Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Halojenli Bisiklo[4.2.0] İnositollerin SARS-CoV-2 Proteinleri ile Moleküler Doking Çalışmaları

Yıl 2021, Cilt 11, Sayı 2, 99 - 112, 31.12.2021
https://doi.org/10.54370/ordubtd.1015314

Öz

Siklik sülfat, SARS-CoV-2'nin kenetlenmiş proteinlerinin bağlanma bölgelerine iyi uyum sağlayabilen öncü bileşiktir. Siklik Sülfat, SARS-CoV-2'nin 6lu7, 6zb5 ve 6vww proteinleri için sırasıyla -7.33, -7.29 ve -7.29 kcal mol-1 'lük bağlanma enerjileriyle çok güçlü moleküler etkileşimler gösterdi. Ayrıca asetat, SARS-CoV-2'nin 6lu7 proteini için -7.45 kcal mol-1 ile çok güçlü moleküler etkileşimler gösterdi. Bu nedenle sonuçlarımıza göre siklik sülfat ve asetat, COVID-19 tedavisi için umut verici bir ilaç adayı olarak araştırılmalıdır.

Kaynakça

  • Adam, W., & Balci, M. (1980). Cyclic polyepoxides: Synthetic, structural and biological aspects. Tetrahedron, 36(7), 833-858. https://doi.org/10.1016/0040-4020(80)80034-2
  • Aksu, A., Akincioglu, H., Gulcin, İ., & Kelebekli, L. (2021). Concise syntheses and some biological activities of DL‐2,5‐di‐O‐methyl‐chiro‐inositol, DL‐1,4‐di‐O‐methyl‐scyllo‐inositol, and DL‐1,6‐dibromo‐1,6‐dideoxy‐2,5‐di‐O‐methyl‐chiroinositol. Archiv der Pharmazie, 354, e2000254. https://doi.org/10.1002/ardp.202000254
  • Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., Smith, E. C., Case, J. B., Feng, J. Y., Jordan, R., Ray, A. S., Cihlar, T., Siegel, D., Mackman, R. L., Clarke, M. O., Baric, R. S., & Denison, M. R. (2018). Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio, 9(2), e00221-18. https://doi.org/10.1128/mBio.00221-18
  • Agrawal, U., Raju, R., & Udwadia, Z. F. (2020). Favipiravir: A new and emerging antiviral option in COVID-19. Medical Journal Armed Forces India, 76(4), 370–376. https://doi.org/10.1016/j.mjafi.2020.08.004
  • Allen, C. N. S., Arjona, S. P., Santerre, M., & Sawaya, B. E. (2020). Potential use of RNA-dependent RNA polymerase (RdRp) inhibitors against SARS-CoV2 infection. All Life, 13(1), 608–614. https://doi.org/10.1080/26895293.2020.1835741
  • Arouche, T. D. S., Martins, A. Y., Ramalho, T. C., Júnior, R. N. C., Costa, F. L. P., Filho, T. S. A., & Neto, A. M. J. C. (2021). Molecular Docking of Azithromycin, Ritonavir, Lopinavir, Oseltamivir, Ivermectin and Heparin Interacting with Coronavirus Disease 2019 Main and Severe Acute Respiratory Syndrome Coronavirus-2 3C-Like Proteases. Journal of Nanoscience and Nanotechnology, 21(4), 2075-2089. https://doi.org/10.1166/jnn.2021.19029
  • Bizzarri, M., Laganà, A. S., Aragona, D., & Unfer, V. (2020). Inositol and pulmonary function. Could myo-inositol treatment downregulate inflammation and cytokine release syndrome in SARS-CoV-2? European Review for Medical and Pharmacological Sciences, 24(6), 3426-3432.https://doi.org/10.26355/eurrev_202003_20715
  • Brown, A. J., Won, J. J., Graham, R. L., Dinnon, K. H., Sims, A. C., Feng, J. Y., Cihlar, T., Denison, M. R., Baric, R. S., & Sheahan, T. P. (2019). Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Research, 169, 104541. https://doi.org/10.1016/j.antiviral.2019.104541
  • de Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., Scott, D., Cihlar, T., & Feldmann, H. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection.Proceedings of the National Academy of Sciences, 117(12), 6771-6776. https://doi.org/10.1073/pnas.1922083117
  • de Wit, E., Rasmussen, A. L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D. L., Fischer, E. R., Martellaro, C., Okumura, A., Chang, J., Scott, D., Benecke, A. G., Katze, M. G., Feldmann, H., &Munster,V. J. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques.Proceedings of the National Academy of Sciences, 110(41), 16598-16603. https://doi.org/10.1073/pnas.1310744110
  • Espinola, M. S. B., Bertelli, M., Bizzarri, M., Unfer, V., Laganà, A. S., Visconti, B., & Aragona, C. (2021). Inositol and vitamin D may naturally protect human reproduction and women undergoing assisted reproduction from Covid-19 risk. Journal of Reproductive Immunology, 144, 103271. https://doi.org/10.1016/j.jri.2021.103271
  • Food, U., & Administration, D. (2020). Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Veklury® (remdesivir). https://www.fda.gov/media/137566/download Furuta, Y., Takahashi, K., Fukuda, Y., Kuno, M., Kamiyama, T., Kozaki, K., Nomura, N., Egawa, H., Minami, S., Watanabe, Y., Narita, H., & Shiraki, K. (2002). In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrobial Agents and Chemotherapy, 46(4), 977–981. https://doi.org/10.1128/AAC.46.4.977-981.2002
