[1] Hagen H (2001). Bezier-curves with curvature and torsion continuity. Rocky MountainJ. Math. 16(3): 629–638. doi:10.1216/RMJ-1986-16-3-629.
[2] Hacisalihoğlu H H (1994). Diferensiyel Geometri. Ínönü Üniversitesi Yayınları. Malatya.
[3] Incesu M & Gürsoy O (2017). LS(2)-Equivalence conditions of control points andapplication to planar Bezier curves. New Trends in Mathematical Sciences. 3(5):70-84.
[4] Kusak S H, Celik S & Kaya S (2015). The Bishop Frame of Bezier Curves. Life ScienceJournal. 12(6).
[5] Michael S (2003). Bezier curves and surfaces. Lecture 8, Floater Oslo.
[6] Zhang H & Jieqing F. (2006) Bézier Curves and Surfaces (2). State Key Lab of CAD&CGZhejiang University.
[7] Derivatives of a Bézier Curve https://pages.mtu.edu/126shene/COURSES/ cs3621/NOTES/spline/Bezier/bezier-der.html
In this study we have examined, the cubic Bezier curve based on thecontrol points with matrix form in E^3 . Frenet vector fields and also curvatures of the cubic
Bezier curve are examined in matrix form in E ^3. Also a simple way has been given to find the control points of any cubic Bezier curve.
[1] Hagen H (2001). Bezier-curves with curvature and torsion continuity. Rocky MountainJ. Math. 16(3): 629–638. doi:10.1216/RMJ-1986-16-3-629.
[2] Hacisalihoğlu H H (1994). Diferensiyel Geometri. Ínönü Üniversitesi Yayınları. Malatya.
[3] Incesu M & Gürsoy O (2017). LS(2)-Equivalence conditions of control points andapplication to planar Bezier curves. New Trends in Mathematical Sciences. 3(5):70-84.
[4] Kusak S H, Celik S & Kaya S (2015). The Bishop Frame of Bezier Curves. Life ScienceJournal. 12(6).
[5] Michael S (2003). Bezier curves and surfaces. Lecture 8, Floater Oslo.
[6] Zhang H & Jieqing F. (2006) Bézier Curves and Surfaces (2). State Key Lab of CAD&CGZhejiang University.
[7] Derivatives of a Bézier Curve https://pages.mtu.edu/126shene/COURSES/ cs3621/NOTES/spline/Bezier/bezier-der.html