Araştırma Makalesi
BibTex RIS Kaynak Göster

Kalça Protezinin Aşınma Özellikleri Üzerinde Çoklu Tabakalı Kaplanmasının Etkilerinin Sonlu Elemanlar Metoduyla Nümerik Analizi

Yıl 2017, Cilt: 7 Sayı: 2, 201 - 214, 15.12.2017

Öz

Total kalça protezi uygulamalarında kullanılan metal alaşımlarının kullanım sürelerinin
artırılmasına yönelik çalışmalar gelişen tıp ve malzeme teknolojileriyle beraber devam
etmektedir. Metal alaşımları vücut sıvısı içerisinde bulunan çeşitli iyonlar, mineraller ve
proteinlerle etkileşime girerek korozyon ve metal iyonizasyonuna uğramaktadır. Bunun
sonucunda ise polietilen bileşen kullanım ömründen erken aşınmaya maruz kalmaktadır. Kalça
protezlerinde kullanılan metal bileşenlerin korozyon dayanımının artırılması ve iyonizasyonun
önlenmesi için seramik bileşenlerle kaplanmaktadır. Bu çalışmada kalça protezlerinde yaygın
olarak kullanılan metal-polietilen çifti Ti6Al4V-ultra yüksek moleküler ağırlıklı polietilen
bileşenlerinin aşınma özellikleri incelenmiştir. Metal femur başının çoklu tabakalı kaplanmasının
ve tabaka sayısının polietilen asetabular linerin aşınması üzerindeki etkileri nümerik olarak
ANSYS programı yardımıyla incelenmiştir. Elde edilen sonuçlar, metal femur başının çoklu
tabakalı kaplanmasının polietilen bileşeninin aşınma dayanımını artıracağı görülmüştür.  

