Kalça Protezinin Aşınma Özellikleri Üzerinde Çoklu Tabakalı Kaplanmasının Etkilerinin Sonlu Elemanlar Metoduyla Nümerik Analizi
Yıl 2017,
Cilt: 7 Sayı: 2, 201 - 214, 15.12.2017
Erkan Bahçe
Ali Kemal Aslan
Mehmet Sami Güler
Neşe Çakır
Ender Emir
Öz
Total kalça protezi uygulamalarında kullanılan metal alaşımlarının kullanım sürelerinin
artırılmasına yönelik çalışmalar gelişen tıp ve malzeme teknolojileriyle beraber devam
etmektedir. Metal alaşımları vücut sıvısı içerisinde bulunan çeşitli iyonlar, mineraller ve
proteinlerle etkileşime girerek korozyon ve metal iyonizasyonuna uğramaktadır. Bunun
sonucunda ise polietilen bileşen kullanım ömründen erken aşınmaya maruz kalmaktadır. Kalça
protezlerinde kullanılan metal bileşenlerin korozyon dayanımının artırılması ve iyonizasyonun
önlenmesi için seramik bileşenlerle kaplanmaktadır. Bu çalışmada kalça protezlerinde yaygın
olarak kullanılan metal-polietilen çifti Ti6Al4V-ultra yüksek moleküler ağırlıklı polietilen
bileşenlerinin aşınma özellikleri incelenmiştir. Metal femur başının çoklu tabakalı kaplanmasının
ve tabaka sayısının polietilen asetabular linerin aşınması üzerindeki etkileri nümerik olarak
ANSYS programı yardımıyla incelenmiştir. Elde edilen sonuçlar, metal femur başının çoklu
tabakalı kaplanmasının polietilen bileşeninin aşınma dayanımını artıracağı görülmüştür.
Kaynakça
- 1. Aihua L, Jianxin D, Haibing C, Yangyang C & Jun Z (2012). Friction and wear
properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. International
Journal of Refractory Metals and Hard Materials 31: 82–88
- 2. Bal B S, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman A A & Rahaman
M N (2008). Testing of silicon nitride ceramic bearings for total hip arthroplasty.
Journal of Biomedical Materials Research Part B: Applied Biomaterials 87(2):
447-454
- 3. Cui W, Qin G, Duan J & Wang H (2017). A graded nano-TiN coating on
biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility.
Materials Science and Engineering: C 71: 520-528
- 4. Davim J P (2013). Biomaterials and Medical Tribology. Woodhead Publishing,
UK
- 5. Fahrenholtz W G, Wuchina E J, Lee W E & Zhaou Y (2014). Ultra-High
Temperature Ceramics Materials for Extreme Environment Applications. John
Wiley & Sons, New Jersey
- 6. Gallegos-Cantú S, Hernandez-Rodriguez M A L, Garcia-Sanchez E, JuarezHernandez
A, Hernandez-Sandoval J & Cue-Sampedro R (2015). Tribological
study of TiN monolayer and TiN/CrN (multilayer and superlattice) onCo–Cr
alloy. Wear 330-331: 439–447
- 7. Gilewicz A, Chmielewska P, Murzynski D, Dobruchowska E & Warcholinski B
(2016). Corrosion resistance of CrN and CrCN/CrN coatings deposited using
cathodic arc evaporation in Ringer's and Hank's solutions. Surface and Coatings
Technology 299: 7-14
- 8. Good V, Widding K, Hunter G & Heuer D (2005). Oxidized zirconium: a
potentially longer lasting hip implant. Materials & Design 26 (7) : 618-622
- 9. Hesketh J, Meng Q, Dowson D & Neville A (2013). Biotribocorrosion of metalon-metal
hip replacements: How surface degradation can influence metal ion
formation. Tribology International 65: 128-137
- 10. Holleck H, Schier V (1995). Multilayer PVD coatings for wear protection. Surface
and Coatings Technology 76-77: 328-336
- 11. Holzwarth U & Cotogno G (2012). Total hip arthroplasty- State of the Art,
Challenges and Prospects, Publications Office of the European Union
- 12. Huang M D, Liu Y, Meng F Y, Tong L N & Li P (2013). Thick CrN/TiN
multilayers deposited by arc ion plating. Vacuum 89: 101-104
- 13. H¨ubler R, Cozza A, Marcondes T L, Souza R B & Fiori F F (2001). Wear and
corrosion protection of 316-L femoral implants by deposition of thin films.
