Araştırma Makalesi
BibTex RIS Kaynak Göster

Al7075-Al2O3 Kompozitlerin Toz Metalürjisi ve Sıcak Preslemeyle Üretimi ve Mekanik Özelliklerinin Araştırılması

Yıl 2024, Cilt: 14 Sayı: 2, 307 - 320, 31.12.2024
https://doi.org/10.54370/ordubtd.1441367

Öz

Bu çalışmada, ağırlıkça farklı oranlarda (%1, 3, 6, 9, 12, 15) alümina (Al2O3) içeren Al7075 alüminyum matrisli kompozitlerin üretimi ve karakterizasyonu gerçekleştirilmiştir. Toz metalürjisi ve indüksiyonla sıcak presleme yöntemleriyle üretilen numunelerin mikroyapısı, yoğunluğu, gözeneklilik oranı, sertliği ve basma dayanımı incelenmiştir. Çalışma sonucunda artan alümina takviyesinin belli bir orana kadar (ağırlıkça %12) kompozitin mekanik özelliklerini arttırdığı görülmüştür. En yüksek yoğunluğa (2.7 g cm-3), sertliğe (170±2 HV), basma dayanımına (471±6 MPa) ve en düşük gözeneklilik oranına (%8.2) Al7075-%12Al2O3 kompozitte erişilmiştir. Ancak ağırlıkça %15 alümina takviye oranında alümina partiküllerinin topaklanmasından kaynaklı olarak mekanik özeliklerde düşüş görülmüştür.

Etik Beyan

Bu makalenin yayınlanmasıyla ilgili herhangi bir etik sorun bulunmamaktadır.

Teşekkür

Bu çalışma, Mahmut Can Şenel danışmanlığında Elif Işık tarafından tamamlanan "Al7075-Al2O3-Grafen ve Al7075-ZrO2-Grafen Hibrit Kompozitlerin Mekanik, Tribolojik Özelliklerinin ve Mikroyapısının İncelenmesi" başlıklı yüksek lisans tezinden üretilmiştir (Tez No. 811583)