  • Kamenov, Z., & Gateva, A. (2020). Inositols in PCOS. Molecules, 25(23), 5566. https://doi.org/10.3390/molecules25235566
  • Karanfil, A., Şahin, E., & Kelebekli, L. (2020). Synthesis of novel tetrols from syn-bisepoxide: Preparation of halogenated bicyclo[4.2.0] inositols. Tetrahedron, 76(11), 131000. https://doi.org/10.1016/j.tet.2020.131000
  • Kelebekli, L., Kara, Y., & Balci, M. (2005). Stereospecific synthesis of a new class of compounds: bis-homoconduritol-A, -D, and-F. Carbohydrate Research, 340(12), 1940-1948. https://doi.org/10.1016/j.carres.2005.05.021
  • Kelebekli, L., & Kaplan, D. (2017). Stereospecific synthesis of novel methyl-substituted mono- and dimethoxy Conduritols. Tetrahedron, 73, 8-13. http://dx.doi.org/10.1016/j.tet.2016.11.042
  • Kelebekli, L., & Atlı, İ. (2019). Stereoselective synthesis of a new methyl-substituted inositol Derivative, Tetrahedron, 75, 130531. https://doi.org/10.1016/j.tet.2019.130531
  • Lagana, A. S., Unfer, V., Garzon, S., & Mariano Bizzarri, M. (2020). Role of inositol to improve surfactant functions and reduce IL-6 levels: A potential adjuvant strategy for SARS-CoV-2 pneumonia? Medical Hypotheses, 144, 110262. https://doi.org/10.1016/j.mehy.2020.110262
  • López, M. D., Cobo, J., & Nogueras, M. (2008). Building Bicyclic Polyhydroxylated Alkaloids: An Overview from 1995 to the Present. Current Organic Chemistry, 12(9), 718-750. https://doi.org/10.2174/138527208784567197
  • Goodsell D. S, Morris G. M, Olson A. J. (1996). Automated docking of flexible ligands: applications of AutoDock. J. Mol. Recognit, 9(1), 1-5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • Rafi, M. O., Bhattacharje, G., Al-Khafaji, K., Taskin-Tok, T., Alfasane, M. A., Das, A. K., Parvez, M. A. K., & Rahman, M. S. (2020). Combination of QSAR, molecular docking, molecular dynamic simulation and MM-PBSA: analogues of lopinavir and favipiravir as potential drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 30, 1-20. https://doi.org/10.1080/07391102.2020.1850355
  • Rubin, D., Chan-Tack, K., Farley, J., & Sherwat, A. (2020). FDA Approval of Remdesivir — A Step in the Right Direction. New England Journal of Medicine, 383, 2598–2600. https://doi.org/10.1056/NEJMp2032369
  • Sheahan, T. P., Sims, A. C., Graham, R. L., Menachery, V. D., Gralinski, L. E., Case, J. B., Leist, S. R., Pyrc, K., Feng, J. Y., Trantcheva, I., Bannister, R., Park, Y., Babusis, D., Clarke, M. O., Mackman, R.L., Spahn, J. E., Palmiotti, C. A., Siegel, D., Ray, A. S., & Baric, R.S. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 9(396), eaal3653. https://doi.org/10.1126/scitranslmed.aal3653
  • Sun, Y., Zhang, G., Hawkes, C. A., Shaw, J. E., McLaurin, J. A., & Nitz, M. (2008). Synthesis of scyllo- inositol derivatives and their effects on amyloid beta peptide aggregation. Bioorganic & Medicinal Chemistry, 16(15), 7177-7184. https://doi.org/10.1016/j.bmc.2008.06.045
  • Şahin, E. N., Karanfil, A., Ayvaz, M. Ç., Şahin, E., & Kelebekli, L. (2022). Structural analysis of halogenated bicyclo[4.2.0] inositols, biological activities and molecular docking studies. Journal of Molecular Structure, 1248, 131357. https://doi.org/10.1016/J.MOLSTRUC.2021.131357
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30, 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, N., Hang, L-H., & Ye, X-S. (2010). A new synthetic access to bicyclic polyhydroxylated alkaloid analogues from pyranosides. Organic & Biomolecular Chemistry, 11(8), 2639-2649. https://doi.org/10.1039/B923180C
  • Wu, R., Wang, L., Kuo, H-C. D., Shannar, A., Peter, R., Chou, P. J., Li, S., Hudlikar, R., Liu, X., Liu, Z., Poiani, G. J., Amorosa, L., Brunetti, L., & Kong, A-N. (2020). An Update on Current Therapeutic Drugs Treating COVID-19. Current Pharmacology Reports, 6, 56-70. https://doi.org/10.1007/s40495-020-00216-7
  • Zanardi, F., Battistini, L., Marzocchi, L., Acquotti, D., Rassu, G., Pinna, L., Auzzas, L., Zambrano, V., & Casiraghi, G. (2002). Synthesis of a Small Repertoire of Non-Racemic 5a-Carbahexopyranoses and 1-Thio-5a-carbahexopyranoses. European Journal of Organic Chemistry, 2002(12), 1956-1964. https://doi.org/10.1002/1099-0690(200206)2002:12<1956::AID-EJOC1956>3.0.CO;2-Y