Kaynakça

  • 1. Aihua L, Jianxin D, Haibing C, Yangyang C & Jun Z (2012). Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. International Journal of Refractory Metals and Hard Materials 31: 82–88
  • 2. Bal B S, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman A A & Rahaman M N (2008). Testing of silicon nitride ceramic bearings for total hip arthroplasty. Journal of Biomedical Materials Research Part B: Applied Biomaterials 87(2): 447-454
  • 3. Cui W, Qin G, Duan J & Wang H (2017). A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility. Materials Science and Engineering: C 71: 520-528
  • 4. Davim J P (2013). Biomaterials and Medical Tribology. Woodhead Publishing, UK
  • 5. Fahrenholtz W G, Wuchina E J, Lee W E & Zhaou Y (2014). Ultra-High Temperature Ceramics Materials for Extreme Environment Applications. John Wiley & Sons, New Jersey
  • 6. Gallegos-Cantú S, Hernandez-Rodriguez M A L, Garcia-Sanchez E, JuarezHernandez A, Hernandez-Sandoval J & Cue-Sampedro R (2015). Tribological study of TiN monolayer and TiN/CrN (multilayer and superlattice) onCo–Cr alloy. Wear 330-331: 439–447
  • 7. Gilewicz A, Chmielewska P, Murzynski D, Dobruchowska E & Warcholinski B (2016). Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer's and Hank's solutions. Surface and Coatings Technology 299: 7-14
  • 8. Good V, Widding K, Hunter G & Heuer D (2005). Oxidized zirconium: a potentially longer lasting hip implant. Materials & Design 26 (7) : 618-622
  • 9. Hesketh J, Meng Q, Dowson D & Neville A (2013). Biotribocorrosion of metalon-metal hip replacements: How surface degradation can influence metal ion formation. Tribology International 65: 128-137
  • 10. Holleck H, Schier V (1995). Multilayer PVD coatings for wear protection. Surface and Coatings Technology 76-77: 328-336
  • 11. Holzwarth U & Cotogno G (2012). Total hip arthroplasty- State of the Art, Challenges and Prospects, Publications Office of the European Union
  • 12. Huang M D, Liu Y, Meng F Y, Tong L N & Li P (2013). Thick CrN/TiN multilayers deposited by arc ion plating. Vacuum 89: 101-104
  • 13. H¨ubler R, Cozza A, Marcondes T L, Souza R B & Fiori F F (2001). Wear and corrosion protection of 316-L femoral implants by deposition of thin films. Surface and Coatings Technology 142-144: 1078-1083
  • 14. Khanna R, Kokubo T, Matsushita T, Nomura Y, Nose N, Oomori Y & Takadama H (2015). Novel artificial hip joint: A layer of alumina on Ti–6Al–4V alloy formed by micro-arc oxidation. Materials Science and Engineering: C, 55: 393- 400 15. Khanna R, Kokubo T, Matsushita T & Takadama H (2016). Fabrication of dense α-alumina layer on Ti-6Al-4V alloy hybrid for bearing surfaces of artificial hip joint. Materials Science and Engineering: C 69: 1229-1239
  • 16. Li D.J., Liu F, Wang M X, Zhang J J & Liu Q X (2006). Structural and mechanical properties of multilayered gradient CrN/ZrN coatings. Thin Solid Films 506– 507: 202 – 206
  • 17. Lin Y T, Wu J S S & Chen J H (2016). The study of wear behaviours on abducted hip joint prostheses by an alternate finite element approach. Computer methods and programs in biomedicine 131: 143-155
  • 18. Long M & Rack, H J (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19 (18): 1621-1639
  • 19. McEntire B J, Bal B S, Rahaman M N, Chevalier J & Pezzotti G (2015). Ceramics and ceramic coatings in orthopaedics. Journal of the European Ceramic Society 35 (16): 4327-4369
  • 20. Mckee GK & Ferrar J. W J (1996). Bone Jt. Surg, 48: 245
  • 21. Mendizabal L., Lopez A., Bayón R., Herrero-Fernandez P., Javier Barriga J., Javier J. Gonzalez J.J. (2016). Tribocorrosion response in biological environments of multilayer TaN films deposited by HPPMS. Surface and Coatings Technology 295: 60-69.
  • 22. Ortega-Saenz J A, Alvarez-Vera M & Hernandez-Rodriguez M A L (2013). Biotribological study of multilayer coated metal-on-metal hip prostheses in a hip joint simulator. Wear 301(1) : 234-242
  • 23. Okumiya M & Griepentrog M (1999). Mechanical properties and tribological behavior of TiN–CrAlN and CrN–CrAlN multilayer coatings. Surface and Coatings Technology 112: 123–128
  • 24. Ou Y X , Lin J, Che H L, Moore J J, Sproul W D & Lei M K (2015). Mechanical and tribological properties of CrN/TiN superlattice coatings deposited by a combination of arc-free deep oscillation magnetron sputtering with pulsed dc magnetron sputtering. Thin Solid Films 594:147–155
  • 25. Ou Y X, Lin J, Tonga S, Sproul W D & Lei M K (2016). Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering. Surface & Coatings Technology 293: 21–27
  • 26. Pakhaliuk V, Polyakov A, Kalinin M & Kramar V (2015). Improving the Finite Element Simulation of Wear of Total Hip Prosthesis’ Spherical Joint with the Polymeric Component. Procedia Engineering 100: 539-548
  • 27. Perumal G, Geetha M, Asokamani R &Alagumurthi N (2014). Wear studies on plasma sprayed Al 2 O 3–40wt% 8YSZ composite ceramic coating on Ti–6Al– 4V alloy used for biomedical applications. Wear 311(1): 101-113
  • 28. Rahaman M N, Yao A, Bal B S, Garino J P & Ries M D (2007). Ceramics for prosthetic hip and knee joint replacement. Journal of the American Ceramic Society 90(7): 1965-1988
  • 29. Silva M, Heisel C & Schmalzried T P (2005). Metal-on-metal total hip replacement. Clinical Orthopaedics and Related Research 430: 53-61
  • 30. Taylor M & Prendergast P J (2015). Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities?. Journal of biomechanics 48(5): 767-778
  • 31. Zameer S, & Haneef M (2015). Fatigue Life Estimation of Artificial Hip Joint Model Using Finite Element Method. Materials Today: Proceedings 2(4-5): 2137-2145
  • 32. Zhang J, Chen Z, Wang L, Li D & Jin Z A (2017). Patient-specific wear prediction framework for an artificial knee joint with coupled musculoskeletal multibodydynamics and finite element analysis. Tribology International 109: 382-389
  • 33. Zhang Z G, Rapaud O, Allain N, Mercs D, Baraket M, Dong C & Coddet C (2009). Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings. Applied Surface Science 255: 4020–4026

Numerical Analysis of Effect of Multilayer Coating on the Wear Properties of Hip Prosthesis by Finite Element Method