Kaynakça

  • Aghajani, S., Pouyafar, V., Meshkabadi, R., Volinsky, A. A. ve Bolouri, A. (2023). Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing. International Journal of Advanced Manufacturing Technology, 125(5–6), 2569–2580. https://doi.org/10.1007/s00170-023-10881-9
  • Al-Salihi, H. A. ve Judran, H. K. (2020). Effect of Al2O3 reinforcement nanoparticles on the tribological behaviour and mechanical properties of Al6061 alloy. Materials Science, 7(4), 486–498. https://doi.org/10.3934/matersci.2020.4.486
  • Bai, S., Perevoshchikova, N., Sha, Y. ve Wu, X. (2019). The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the archimedes method. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030583
  • Bharath, V., Auradi, V. ve Nagaral, M. (2021). Fractographic characterization of Al2O3p particulates reinforced Al2014 alloy composites subjected to tensile loading. Frattura Ed Integrita Strutturale, 15(57), 14–23. https://doi.org/10.3221/IGF-ESIS.57.02
  • Callister, W. D. ve Rethwisch, D. G. (2018). Materials Science and Engineering (10th ed.). Wiley.
  • Chen, W., Yang, T., Dong, L., Elmasry, A., Song, J., Deng, N., Elmarakbi, A., Liu, T., Lv, H. B. ve Fu, Y. Q. (2020). Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications. Nanotechnology and Precision Engineering, 3(4), 189–210. https://doi.org/10.1016/j.npe.2020.12.003
  • Devaganesh, S., Kumar, P. K. D., Venkatesh, N. ve Balaji, R. (2020). Study on the mechanical and tribological performances of hybrid SiC-Al7075 metal matrix composites. Journal of Materials Research and Technology, 9(3), 3759–3766. https://doi.org/10.1016/j.jmrt.2020.02.002
  • Dressler, U., Biallas, G. ve Alfaro Mercado, U. (2009). Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Materials Science and Engineering: A, 526(1–2), 113–117. https://doi.org/10.1016/j.msea.2009.07.006
  • Fomin, A., Fomina, M., Koshuro, V. ve Rodionov, I. (2019). Composite metal oxide coatings on chromium-nickel stainless steel produced by induction heat treatment. Composite Structures, 229. https://doi.org/10.1016/j.compstruct.2019.111451
  • Hallem, A. H., Jasim, T. A. ve Radhi, N. S. (2018). Effect of alumina reinforcement on some mechanical properties of aluminum matrix composites produced by stir casting process. International Journal of Civil Engineering and Technology (IJCIET), 9(10), 1271–1280. http://www.iaeme.com/IJCIET/index.asp1271http://www.iaeme.com/ijciet/issues.asp? JType=IJCIET&VType=9&IType=10http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=9&IType=10
  • Heimann, R. B. (2010). Classic and Advanced Ceramics: From Fundamentals to Applications (1st edition). Wiley.
  • Li, S. S., Yue, X., Li, Q. Y., Peng, H. L., Dong, B. X., Liu, T. S., Yang, H. Y., Fan, J., Shu, S. L., Qiu, F. ve Jiang, Q. C. (2023). Development and applications of aluminum alloys for aerospace industry. In Journal of Materials Research and Technology (Vol. 27, pp. 944–983). Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2023.09.274
  • Liu, J., Cao, G., Zhu, X., Zhao, K. ve An, L. (2020). Optimization of the microstructure and mechanical properties of heterogeneous Al-Al2O3 nanocomposites. Materials Today Communications, 25. https://doi.org/10.1016/j.mtcomm.2020.101199
  • Luo, K., Liu, S., Xiong, H., Zhang, Y., Kong, C. ve Yu, H. (2022). Mechanical properties and strengthening mechanism of aluminum matrix composites reinforced by high-entropy alloy particles. Metals and Materials International, 28(11), 2811–2821. https://doi.org/10.1007/s12540-021-01159-4
  • Mandal, K. K., Kuar, A. S. ve Mitra, S. (2018). Experimental investigation on laser micro-machining of Al7075 alloy. Optics and Laser Technology, 107, 260–267. https://doi.org/10.1016/j.optlastec.2018.05.017
  • Matori, K. A., Wah, L. C., Hashim, M., Ismail, I. ve Mohd Zaid, M. H. (2012). Phase transformations of α-alumina made from waste aluminum via a precipitation technique. International Journal of Molecular Sciences, 13(12), 16812–16821. https://doi.org/10.3390/ijms131216812