Molecular Docking Studies of Halogenated Bicyclo[4.2.0] Inositols with SARS-CoV-2 Proteins

Yıl 2021, Cilt 11, Sayı 2, 99 - 112, 31.12.2021
https://doi.org/10.54370/ordubtd.1015314

Öz

Cyclic sulfate is the precursor compound that can adapt well to the binding sites of the docked proteins of SARS-CoV-2. Cyclic sulfate showed very strong molecular interactions for the 6lu7, 6zb5, and 6vww proteins of SARS-CoV-2, with binding energies of -7.33, -7.29, and -7.29 kcal mol-1, respectively. Besides, acetate showed very strong molecular interactions with -7.45 kcal mol-1 for the 6lu7 protein of SARS-CoV-2. Therefore, according to our results, cyclic sulfate and acetate should be investigated as promising drug candidates for the treatment of COVID-19.

Kaynakça

  • Adam, W., & Balci, M. (1980). Cyclic polyepoxides: Synthetic, structural and biological aspects. Tetrahedron, 36(7), 833-858. https://doi.org/10.1016/0040-4020(80)80034-2
  • Aksu, A., Akincioglu, H., Gulcin, İ., & Kelebekli, L. (2021). Concise syntheses and some biological activities of DL‐2,5‐di‐O‐methyl‐chiro‐inositol, DL‐1,4‐di‐O‐methyl‐scyllo‐inositol, and DL‐1,6‐dibromo‐1,6‐dideoxy‐2,5‐di‐O‐methyl‐chiroinositol. Archiv der Pharmazie, 354, e2000254. https://doi.org/10.1002/ardp.202000254
  • Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., Smith, E. C., Case, J. B., Feng, J. Y., Jordan, R., Ray, A. S., Cihlar, T., Siegel, D., Mackman, R. L., Clarke, M. O., Baric, R. S., & Denison, M. R. (2018). Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio, 9(2), e00221-18. https://doi.org/10.1128/mBio.00221-18
  • Agrawal, U., Raju, R., & Udwadia, Z. F. (2020). Favipiravir: A new and emerging antiviral option in COVID-19. Medical Journal Armed Forces India, 76(4), 370–376. https://doi.org/10.1016/j.mjafi.2020.08.004
  • Allen, C. N. S., Arjona, S. P., Santerre, M., & Sawaya, B. E. (2020). Potential use of RNA-dependent RNA polymerase (RdRp) inhibitors against SARS-CoV2 infection. All Life, 13(1), 608–614. https://doi.org/10.1080/26895293.2020.1835741
  • Arouche, T. D. S., Martins, A. Y., Ramalho, T. C., Júnior, R. N. C., Costa, F. L. P., Filho, T. S. A., & Neto, A. M. J. C. (2021). Molecular Docking of Azithromycin, Ritonavir, Lopinavir, Oseltamivir, Ivermectin and Heparin Interacting with Coronavirus Disease 2019 Main and Severe Acute Respiratory Syndrome Coronavirus-2 3C-Like Proteases. Journal of Nanoscience and Nanotechnology, 21(4), 2075-2089. https://doi.org/10.1166/jnn.2021.19029
  • Bizzarri, M., Laganà, A. S., Aragona, D., & Unfer, V. (2020). Inositol and pulmonary function. Could myo-inositol treatment downregulate inflammation and cytokine release syndrome in SARS-CoV-2? European Review for Medical and Pharmacological Sciences, 24(6), 3426-3432.https://doi.org/10.26355/eurrev_202003_20715
  • Brown, A. J., Won, J. J., Graham, R. L., Dinnon, K. H., Sims, A. C., Feng, J. Y., Cihlar, T., Denison, M. R., Baric, R. S., & Sheahan, T. P. (2019). Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Research, 169, 104541. https://doi.org/10.1016/j.antiviral.2019.104541
  • de Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., Scott, D., Cihlar, T., & Feldmann, H. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection.Proceedings of the National Academy of Sciences, 117(12), 6771-6776. https://doi.org/10.1073/pnas.1922083117
  • de Wit, E., Rasmussen, A. L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D. L., Fischer, E. R., Martellaro, C., Okumura, A., Chang, J., Scott, D., Benecke, A. G., Katze, M. G., Feldmann, H., &Munster,V. J. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques.Proceedings of the National Academy of Sciences, 110(41), 16598-16603. https://doi.org/10.1073/pnas.1310744110
  • Espinola, M. S. B., Bertelli, M., Bizzarri, M., Unfer, V., Laganà, A. S., Visconti, B., & Aragona, C. (2021). Inositol and vitamin D may naturally protect human reproduction and women undergoing assisted reproduction from Covid-19 risk. Journal of Reproductive Immunology, 144, 103271. https://doi.org/10.1016/j.jri.2021.103271
  • Food, U., & Administration, D. (2020). Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Veklury® (remdesivir). https://www.fda.gov/media/137566/download Furuta, Y., Takahashi, K., Fukuda, Y., Kuno, M., Kamiyama, T., Kozaki, K., Nomura, N., Egawa, H., Minami, S., Watanabe, Y., Narita, H., & Shiraki, K. (2002). In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrobial Agents and Chemotherapy, 46(4), 977–981. https://doi.org/10.1128/AAC.46.4.977-981.2002
