Araştırma Makalesi
BibTex RIS Kaynak Göster

Dönüştürülmüş Birim Üstel Yarı Lojistik Dağılım ve Uygulamaları

Yıl 2024, Cilt: 14 Sayı: 2, 249 - 260, 31.12.2024
https://doi.org/10.54370/ordubtd.1512101

Öz

Orantılı tehlike hızı model ailesinin bir üyesi olan birim üstel yarı lojistik dağılım temel dağılım olarak kullanılarak, dönüştürülmüş (transmuted) birim üstel yarı lojistik dağılım olarak adlandırılan yeni bir dağılım önerilmiştir. Önerilen dağılımın momentler, moment çıkaran fonksiyon, kantil fonksiyonu ve stres-mukavemet güvenilirliği gibi istatistiksel özellikleri bu çalışmada ayrıntılı olarak incelenmiştir. Dağılım parametrelerinin istatistiksel çıkarımı için maksimum olabilirlik tahmin yöntemi tartışılmıştır. Maksimum olabilirlik tahminlerinin çeşitli koşullar altındaki davranışını araştırmak için yeni dağılıma dayalı bir simülasyon çalışması yapılmıştır. Ayrıca, bir başarısızlık-zaman veri kümesi üzerinde dağılımın performansını göstermek için sayısal bir örnek sunulmuştur.