  • Menachery, N., Thomas, S., Deepanraj, B. ve Senthilkumar, N. (2023). Processing of nanoreinforced aluminium hybrid metal matrix composites and the effect of post-heat treatment: a review. In Applied Nanoscience (Switzerland) (Vol. 13, Issue 6, pp. 4075–4099). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13204-022-02704-2
  • Mohan, E., Anbuchezhiyan, G., Pugazhenthi, R. ve Prakash, F. P. (2023). Wear behavior of brass based composite reinforced with SiC and produced by stir casting process. Materials Research, 26. https://doi.org/10.1590/1980-5373-MR-2022-0196
  • Muraliraja, R., Arunachalam, R., Al-Fori, I., Al-Maharbi, M. ve Piya, S. (2018). Development of alumina reinforced aluminum metal matrix composite with enhanced compressive strength through squeeze casting process. Journal of Materials: Design and Applications, 233(3), 1-8. https://doi.org/10.1177/1464420718809516
  • Pragathi, P. ve Elansezhian, R. (2023). Mechanical and microstructure behaviour of aluminum nanocomposite fabricated by squeeze casting and ultrasonic aided squeeze casting: A comparative study. Journal of Alloys and Compounds, 956. https://doi.org/10.1016/j.jallcom.2023.170203
  • Reza Akbarpour, M., Gazani, F., Mousa Mirabad, H., Khezri, I., Moeini, A., Sohrabi, N. ve Seop Kim, H. (2023). Recent advances in processing, and mechanical, thermal and electrical properties of Cu-SiC metal matrix composites prepared by powder metallurgy. Progress in Materials Science, 101191. https://doi.org/10.1016/j.pmatsci.2023.101191
  • Sheraf, J. ve Darius Gnanaraj, S. (2023). Synthesis of functionally graded aluminium metal matrix composites-a mini review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.07.251
  • Sidhu, M. S., Bishop, C. M. ve Kral, M. V. (2014). Formation of aluminium carbide by cast iron and liquid aluminium interaction. International Journal of Cast Metals Research, 27(6), 321–328. https://doi.org/10.1179/1743133614Y.0000000110
  • Srivastava, A. K., Sharma, B., Saju, B. R., Shukla, A., Saxena, A. ve Maurya, N. K. (2020). Effect of Graphene nanoparticles on microstructural and mechanical properties of aluminum based nanocomposites fabricated by stir casting. World Journal of Engineering, 17(6), 859–866. https://doi.org/10.1108/WJE-04-2020-0128
  • Şenel, M. C. ve Demir, M. (2023). Effect of induction heat treatment process and graphene/B4C amount on the tribological and mechanical properties of Al6061 hybrid composites. JOM, 75(7), 2554–2568. https://doi.org/10.1007/s11837-023-05790-x
  • Şenel, M. C. ve Üstün, M. (2023). Effect of silicon dioxide-graphene content on the microstructure, sliding wear behavior, and compressive strength of aluminum hybrid composites. Journal of Materials Engineering and Performance, 32(3), 1248–1260. https://doi.org/10.1007/s11665-022-07194-5
  • Şenel, M. C., Taşkın, A., Demir, M. ve Gürbüz, M. (2024). İndüksiyonla sıcak işlemin Si3N4 ve grafen takviyeli Al6061 matrisli kompozitlerin mekanik ve tribolojik özelliklerine olan etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 39, 1567-1581. https://doi.org/10.17341/gazimmfd.1226420
  • Taşkin, A. ve Şenel, M. C. (2024). Tribological properties and microstructures of tungsten carbide and few-layer graphene-reinforced aluminum-based composites. Transactions of the Indian Institute of Metals, 77, 445-456. https://doi.org/10.1007/s12666-023-03114-w
  • Wang, S., Zheng, Z., Long, J., Wang, J., Zheng, K., Ke, Z., Luo, Z., Pokrovsky, A. I. ve Khina, B. B. (2024). Recent advances in wear-resistant steel matrix composites: A review of reinforcement particle selection and preparation processes. Journal of Materials Research and Technology, 29, 1779–1797. https://doi.org/10.1016/j.jmrt.2024.01.195
  • Xu, H., Fu, T., Wang, P., Zhou, Y., Guo, W., Su, F., Li, G., Xing, Z. ve Ma, G. (2023). Microstructure and properties of plasma sprayed copper-matrix composite coatings with Ti3SiC2 addition. Surface and Coatings Technology, 460. https://doi.org/10.1016/j.surfcoat.2023.129434
  • Yang, X., Zhang, Y., Huang, J., Liu, J., Chen, J. ve Li, T. (2024). Interfacial microstructure evolution and mechanical properties of carbon fiber reinforced Al-matrix composites fabricated by a pressureless infiltration process. Materials Science and Engineering: A, 891. https://doi.org/10.1016/j.msea.2023.145968