  • Kamenov, Z., & Gateva, A. (2020). Inositols in PCOS. Molecules, 25(23), 5566. https://doi.org/10.3390/molecules25235566
  • Karanfil, A., Şahin, E., & Kelebekli, L. (2020). Synthesis of novel tetrols from syn-bisepoxide: Preparation of halogenated bicyclo[4.2.0] inositols. Tetrahedron, 76(11), 131000. https://doi.org/10.1016/j.tet.2020.131000
  • Kelebekli, L., Kara, Y., & Balci, M. (2005). Stereospecific synthesis of a new class of compounds: bis-homoconduritol-A, -D, and-F. Carbohydrate Research, 340(12), 1940-1948. https://doi.org/10.1016/j.carres.2005.05.021
  • Kelebekli, L., & Kaplan, D. (2017). Stereospecific synthesis of novel methyl-substituted mono- and dimethoxy Conduritols. Tetrahedron, 73, 8-13. http://dx.doi.org/10.1016/j.tet.2016.11.042
  • Kelebekli, L., & Atlı, İ. (2019). Stereoselective synthesis of a new methyl-substituted inositol Derivative, Tetrahedron, 75, 130531. https://doi.org/10.1016/j.tet.2019.130531
  • Lagana, A. S., Unfer, V., Garzon, S., & Mariano Bizzarri, M. (2020). Role of inositol to improve surfactant functions and reduce IL-6 levels: A potential adjuvant strategy for SARS-CoV-2 pneumonia? Medical Hypotheses, 144, 110262. https://doi.org/10.1016/j.mehy.2020.110262
  • López, M. D., Cobo, J., & Nogueras, M. (2008). Building Bicyclic Polyhydroxylated Alkaloids: An Overview from 1995 to the Present. Current Organic Chemistry, 12(9), 718-750. https://doi.org/10.2174/138527208784567197
  • Goodsell D. S, Morris G. M, Olson A. J. (1996). Automated docking of flexible ligands: applications of AutoDock. J. Mol. Recognit, 9(1), 1-5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • Rafi, M. O., Bhattacharje, G., Al-Khafaji, K., Taskin-Tok, T., Alfasane, M. A., Das, A. K., Parvez, M. A. K., & Rahman, M. S. (2020). Combination of QSAR, molecular docking, molecular dynamic simulation and MM-PBSA: analogues of lopinavir and favipiravir as potential drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 30, 1-20. https://doi.org/10.1080/07391102.2020.1850355
  • Rubin, D., Chan-Tack, K., Farley, J., & Sherwat, A. (2020). FDA Approval of Remdesivir — A Step in the Right Direction. New England Journal of Medicine, 383, 2598–2600. https://doi.org/10.1056/NEJMp2032369
  • Sheahan, T. P., Sims, A. C., Graham, R. L., Menachery, V. D., Gralinski, L. E., Case, J. B., Leist, S. R., Pyrc, K., Feng, J. Y., Trantcheva, I., Bannister, R., Park, Y., Babusis, D., Clarke, M. O., Mackman, R.L., Spahn, J. E., Palmiotti, C. A., Siegel, D., Ray, A. S., & Baric, R.S. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 9(396), eaal3653. https://doi.org/10.1126/scitranslmed.aal3653
  • Sun, Y., Zhang, G., Hawkes, C. A., Shaw, J. E., McLaurin, J. A., & Nitz, M. (2008). Synthesis of scyllo- inositol derivatives and their effects on amyloid beta peptide aggregation. Bioorganic & Medicinal Chemistry, 16(15), 7177-7184. https://doi.org/10.1016/j.bmc.2008.06.045
  • Şahin, E. N., Karanfil, A., Ayvaz, M. Ç., Şahin, E., & Kelebekli, L. (2022). Structural analysis of halogenated bicyclo[4.2.0] inositols, biological activities and molecular docking studies. Journal of Molecular Structure, 1248, 131357. https://doi.org/10.1016/J.MOLSTRUC.2021.131357
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30, 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, N., Hang, L-H., & Ye, X-S. (2010). A new synthetic access to bicyclic polyhydroxylated alkaloid analogues from pyranosides. Organic & Biomolecular Chemistry, 11(8), 2639-2649. https://doi.org/10.1039/B923180C
  • Wu, R., Wang, L., Kuo, H-C. D., Shannar, A., Peter, R., Chou, P. J., Li, S., Hudlikar, R., Liu, X., Liu, Z., Poiani, G. J., Amorosa, L., Brunetti, L., & Kong, A-N. (2020). An Update on Current Therapeutic Drugs Treating COVID-19. Current Pharmacology Reports, 6, 56-70. https://doi.org/10.1007/s40495-020-00216-7
  • Zanardi, F., Battistini, L., Marzocchi, L., Acquotti, D., Rassu, G., Pinna, L., Auzzas, L., Zambrano, V., & Casiraghi, G. (2002). Synthesis of a Small Repertoire of Non-Racemic 5a-Carbahexopyranoses and 1-Thio-5a-carbahexopyranoses. European Journal of Organic Chemistry, 2002(12), 1956-1964. https://doi.org/10.1002/1099-0690(200206)2002:12<1956::AID-EJOC1956>3.0.CO;2-Y