Surface and Coatings Technology 142-144: 1078-1083
- 14. Khanna R, Kokubo T, Matsushita T, Nomura Y, Nose N, Oomori Y & Takadama
H (2015). Novel artificial hip joint: A layer of alumina on Ti–6Al–4V alloy
formed by micro-arc oxidation. Materials Science and Engineering: C, 55: 393-
400
15. Khanna R, Kokubo T, Matsushita T & Takadama H (2016). Fabrication of dense
α-alumina layer on Ti-6Al-4V alloy hybrid for bearing surfaces of artificial hip
joint. Materials Science and Engineering: C 69: 1229-1239
- 16. Li D.J., Liu F, Wang M X, Zhang J J & Liu Q X (2006). Structural and mechanical
properties of multilayered gradient CrN/ZrN coatings. Thin Solid Films 506– 507:
202 – 206
- 17. Lin Y T, Wu J S S & Chen J H (2016). The study of wear behaviours on abducted
hip joint prostheses by an alternate finite element approach. Computer methods
and programs in biomedicine 131: 143-155
- 18. Long M & Rack, H J (1998). Titanium alloys in total joint replacement—a
materials science perspective. Biomaterials 19 (18): 1621-1639
- 19. McEntire B J, Bal B S, Rahaman M N, Chevalier J & Pezzotti G (2015). Ceramics
and ceramic coatings in orthopaedics. Journal of the European Ceramic Society
35 (16): 4327-4369
- 20. Mckee GK & Ferrar J. W J (1996). Bone Jt. Surg, 48: 245
- 21. Mendizabal L., Lopez A., Bayón R., Herrero-Fernandez P., Javier Barriga J.,
Javier J. Gonzalez J.J. (2016). Tribocorrosion response in biological environments
of multilayer TaN films deposited by HPPMS. Surface and Coatings Technology
295: 60-69.
- 22. Ortega-Saenz J A, Alvarez-Vera M & Hernandez-Rodriguez M A L (2013).
Biotribological study of multilayer coated metal-on-metal hip prostheses in a hip
joint simulator. Wear 301(1) : 234-242
- 23. Okumiya M & Griepentrog M (1999). Mechanical properties and tribological
behavior of TiN–CrAlN and CrN–CrAlN multilayer coatings. Surface and
Coatings Technology 112: 123–128
- 24. Ou Y X , Lin J, Che H L, Moore J J, Sproul W D & Lei M K (2015). Mechanical
and tribological properties of CrN/TiN superlattice coatings deposited by a
combination of arc-free deep oscillation magnetron sputtering with pulsed dc
magnetron sputtering. Thin Solid Films 594:147–155
- 25. Ou Y X, Lin J, Tonga S, Sproul W D & Lei M K (2016). Structure, adhesion and
corrosion behavior of CrN/TiN superlattice coatings deposited by the combined
deep oscillation magnetron sputtering and pulsed dc magnetron sputtering.
Surface & Coatings Technology 293: 21–27
- 26. Pakhaliuk V, Polyakov A, Kalinin M & Kramar V (2015). Improving the Finite
Element Simulation of Wear of Total Hip Prosthesis’ Spherical Joint with the
Polymeric Component. Procedia Engineering 100: 539-548
- 27. Perumal G, Geetha M, Asokamani R &Alagumurthi N (2014). Wear studies on
plasma sprayed Al 2 O 3–40wt% 8YSZ composite ceramic coating on Ti–6Al–
4V alloy used for biomedical applications. Wear 311(1): 101-113
- 28. Rahaman M N, Yao A, Bal B S, Garino J P & Ries M D (2007). Ceramics for
prosthetic hip and knee joint replacement. Journal of the American Ceramic
Society 90(7): 1965-1988
- 29. Silva M, Heisel C & Schmalzried T P (2005). Metal-on-metal total hip
replacement. Clinical Orthopaedics and Related Research 430: 53-61
- 30. Taylor M & Prendergast P J (2015). Four decades of finite element analysis of
orthopaedic devices: where are we now and what are the opportunities?. Journal
of biomechanics 48(5): 767-778
- 31. Zameer S, & Haneef M (2015). Fatigue Life Estimation of Artificial Hip Joint
Model Using Finite Element Method. Materials Today: Proceedings 2(4-5):
2137-2145
- 32. Zhang J, Chen Z, Wang L, Li D & Jin Z A (2017). Patient-specific wear prediction
framework for an artificial knee joint with coupled musculoskeletal multibodydynamics
and finite element analysis. Tribology International 109: 382-389
- 33. Zhang Z G, Rapaud O, Allain N, Mercs D, Baraket M, Dong C & Coddet C
(2009). Microstructures and tribological properties of CrN/ZrN nanoscale
multilayer coatings. Applied Surface Science 255: 4020–4026
Numerical Analysis of Effect of Multilayer Coating on the Wear Properties of Hip Prosthesis by Finite Element Method
Yıl 2017,
Cilt: 7 Sayı: 2, 201 - 214, 15.12.2017
Erkan Bahçe
Ali Kemal Aslan
Mehmet Sami Güler
Neşe Çakır
Ender Emir
Öz
Researches on increasing the lifetime of metal alloys used in total hip replacement applications,
continue in parallel with developing medicine and material engineering. Metal alloys expose to
the corrosion and ionization by interacting with the ions, proteins, and minerals in the body fluid.