Investigation of the Mechanical Properties and Fabrication of Al7075-Al2O3 Composites by Powder Metallurgy and Hot Pressing

Yıl 2024, Cilt: 14 Sayı: 2, 307 - 320, 31.12.2024
https://doi.org/10.54370/ordubtd.1441367

Öz

In this work, the fabrication and characterization of Al7075 aluminum matrix composites with different weight ratios (1, 3, 6, 9, 12, 15wt.%) of alumina (Al2O3) contents were carried out. The microstructure, density, porosity rate, hardness, and compressive strength of the samples were examined which were fabricated via the powder metallurgy and induction hot pressing methods. As a result of the study, it was seen that an increase in alumina reinforcement positively affected the microstructure and mechanical properties of the composite up to a certain rate (12% by weight). The highest density (2.7 g cm-3), hardness (170±2 HV), compressive strength (471±6 MPa), and lowest porosity rate (8.2%) were achieved in the Al7075-12%Al2O3 composite. However, a decrease in mechanical properties was observed at 15wt.% alumina reinforcement due to the agglomeration of alumina particles.

Kaynakça

  • Aghajani, S., Pouyafar, V., Meshkabadi, R., Volinsky, A. A. ve Bolouri, A. (2023). Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing. International Journal of Advanced Manufacturing Technology, 125(5–6), 2569–2580. https://doi.org/10.1007/s00170-023-10881-9
  • Al-Salihi, H. A. ve Judran, H. K. (2020). Effect of Al2O3 reinforcement nanoparticles on the tribological behaviour and mechanical properties of Al6061 alloy. Materials Science, 7(4), 486–498. https://doi.org/10.3934/matersci.2020.4.486
  • Bai, S., Perevoshchikova, N., Sha, Y. ve Wu, X. (2019). The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the archimedes method. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030583
  • Bharath, V., Auradi, V. ve Nagaral, M. (2021). Fractographic characterization of Al2O3p particulates reinforced Al2014 alloy composites subjected to tensile loading. Frattura Ed Integrita Strutturale, 15(57), 14–23. https://doi.org/10.3221/IGF-ESIS.57.02
  • Callister, W. D. ve Rethwisch, D. G. (2018). Materials Science and Engineering (10th ed.). Wiley.
  • Chen, W., Yang, T., Dong, L., Elmasry, A., Song, J., Deng, N., Elmarakbi, A., Liu, T., Lv, H. B. ve Fu, Y. Q. (2020). Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications. Nanotechnology and Precision Engineering, 3(4), 189–210. https://doi.org/10.1016/j.npe.2020.12.003
  • Devaganesh, S., Kumar, P. K. D., Venkatesh, N. ve Balaji, R. (2020). Study on the mechanical and tribological performances of hybrid SiC-Al7075 metal matrix composites. Journal of Materials Research and Technology, 9(3), 3759–3766. https://doi.org/10.1016/j.jmrt.2020.02.002
  • Dressler, U., Biallas, G. ve Alfaro Mercado, U. (2009). Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Materials Science and Engineering: A, 526(1–2), 113–117. https://doi.org/10.1016/j.msea.2009.07.006
  • Fomin, A., Fomina, M., Koshuro, V. ve Rodionov, I. (2019). Composite metal oxide coatings on chromium-nickel stainless steel produced by induction heat treatment. Composite Structures, 229. https://doi.org/10.1016/j.compstruct.2019.111451
  • Hallem, A. H., Jasim, T. A. ve Radhi, N. S. (2018). Effect of alumina reinforcement on some mechanical properties of aluminum matrix composites produced by stir casting process. International Journal of Civil Engineering and Technology (IJCIET), 9(10), 1271–1280. http://www.iaeme.com/IJCIET/index.asp1271http://www.iaeme.com/ijciet/issues.asp? JType=IJCIET&VType=9&IType=10http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=9&IType=10
  • Heimann, R. B. (2010). Classic and Advanced Ceramics: From Fundamentals to Applications (1st edition). Wiley.
  • Li, S. S., Yue, X., Li, Q. Y., Peng, H. L., Dong, B. X., Liu, T. S., Yang, H. Y., Fan, J., Shu, S. L., Qiu, F. ve Jiang, Q. C. (2023). Development and applications of aluminum alloys for aerospace industry. In Journal of Materials Research and Technology (Vol. 27, pp. 944–983). Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2023.09.274
  • Liu, J., Cao, G., Zhu, X., Zhao, K. ve An, L. (2020). Optimization of the microstructure and mechanical properties of heterogeneous Al-Al2O3 nanocomposites. Materials Today Communications, 25. https://doi.org/10.1016/j.mtcomm.2020.101199
  • Luo, K., Liu, S., Xiong, H., Zhang, Y., Kong, C. ve Yu, H. (2022). Mechanical properties and strengthening mechanism of aluminum matrix composites reinforced by high-entropy alloy particles. Metals and Materials International, 28(11), 2811–2821. https://doi.org/10.1007/s12540-021-01159-4
  • Mandal, K. K., Kuar, A. S. ve Mitra, S. (2018). Experimental investigation on laser micro-machining of Al7075 alloy. Optics and Laser Technology, 107, 260–267. https://doi.org/10.1016/j.optlastec.2018.05.017
  • Matori, K. A., Wah, L. C., Hashim, M., Ismail, I. ve Mohd Zaid, M. H. (2012). Phase transformations of α-alumina made from waste aluminum via a precipitation technique. International Journal of Molecular Sciences, 13(12), 16812–16821. https://doi.org/10.3390/ijms131216812