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Bilimler
Bölüm Araştırma Makaleleri
Yazarlar

Ebrar Nur ŞAHİN
ATATURK UNIVERSITY
0000-0002-1222-1500
Türkiye


Abdullah KARANFİL
ORDU UNIVERSITY
0000-0003-2948-4216
Türkiye


Ertan ŞAHİN
ATATURK UNIVERSITY
0000-0002-6311-8917
Türkiye


Latif KELEBEKLİ (Sorumlu Yazar)
ORDU UNIVERSITY
0000-0002-6242-2589
Türkiye

Destekleyen Kurum Ordu Üniversitesi. Atatürk Üniversitesi
Proje Numarası (ODU/BAP, Grant No: AR-1659) , (BAP, Project No. 2013/77)
Teşekkür The authors are indebted to Ordu University Scientific Research Projects Coordination Unit (ODU/BAP, Grant No: AR-1659) and Ataturk University Scientific Research Projects Coordination Unit (BAP, Project No. 2013/77) for financial support of this work.
Yayımlanma Tarihi 31 Aralık 2021
Yayınlandığı Sayı Yıl 2021, Cilt 11, Sayı 2

Kaynak Göster

APA Şahin, E. N. , Karanfil, A. , Şahin, E. & Kelebekli, L. (2021). Molecular Docking Studies of Halogenated Bicyclo[4.2.0] Inositols with SARS-CoV-2 Proteins . Ordu Üniversitesi Bilim ve Teknoloji Dergisi , 11 (2) , 99-112 . DOI: 10.54370/ordubtd.1015314