Yıl 2017, Cilt: 7 Sayı: 2, 201 - 214, 15.12.2017

Öz

Researches on increasing the lifetime of metal alloys used in total hip replacement applications,
continue in parallel with developing medicine and material engineering. Metal alloys expose to
the corrosion and ionization by interacting with the ions, proteins, and minerals in the body fluid.
As a result of this, polyethylene component of the hip prosthesis exposes to early wear. Metal
components of the hip prosthesis are coated with ceramic materials in order to avoid metal
ionization and enhance the corrosion resistance. In this study, the wear properties of widely used
Ti6Al4V-UHMWPE metal-polyethylene couple in the hip prosthesis is investigated. The effect
of the coating of metal femoral head and the effect of layer number on the wear of polyethylene
acetabular liner is numerically studied by ANSYS software. Results showed that the multilayer
coating of metal femoral head will increase the wear resistance of the polyethylene component.

Kaynakça

  • 1. Aihua L, Jianxin D, Haibing C, Yangyang C & Jun Z (2012). Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. International Journal of Refractory Metals and Hard Materials 31: 82–88
  • 2. Bal B S, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman A A & Rahaman M N (2008). Testing of silicon nitride ceramic bearings for total hip arthroplasty. Journal of Biomedical Materials Research Part B: Applied Biomaterials 87(2): 447-454
  • 3. Cui W, Qin G, Duan J & Wang H (2017). A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility. Materials Science and Engineering: C 71: 520-528
  • 4. Davim J P (2013). Biomaterials and Medical Tribology. Woodhead Publishing, UK
  • 5. Fahrenholtz W G, Wuchina E J, Lee W E & Zhaou Y (2014). Ultra-High Temperature Ceramics Materials for Extreme Environment Applications. John Wiley & Sons, New Jersey
  • 6. Gallegos-Cantú S, Hernandez-Rodriguez M A L, Garcia-Sanchez E, JuarezHernandez A, Hernandez-Sandoval J & Cue-Sampedro R (2015). Tribological study of TiN monolayer and TiN/CrN (multilayer and superlattice) onCo–Cr alloy. Wear 330-331: 439–447
  • 7. Gilewicz A, Chmielewska P, Murzynski D, Dobruchowska E & Warcholinski B (2016). Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer's and Hank's solutions. Surface and Coatings Technology 299: 7-14
  • 8. Good V, Widding K, Hunter G & Heuer D (2005). Oxidized zirconium: a potentially longer lasting hip implant. Materials & Design 26 (7) : 618-622
  • 9. Hesketh J, Meng Q, Dowson D & Neville A (2013). Biotribocorrosion of metalon-metal hip replacements: How surface degradation can influence metal ion formation. Tribology International 65: 128-137
  • 10. Holleck H, Schier V (1995). Multilayer PVD coatings for wear protection. Surface and Coatings Technology 76-77: 328-336
  • 11. Holzwarth U & Cotogno G (2012). Total hip arthroplasty- State of the Art, Challenges and Prospects, Publications Office of the European Union
  • 12. Huang M D, Liu Y, Meng F Y, Tong L N & Li P (2013). Thick CrN/TiN multilayers deposited by arc ion plating. Vacuum 89: 101-104
  • 13. H¨ubler R, Cozza A, Marcondes T L, Souza R B & Fiori F F (2001). Wear and corrosion protection of 316-L femoral implants by deposition of thin films. Surface and Coatings Technology 142-144: 1078-1083
  • 14. Khanna R, Kokubo T, Matsushita T, Nomura Y, Nose N, Oomori Y & Takadama H (2015). Novel artificial hip joint: A layer of alumina on Ti–6Al–4V alloy formed by micro-arc oxidation. Materials Science and Engineering: C, 55: 393- 400 15. Khanna R, Kokubo T, Matsushita T & Takadama H (2016). Fabrication of dense α-alumina layer on Ti-6Al-4V alloy hybrid for bearing surfaces of artificial hip joint. Materials Science and Engineering: C 69: 1229-1239
  • 16. Li D.J., Liu F, Wang M X, Zhang J J & Liu Q X (2006). Structural and mechanical properties of multilayered gradient CrN/ZrN coatings. Thin Solid Films 506– 507: 202 – 206