As a result of this, polyethylene component of the hip prosthesis exposes to early wear. Metal
components of the hip prosthesis are coated with ceramic materials in order to avoid metal
ionization and enhance the corrosion resistance. In this study, the wear properties of widely used
Ti6Al4V-UHMWPE metal-polyethylene couple in the hip prosthesis is investigated. The effect
of the coating of metal femoral head and the effect of layer number on the wear of polyethylene
acetabular liner is numerically studied by ANSYS software. Results showed that the multilayer
coating of metal femoral head will increase the wear resistance of the polyethylene component.
Kaynakça
- 1. Aihua L, Jianxin D, Haibing C, Yangyang C & Jun Z (2012). Friction and wear
properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. International
Journal of Refractory Metals and Hard Materials 31: 82–88
- 2. Bal B S, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman A A & Rahaman
M N (2008). Testing of silicon nitride ceramic bearings for total hip arthroplasty.
Journal of Biomedical Materials Research Part B: Applied Biomaterials 87(2):
447-454
- 3. Cui W, Qin G, Duan J & Wang H (2017). A graded nano-TiN coating on
biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility.
Materials Science and Engineering: C 71: 520-528
- 4. Davim J P (2013). Biomaterials and Medical Tribology. Woodhead Publishing,
UK
- 5. Fahrenholtz W G, Wuchina E J, Lee W E & Zhaou Y (2014). Ultra-High
Temperature Ceramics Materials for Extreme Environment Applications. John
Wiley & Sons, New Jersey
- 6. Gallegos-Cantú S, Hernandez-Rodriguez M A L, Garcia-Sanchez E, JuarezHernandez
A, Hernandez-Sandoval J & Cue-Sampedro R (2015). Tribological
study of TiN monolayer and TiN/CrN (multilayer and superlattice) onCo–Cr
alloy. Wear 330-331: 439–447
- 7. Gilewicz A, Chmielewska P, Murzynski D, Dobruchowska E & Warcholinski B
(2016). Corrosion resistance of CrN and CrCN/CrN coatings deposited using
cathodic arc evaporation in Ringer's and Hank's solutions. Surface and Coatings
Technology 299: 7-14
- 8. Good V, Widding K, Hunter G & Heuer D (2005). Oxidized zirconium: a
potentially longer lasting hip implant. Materials & Design 26 (7) : 618-622
- 9. Hesketh J, Meng Q, Dowson D & Neville A (2013). Biotribocorrosion of metalon-metal
hip replacements: How surface degradation can influence metal ion
formation. Tribology International 65: 128-137
- 10. Holleck H, Schier V (1995). Multilayer PVD coatings for wear protection. Surface
and Coatings Technology 76-77: 328-336
- 11. Holzwarth U & Cotogno G (2012). Total hip arthroplasty- State of the Art,
Challenges and Prospects, Publications Office of the European Union
- 12. Huang M D, Liu Y, Meng F Y, Tong L N & Li P (2013). Thick CrN/TiN
multilayers deposited by arc ion plating. Vacuum 89: 101-104
- 13. H¨ubler R, Cozza A, Marcondes T L, Souza R B & Fiori F F (2001). Wear and
corrosion protection of 316-L femoral implants by deposition of thin films.