Kaynakça

  • Adetunji, A. (2023). Transmuted Ailamujia distribution with applications to lifetime observations. Asian Journal of Probability and Statistics, 21(1), 1-11. https://doi.org/10.9734/AJPAS/2023/v21i1452
  • Adetunji, A. A., & Sabri, S. R. (2024). A new two-parameter Poisson-transmuted exponential distribution: Properties and applications in count observations. AIP Conference Proceedings, 3016(1). https://doi.org/10.1063/5.0192459
  • Ahsan-ul-Haq, M., Aldahlan, M. A., Zafar, J., Gómez, H. W., Afify, A. Z., & Mahran, H. A. (2023). A new cubic transmuted power-function distribution: Properties, inference, and applications. Plos one, 18(2), e0281419. https://doi.org/10.1371/journal.pone.0281419
  • Aryal, G. R., & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1401-e1407. https://doi.org/10.1016/j.na.2009.01.168
  • Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull distribution: A generalization of the Weibull probability distribution. European Journal of pure and applied mathematics, 4(2), 89-102. https://www.ejpam.com/index.php/ejpam/article/view/1170
  • Birbiçer, İ., Genç, A. İ. (2023). On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 50(15), 3108-3124. https://doi.org/10.1080/02664763.2022.2101045
  • Bourguignon, M., Leão, J., Leiva, V., Santos-Neto, M. (2017). The transmuted birnbaum-saunders distribuition. Revstat Statistical Journal, 15(4), 601-628. https://doi.org/10.57805/revstat.v15i4.229
  • Cheng, Y.-F., Wang, F.-K. (2012). Estimating the Burr XII parameters in constant-stress partially accelerated life tests under multiple censored data. Communications in Statistics-Simulation and Computation, 41(9), 1711-1727. https://doi.org/10.1080/03610918.2011.617478
  • Cordeiro, G. M., de Castro, M. (2011). A new family of generalized distributions. Journal of statistical computation and simulation, 81(7), 883-898. https://doi.org/10.1080/00949650903530745
  • Dey, S., Wang, L., Nassar, M. (2022). Inference on Nadarajah-Haghighi distribution with constant stress partially accelerated life tests under progressive type-II censoring. Journal of Applied Statistics, 49(11), 2891-2912. https://doi.org/10.1080/02664763.2021.1928014
  • Dombi, J., Jónás, T. (2020). On an alternative to four notable distribution functions with applications in engineering and the business sciences. Acta Polytechnica Hungarica, 17(1), 231-252. http://dx.doi.org/10.12700/APH.17.1.2020.1.13
  • Dombi, J., Jonas, T., Toth, Z. E., Arva, G. (2019). The omega probability distribution and its applications in reliability theory. Quality and Reliability Engineering International, 35(2), 600-626. https://doi.org/10.1002/qre.2425
  • Genç, M., Özbilen, Ö. (2023). An extension of the UEHL distribution based on the DUS transformation. Journal of New Theory, 44, 20-30. https://doi.org/10.53570/jnt.1317652
  • Gharaibeh, M. M., Al-Omari, A. I. (2019). Transmuted Ishita distribution and its applications. Journal of Statistics Applications Probability, 8(2), 67-81. https://doi.org/10.18576/jsap/080201
  • Gui, W. (2017). Exponentiated half logistic distribution: Different estimation methods and joint confidence regions. Communications in Statistics-Simulation and Computation, 46(6), 4600-4617. https://doi.org/10.1080/03610918.2015.1122053
  • Gupta, R. C., Gupta, P. L., Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and methods, 27(4), 887-904. https://doi.org/10.1080/03610929808832134
  • Kang, S. B., & Seo, J. I. (2011). Estimation in an exponentiated half logistic distribution under progressively Type-2 censoring. Communications for Statistical Applications and Methods, 18(5), 657-666. http://dx.doi.org/10.5351/CKSS.2011.18.5.657
  • Karakaya, K., Kınacı, İ., Kuş, C., & Akdoğan, Y. (2021). On the DUS-kumaraswamy distribution. Istatistik Journal of The Turkish Statistical Association, 13(1), 29-38. https://dergipark.org.tr/en/pub/ijtsa/issue/62665/807304 Khan, M. S., King, R., & Hudson, I. L. (2018). Transmuted modified Weibull distribution: Properties and application. European Journal of Pure and Applied Mathematics, 11(2), 362-374. https://doi.org/10.29020/nybg.ejpam.v11i2.3208
  • Khan, M. S., King, R., & Hudson, I. L. (2020). Transmuted Burr type X distribution with covariates regression modeling to analyze reliability data. American Journal of Mathematical and Management Sciences, 39(2), 99-121. https://doi.org/10.1080/01966324.2019.1605320
  • Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88. https://doi.org/10.1016/0022-1694(80)90036-0
  • Kuş, C., Karakaya, K., Tanış, C., Akdoğan, Y., Sert, S. & Kalkan, F. (2023). Compound transmuted family of distributions: Properties and applications. Ricerche di Matematica, 1-20. https://doi.org/10.1007/s11587-023-00808-7
  • Naz, S., Al-Essa, L. A., Bakouch, H. S., & Chesneau, C. (2013). A transmuted modified power-generated family of distributions with practice on submodels in insurance and reliability. Symmetry, 15(7), 1458. https://doi.org/10.3390/sym15071458
  • Özbilen, Ö., & Genç, A. İ. (2022). A bivariate extension of the omega distribution for two-dimensional proportional data. Mathematica Slovaca, 72(6), 1605-1622. https://doi.org/10.1515/ms-2022-0111
  • Rahman, M. M., Al-Zahrani, B., Shahbaz, S. H., & Shahbaz, M. Q. (2020). Transmuted probability distributions: A review. Pakistan Journal of Statistics and Operation Research, 16(1), 83-94. https://doi.org/10.18187/pjsor.v16i1.3217
  • Rahman, M. M., Gemeay, A. M., Islam Khan, M. A., Meraou, M. A., Bakr, M., Muse, A. H., Balogun, O. S. (2023). A new modified cubic transmuted-G family of distributions: Properties and different methods of estimation with applications to real-life data. AIP Advances, 12(9). https://doi.org/10.1063/5.0170178
  • Rastogi, M. K., & Tripathi, Y. M. (2014). Parameter and reliability estimation for an exponentiated half-logistic distribution under progressive type II censoring. Journal of Statistical Computation and Simulation, 84(8), 1711-1727. https://doi.org/10.1080/00949655.2012.762366
  • Samuel, A. F. (2019). On the performance of transmuted logistic distribution: statistical properties and application. Budapest International Research in Exact Sciences (BirEx) Journal, 1(3), 26-34. https://doi.org/10.33258/birex.v1i3.341
  • Seo, J. I., & Kang, S. B. (2015). Notes on the exponentiated half logistic distribution. Applied Mathematical Modelling, 39(21), 6491-6500. https://doi.org/10.1016/j.apm.2015.01.039
  • Shaw, W. T., & Buckley, I. R. (2007). The Alchemy of Probability Distributions: Beyond Gram Charlier Cornish Fisher Expansions, and Skew-Normal or Kurtotic-Normal Distributions. Technical report, Financial Mathematics Group, King’s College, London, U.K.
  • Tushar, M. T., Rashedi, K. A., Alshammari, T. S., & Rahman, M. M. (2024). Second order transmuted kumaraswamy distribution and its related results. European Journal of Pure and Applied Mathematics, 17(2), 616-637. https://doi.org/10.29020/nybg.ejpam.v17i2.5069
  • Tushar, M. T., Shahbaz, S. H., Rahman, M. M., & Shahbaz, M. Q. (2024). A new cubic transmuted inverse weibull distribution: Theory and applications. Pakistan Journal of Statistics and Operation Research, 85-98. https://doi.org/10.18187/pjsor.v20i1.4448

Transmuted Unit Exponentiated Half-Logistic Distribution and its Applications

Yıl 2024, Cilt: 14 Sayı: 2, 249 - 260, 31.12.2024
https://doi.org/10.54370/ordubtd.1512101

Öz

A novel distribution, termed the transmuted unit exponentiated half-logistic distribution, has been proposed using the unit exponential half-logistic distribution, a member of the proportional hazard rate model family, as the base distribution. The statistical characteristics of the proposed distribution, including moments, moment-generating function, quantile function, and stress-strength reliability, have been thoroughly examined in this study. The maximum likelihood estimation method has been discussed for statistical inference of the distribution parameters. A simulation study based on the new distribution has been conducted to investigate the behavior of maximum likelihood estimates under various conditions. In addition, a numerical example has been presented to illustrate the performance of the distribution on a failure-time dataset.

Etik Beyan

There are no ethical issues related to the publication of this article.

