Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 9 Sayı: 2, 83 - 97, 31.12.2019

Öz

Kaynakça

  • [1] Hagen H (2001). Bezier-curves with curvature and torsion continuity. Rocky MountainJ. Math. 16(3): 629–638. doi:10.1216/RMJ-1986-16-3-629.
  • [2] Hacisalihoğlu H H (1994). Diferensiyel Geometri. Ínönü Üniversitesi Yayınları. Malatya.
  • [3] Incesu M & Gürsoy O (2017). LS(2)-Equivalence conditions of control points andapplication to planar Bezier curves. New Trends in Mathematical Sciences. 3(5):70-84.
  • [4] Kusak S H, Celik S & Kaya S (2015). The Bishop Frame of Bezier Curves. Life ScienceJournal. 12(6).
  • [5] Michael S (2003). Bezier curves and surfaces. Lecture 8, Floater Oslo.
  • [6] Zhang H & Jieqing F. (2006) Bézier Curves and Surfaces (2). State Key Lab of CAD&CGZhejiang University.
  • [7] Derivatives of a Bézier Curve https://pages.mtu.edu/126shene/COURSES/ cs3621/NOTES/spline/Bezier/bezier-der.html

On The Cubic Bezier Curves In E^3

Yıl 2019, Cilt: 9 Sayı: 2, 83 - 97, 31.12.2019

Öz

In this study we have examined, the cubic Bezier curve based on thecontrol points with matrix form in E^3 . Frenet vector fields and also curvatures of the cubic
Bezier curve are examined in matrix form in  E ^3. Also a simple way has been given to find the control points of any cubic Bezier curve.

Kaynakça

  • [1] Hagen H (2001). Bezier-curves with curvature and torsion continuity. Rocky MountainJ. Math. 16(3): 629–638. doi:10.1216/RMJ-1986-16-3-629.
  • [2] Hacisalihoğlu H H (1994). Diferensiyel Geometri. Ínönü Üniversitesi Yayınları. Malatya.
  • [3] Incesu M & Gürsoy O (2017). LS(2)-Equivalence conditions of control points andapplication to planar Bezier curves. New Trends in Mathematical Sciences. 3(5):70-84.
  • [4] Kusak S H, Celik S & Kaya S (2015). The Bishop Frame of Bezier Curves. Life ScienceJournal. 12(6).
  • [5] Michael S (2003). Bezier curves and surfaces. Lecture 8, Floater Oslo.
  • [6] Zhang H & Jieqing F. (2006) Bézier Curves and Surfaces (2). State Key Lab of CAD&CGZhejiang University.
  • [7] Derivatives of a Bézier Curve https://pages.mtu.edu/126shene/COURSES/ cs3621/NOTES/spline/Bezier/bezier-der.html
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Şeyda Kılıçoğlu 0000-0003-0252-1574

Süleyman Şenyurt Bu kişi benim 0000-0003-1097-5541

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 26 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kılıçoğlu, Ş., & Şenyurt, S. (2019). On The Cubic Bezier Curves In E^3. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 9(2), 83-97.