  • 17. Lin Y T, Wu J S S & Chen J H (2016). The study of wear behaviours on abducted hip joint prostheses by an alternate finite element approach. Computer methods and programs in biomedicine 131: 143-155
  • 18. Long M & Rack, H J (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19 (18): 1621-1639
  • 19. McEntire B J, Bal B S, Rahaman M N, Chevalier J & Pezzotti G (2015). Ceramics and ceramic coatings in orthopaedics. Journal of the European Ceramic Society 35 (16): 4327-4369
  • 20. Mckee GK & Ferrar J. W J (1996). Bone Jt. Surg, 48: 245
  • 21. Mendizabal L., Lopez A., Bayón R., Herrero-Fernandez P., Javier Barriga J., Javier J. Gonzalez J.J. (2016). Tribocorrosion response in biological environments of multilayer TaN films deposited by HPPMS. Surface and Coatings Technology 295: 60-69.
  • 22. Ortega-Saenz J A, Alvarez-Vera M & Hernandez-Rodriguez M A L (2013). Biotribological study of multilayer coated metal-on-metal hip prostheses in a hip joint simulator. Wear 301(1) : 234-242
  • 23. Okumiya M & Griepentrog M (1999). Mechanical properties and tribological behavior of TiN–CrAlN and CrN–CrAlN multilayer coatings. Surface and Coatings Technology 112: 123–128
  • 24. Ou Y X , Lin J, Che H L, Moore J J, Sproul W D & Lei M K (2015). Mechanical and tribological properties of CrN/TiN superlattice coatings deposited by a combination of arc-free deep oscillation magnetron sputtering with pulsed dc magnetron sputtering. Thin Solid Films 594:147–155
  • 25. Ou Y X, Lin J, Tonga S, Sproul W D & Lei M K (2016). Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering. Surface & Coatings Technology 293: 21–27
  • 26. Pakhaliuk V, Polyakov A, Kalinin M & Kramar V (2015). Improving the Finite Element Simulation of Wear of Total Hip Prosthesis’ Spherical Joint with the Polymeric Component. Procedia Engineering 100: 539-548
  • 27. Perumal G, Geetha M, Asokamani R &Alagumurthi N (2014). Wear studies on plasma sprayed Al 2 O 3–40wt% 8YSZ composite ceramic coating on Ti–6Al– 4V alloy used for biomedical applications. Wear 311(1): 101-113
  • 28. Rahaman M N, Yao A, Bal B S, Garino J P & Ries M D (2007). Ceramics for prosthetic hip and knee joint replacement. Journal of the American Ceramic Society 90(7): 1965-1988
  • 29. Silva M, Heisel C & Schmalzried T P (2005). Metal-on-metal total hip replacement. Clinical Orthopaedics and Related Research 430: 53-61
  • 30. Taylor M & Prendergast P J (2015). Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities?. Journal of biomechanics 48(5): 767-778
  • 31. Zameer S, & Haneef M (2015). Fatigue Life Estimation of Artificial Hip Joint Model Using Finite Element Method. Materials Today: Proceedings 2(4-5): 2137-2145
  • 32. Zhang J, Chen Z, Wang L, Li D & Jin Z A (2017). Patient-specific wear prediction framework for an artificial knee joint with coupled musculoskeletal multibodydynamics and finite element analysis. Tribology International 109: 382-389
  • 33. Zhang Z G, Rapaud O, Allain N, Mercs D, Baraket M, Dong C & Coddet C (2009). Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings. Applied Surface Science 255: 4020–4026
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Bölüm Derleme Makaleler
Yazarlar

Erkan Bahçe Bu kişi benim 0000-0001-5389-5571

Ali Kemal Aslan Bu kişi benim 0000-0001-6390-9009

Mehmet Sami Güler Bu kişi benim 0000-0003-0414-7707

Neşe Çakır Bu kişi benim 0000-0002-7178-5904

Ender Emir Bu kişi benim 0000-0003-4972-5064

Yayımlanma Tarihi 15 Aralık 2017
Gönderilme Tarihi 22 Mayıs 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 2

Kaynak Göster

APA Bahçe, E., Aslan, A. K., Güler, M. S., Çakır, N., vd. (2017). Kalça Protezinin Aşınma Özellikleri Üzerinde Çoklu Tabakalı Kaplanmasının Etkilerinin Sonlu Elemanlar Metoduyla Nümerik Analizi. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 7(2), 201-214.