  • Menachery, N., Thomas, S., Deepanraj, B. ve Senthilkumar, N. (2023). Processing of nanoreinforced aluminium hybrid metal matrix composites and the effect of post-heat treatment: a review. In Applied Nanoscience (Switzerland) (Vol. 13, Issue 6, pp. 4075–4099). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13204-022-02704-2
  • Mohan, E., Anbuchezhiyan, G., Pugazhenthi, R. ve Prakash, F. P. (2023). Wear behavior of brass based composite reinforced with SiC and produced by stir casting process. Materials Research, 26. https://doi.org/10.1590/1980-5373-MR-2022-0196
  • Muraliraja, R., Arunachalam, R., Al-Fori, I., Al-Maharbi, M. ve Piya, S. (2018). Development of alumina reinforced aluminum metal matrix composite with enhanced compressive strength through squeeze casting process. Journal of Materials: Design and Applications, 233(3), 1-8. https://doi.org/10.1177/1464420718809516
  • Pragathi, P. ve Elansezhian, R. (2023). Mechanical and microstructure behaviour of aluminum nanocomposite fabricated by squeeze casting and ultrasonic aided squeeze casting: A comparative study. Journal of Alloys and Compounds, 956. https://doi.org/10.1016/j.jallcom.2023.170203
  • Reza Akbarpour, M., Gazani, F., Mousa Mirabad, H., Khezri, I., Moeini, A., Sohrabi, N. ve Seop Kim, H. (2023). Recent advances in processing, and mechanical, thermal and electrical properties of Cu-SiC metal matrix composites prepared by powder metallurgy. Progress in Materials Science, 101191. https://doi.org/10.1016/j.pmatsci.2023.101191
  • Sheraf, J. ve Darius Gnanaraj, S. (2023). Synthesis of functionally graded aluminium metal matrix composites-a mini review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.07.251
  • Sidhu, M. S., Bishop, C. M. ve Kral, M. V. (2014). Formation of aluminium carbide by cast iron and liquid aluminium interaction. International Journal of Cast Metals Research, 27(6), 321–328. https://doi.org/10.1179/1743133614Y.0000000110
  • Srivastava, A. K., Sharma, B., Saju, B. R., Shukla, A., Saxena, A. ve Maurya, N. K. (2020). Effect of Graphene nanoparticles on microstructural and mechanical properties of aluminum based nanocomposites fabricated by stir casting. World Journal of Engineering, 17(6), 859–866. https://doi.org/10.1108/WJE-04-2020-0128
  • Şenel, M. C. ve Demir, M. (2023). Effect of induction heat treatment process and graphene/B4C amount on the tribological and mechanical properties of Al6061 hybrid composites. JOM, 75(7), 2554–2568. https://doi.org/10.1007/s11837-023-05790-x
  • Şenel, M. C. ve Üstün, M. (2023). Effect of silicon dioxide-graphene content on the microstructure, sliding wear behavior, and compressive strength of aluminum hybrid composites. Journal of Materials Engineering and Performance, 32(3), 1248–1260. https://doi.org/10.1007/s11665-022-07194-5
  • Şenel, M. C., Taşkın, A., Demir, M. ve Gürbüz, M. (2024). İndüksiyonla sıcak işlemin Si3N4 ve grafen takviyeli Al6061 matrisli kompozitlerin mekanik ve tribolojik özelliklerine olan etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 39, 1567-1581. https://doi.org/10.17341/gazimmfd.1226420
  • Taşkin, A. ve Şenel, M. C. (2024). Tribological properties and microstructures of tungsten carbide and few-layer graphene-reinforced aluminum-based composites. Transactions of the Indian Institute of Metals, 77, 445-456. https://doi.org/10.1007/s12666-023-03114-w
  • Wang, S., Zheng, Z., Long, J., Wang, J., Zheng, K., Ke, Z., Luo, Z., Pokrovsky, A. I. ve Khina, B. B. (2024). Recent advances in wear-resistant steel matrix composites: A review of reinforcement particle selection and preparation processes. Journal of Materials Research and Technology, 29, 1779–1797. https://doi.org/10.1016/j.jmrt.2024.01.195
  • Xu, H., Fu, T., Wang, P., Zhou, Y., Guo, W., Su, F., Li, G., Xing, Z. ve Ma, G. (2023). Microstructure and properties of plasma sprayed copper-matrix composite coatings with Ti3SiC2 addition. Surface and Coatings Technology, 460. https://doi.org/10.1016/j.surfcoat.2023.129434
  • Yang, X., Zhang, Y., Huang, J., Liu, J., Chen, J. ve Li, T. (2024). Interfacial microstructure evolution and mechanical properties of carbon fiber reinforced Al-matrix composites fabricated by a pressureless infiltration process. Materials Science and Engineering: A, 891. https://doi.org/10.1016/j.msea.2023.145968
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Tasarım ve Davranışları, Toz Metalurjisi
Bölüm Araştırma Makaleleri
Yazarlar

Elif Işık 0000-0001-8289-9512

Aleyna Taşkın 0000-0002-8308-9957

Mahmut Can Şenel 0000-0001-7897-1366

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 22 Şubat 2024
Kabul Tarihi 30 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Işık, E., Taşkın, A., & Şenel, M. C. (2024). Al7075-Al2O3 Kompozitlerin Toz Metalürjisi ve Sıcak Preslemeyle Üretimi ve Mekanik Özelliklerinin Araştırılması. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 14(2), 307-320. https://doi.org/10.54370/ordubtd.1441367