Surface and Coatings Technology 142-144: 1078-1083
- 14. Khanna R, Kokubo T, Matsushita T, Nomura Y, Nose N, Oomori Y & Takadama
H (2015). Novel artificial hip joint: A layer of alumina on Ti–6Al–4V alloy
formed by micro-arc oxidation. Materials Science and Engineering: C, 55: 393-
400
15. Khanna R, Kokubo T, Matsushita T & Takadama H (2016). Fabrication of dense
α-alumina layer on Ti-6Al-4V alloy hybrid for bearing surfaces of artificial hip
joint. Materials Science and Engineering: C 69: 1229-1239
- 16. Li D.J., Liu F, Wang M X, Zhang J J & Liu Q X (2006). Structural and mechanical
properties of multilayered gradient CrN/ZrN coatings. Thin Solid Films 506– 507:
202 – 206
- 17. Lin Y T, Wu J S S & Chen J H (2016). The study of wear behaviours on abducted
hip joint prostheses by an alternate finite element approach. Computer methods
and programs in biomedicine 131: 143-155
- 18. Long M & Rack, H J (1998). Titanium alloys in total joint replacement—a
materials science perspective. Biomaterials 19 (18): 1621-1639
- 19. McEntire B J, Bal B S, Rahaman M N, Chevalier J & Pezzotti G (2015). Ceramics
and ceramic coatings in orthopaedics. Journal of the European Ceramic Society
35 (16): 4327-4369
- 20. Mckee GK & Ferrar J. W J (1996). Bone Jt. Surg, 48: 245
- 21. Mendizabal L., Lopez A., Bayón R., Herrero-Fernandez P., Javier Barriga J.,
Javier J. Gonzalez J.J. (2016). Tribocorrosion response in biological environments
of multilayer TaN films deposited by HPPMS. Surface and Coatings Technology
295: 60-69.
- 22. Ortega-Saenz J A, Alvarez-Vera M & Hernandez-Rodriguez M A L (2013).
Biotribological study of multilayer coated metal-on-metal hip prostheses in a hip
joint simulator. Wear 301(1) : 234-242
- 23. Okumiya M & Griepentrog M (1999). Mechanical properties and tribological
behavior of TiN–CrAlN and CrN–CrAlN multilayer coatings. Surface and
Coatings Technology 112: 123–128
- 24. Ou Y X , Lin J, Che H L, Moore J J, Sproul W D & Lei M K (2015). Mechanical
and tribological properties of CrN/TiN superlattice coatings deposited by a
combination of arc-free deep oscillation magnetron sputtering with pulsed dc
magnetron sputtering. Thin Solid Films 594:147–155
- 25. Ou Y X, Lin J, Tonga S, Sproul W D & Lei M K (2016). Structure, adhesion and
corrosion behavior of CrN/TiN superlattice coatings deposited by the combined
deep oscillation magnetron sputtering and pulsed dc magnetron sputtering.
Surface & Coatings Technology 293: 21–27
- 26. Pakhaliuk V, Polyakov A, Kalinin M & Kramar V (2015). Improving the Finite
Element Simulation of Wear of Total Hip Prosthesis’ Spherical Joint with the
Polymeric Component. Procedia Engineering 100: 539-548
- 27. Perumal G, Geetha M, Asokamani R &Alagumurthi N (2014). Wear studies on
plasma sprayed Al 2 O 3–40wt% 8YSZ composite ceramic coating on Ti–6Al–
4V alloy used for biomedical applications. Wear 311(1): 101-113
- 28. Rahaman M N, Yao A, Bal B S, Garino J P & Ries M D (2007). Ceramics for
prosthetic hip and knee joint replacement. Journal of the American Ceramic
Society 90(7): 1965-1988
- 29. Silva M, Heisel C & Schmalzried T P (2005). Metal-on-metal total hip
replacement. Clinical Orthopaedics and Related Research 430: 53-61
- 30. Taylor M & Prendergast P J (2015). Four decades of finite element analysis of
orthopaedic devices: where are we now and what are the opportunities?. Journal
of biomechanics 48(5): 767-778
- 31. Zameer S, & Haneef M (2015). Fatigue Life Estimation of Artificial Hip Joint
Model Using Finite Element Method. Materials Today: Proceedings 2(4-5):
2137-2145
- 32. Zhang J, Chen Z, Wang L, Li D & Jin Z A (2017). Patient-specific wear prediction
framework for an artificial knee joint with coupled musculoskeletal multibodydynamics
and finite element analysis. Tribology International 109: 382-389
- 33. Zhang Z G, Rapaud O, Allain N, Mercs D, Baraket M, Dong C & Coddet C
(2009). Microstructures and tribological properties of CrN/ZrN nanoscale
multilayer coatings. Applied Surface Science 255: 4020–4026