • Thakkar K.N., S.S. Mhatre R.Y. Parikh. (2010), Nanomedicine: Nanotechnology,
  • Biology and Medicine, 6, (2): p. 257-262. Nasrollahzadeh M. S. Mohammad Sajadi. (2016), Journal of Colloid and Interface Science, 462: p. 243-251.
  • Mishra P., S. Ray, S. Sinha, B. Das, M.I. Khan, S.K. Behera, S.I. Yun, S.K. Tripathy A. Mishra. (2016), Biochemical Engineering Journal, 105: p. 264-272.
  • Harshiny M., C.N. Iswarya M. Matheswaran. (2015), Powder Technology, 286: p. 749.
  • Gardea-Torresdey J.L., E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani M. Jose-Yacaman. (2003), Langmuir, 19, (4): p. 1357-1361.
  • Gardea-Torresdey J.L., E. Rodriguez, J.G. Parsons, J.R. Peralta-Videa, G. Meitzner G. Cruz-Jimenez. (2005), Analytical and Bioanalytical Chemistry, 382, (2): p. 347-352.
  • Sasmaz M., E.I. Arslan Topal, E. Obek A. Sasmaz. (2015), Journal of Environmental Management, 163: p. 246-253.
  • Rezania S., M. Ponraj, A. Talaiekhozani, S.E. Mohamad, M.F. Md Din, S.M. Taib, F. Sabbagh F.M. Sairan. (2015), Journal of Environmental Management, 163: p. 125-133.
  • Bauddh K., K. Singh, B. Singh R.P. Singh. (2015), Ecological Engineering, 84: p. 652.
  • Zaheer I.E., S. Ali, M. Rizwan, M. Farid, M.B. Shakoor, R.A. Gill, U. Najeeb, N. Iqbal R. Ahmad. (2015), Ecotoxicology and Environmental Safety, 120: p. 310-317.
  • Boechat C.L., V.C. Pistóia, C. Gianelo F.A.D.O. Camargo. (2015), Environmental
  • Science and Pollution Research. Baker T.J., C.R. Tyler T.S. Galloway. (2014), Environmental Pollution, 186: p. 257
  • Al-Shalabi Z. P.M. Doran 2013. Metal Uptake and Nanoparticle Synthesis in Hairy
  • Root Cultures. Advances in Biochemical Engineering/Biotechnology, 134: p. 135-153. Jacob D.L., J.D. Borchardt, L. Navaratnam, M.L. Otte A.N. Bezbaruah. (2013),
  • International Journal of Phytoremediation, 15, (2): p. 142-153. Üçüncü E., A.D. Özkan, C. Kurşungöz, Z.E. Ülger, T.T. Ölmez, T. Tekinay, B. Ortaç E. Tunca. (2014), Chemosphere, 108: p. 251-257.
  • Barton L.E., M. Auffan, M. Durenkamp, S. McGrath, J.Y. Bottero M.R. Wiesner. (2015), Science of the Total Environment, 511: p. 535-543.
  • Martínez-Fernández D., M. Vítková, M.P. Bernal M. Komárek. (2015), Water, Air, and Soil Pollution, 226, (4).
  • Al-Hobaib A.S., K. Al-Sheetan L. El Mir. (2015), Materials Science in
  • Semiconductor Processing. Kinsinger N., R. Honda, V. Keene S.L. Walker. (2015), Environmental Engineering Science, 32, (4): p. 292-300.
  • Gui M., J.K. Papp, A.S. Colburn, N.D. Meeks, B. Weaver, I. Wilf D. Bhattacharyya. (2015), Journal of Membrane Science, 488: p. 79-91.
  • Esmaeili A. A. Aghababai Beni. (2015), International Journal of Environmental
  • Science and Technology, 12, (6): p. 2055-2064.
  • Phatak R.S. A.S. Hendre. (2015), Der Pharmacia Lettre, 7, (5): p. 313-324.
  • Suriyaprabha R., G. Karunakaran, R. Yuvakkumar, P. Prabu, V. Rajendran N. Kannan. (2012), Journal of Nanoparticle Research, 14, (12): p. 1-14.
  • Gubbins E.J., L.C. Batty J.R. Lead. (2011), Environmental Pollution, 159, (6): p. 1559.
  • Song G., Y. Gao, H. Wu, W. Hou, C. Zhang H. Ma. (2012), Environmental
  • Toxicology and Chemistry, 31, (9): p. 2147-2152.
  • Juhel G., E. Batisse, Q. Hugues, D. Daly, F.N.A.M. van Pelt, J. O'Halloran M.A.K. Jansen. (2011), Aquatic Toxicology, 105, (3-4): p. 328-336.
  • Rao A., A. Bankar, A.R. Kumar, S. Gosavi S. Zinjarde. (2013), Journal of contaminant hydrology, 146: p. 63-73.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makaleler
Yazarlar

Esra Üçüncü Tunca

Yayımlanma Tarihi 12 Şubat 2016
Gönderilme Tarihi 12 Şubat 2016
Yayımlandığı Sayı Yıl 2015 Cilt: 5 Sayı: 2

Kaynak Göster

APA Üçüncü Tunca, E. (2016). NANOTEKNOLOJİNİN TEMELİ NANOPARTİKÜLLER VE NANOPARTİKÜLLERİN FİTOREMEDİASYON U. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 5(2), 23-34.