Kaynakça

  • Adetunji, A. (2023). Transmuted Ailamujia distribution with applications to lifetime observations. Asian Journal of Probability and Statistics, 21(1), 1-11. https://doi.org/10.9734/AJPAS/2023/v21i1452
  • Adetunji, A. A., & Sabri, S. R. (2024). A new two-parameter Poisson-transmuted exponential distribution: Properties and applications in count observations. AIP Conference Proceedings, 3016(1). https://doi.org/10.1063/5.0192459
  • Ahsan-ul-Haq, M., Aldahlan, M. A., Zafar, J., Gómez, H. W., Afify, A. Z., & Mahran, H. A. (2023). A new cubic transmuted power-function distribution: Properties, inference, and applications. Plos one, 18(2), e0281419. https://doi.org/10.1371/journal.pone.0281419
  • Aryal, G. R., & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1401-e1407. https://doi.org/10.1016/j.na.2009.01.168
  • Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull distribution: A generalization of the Weibull probability distribution. European Journal of pure and applied mathematics, 4(2), 89-102. https://www.ejpam.com/index.php/ejpam/article/view/1170
  • Birbiçer, İ., Genç, A. İ. (2023). On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 50(15), 3108-3124. https://doi.org/10.1080/02664763.2022.2101045
  • Bourguignon, M., Leão, J., Leiva, V., Santos-Neto, M. (2017). The transmuted birnbaum-saunders distribuition. Revstat Statistical Journal, 15(4), 601-628. https://doi.org/10.57805/revstat.v15i4.229
  • Cheng, Y.-F., Wang, F.-K. (2012). Estimating the Burr XII parameters in constant-stress partially accelerated life tests under multiple censored data. Communications in Statistics-Simulation and Computation, 41(9), 1711-1727. https://doi.org/10.1080/03610918.2011.617478
  • Cordeiro, G. M., de Castro, M. (2011). A new family of generalized distributions. Journal of statistical computation and simulation, 81(7), 883-898. https://doi.org/10.1080/00949650903530745
  • Dey, S., Wang, L., Nassar, M. (2022). Inference on Nadarajah-Haghighi distribution with constant stress partially accelerated life tests under progressive type-II censoring. Journal of Applied Statistics, 49(11), 2891-2912. https://doi.org/10.1080/02664763.2021.1928014
  • Dombi, J., Jónás, T. (2020). On an alternative to four notable distribution functions with applications in engineering and the business sciences. Acta Polytechnica Hungarica, 17(1), 231-252. http://dx.doi.org/10.12700/APH.17.1.2020.1.13
  • Dombi, J., Jonas, T., Toth, Z. E., Arva, G. (2019). The omega probability distribution and its applications in reliability theory. Quality and Reliability Engineering International, 35(2), 600-626. https://doi.org/10.1002/qre.2425
  • Genç, M., Özbilen, Ö. (2023). An extension of the UEHL distribution based on the DUS transformation. Journal of New Theory, 44, 20-30. https://doi.org/10.53570/jnt.1317652
  • Gharaibeh, M. M., Al-Omari, A. I. (2019). Transmuted Ishita distribution and its applications. Journal of Statistics Applications Probability, 8(2), 67-81. https://doi.org/10.18576/jsap/080201
  • Gui, W. (2017). Exponentiated half logistic distribution: Different estimation methods and joint confidence regions. Communications in Statistics-Simulation and Computation, 46(6), 4600-4617. https://doi.org/10.1080/03610918.2015.1122053
  • Gupta, R. C., Gupta, P. L., Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and methods, 27(4), 887-904. https://doi.org/10.1080/03610929808832134
  • Kang, S. B., & Seo, J. I. (2011). Estimation in an exponentiated half logistic distribution under progressively Type-2 censoring. Communications for Statistical Applications and Methods, 18(5), 657-666. http://dx.doi.org/10.5351/CKSS.2011.18.5.657
  • Karakaya, K., Kınacı, İ., Kuş, C., & Akdoğan, Y. (2021). On the DUS-kumaraswamy distribution. Istatistik Journal of The Turkish Statistical Association, 13(1), 29-38. https://dergipark.org.tr/en/pub/ijtsa/issue/62665/807304 Khan, M. S., King, R., & Hudson, I. L. (2018). Transmuted modified Weibull distribution: Properties and application. European Journal of Pure and Applied Mathematics, 11(2), 362-374. https://doi.org/10.29020/nybg.ejpam.v11i2.3208
  • Khan, M. S., King, R., & Hudson, I. L. (2020). Transmuted Burr type X distribution with covariates regression modeling to analyze reliability data. American Journal of Mathematical and Management Sciences, 39(2), 99-121. https://doi.org/10.1080/01966324.2019.1605320
  • Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88. https://doi.org/10.1016/0022-1694(80)90036-0
  • Kuş, C., Karakaya, K., Tanış, C., Akdoğan, Y., Sert, S. & Kalkan, F. (2023). Compound transmuted family of distributions: Properties and applications. Ricerche di Matematica, 1-20. https://doi.org/10.1007/s11587-023-00808-7
  • Naz, S., Al-Essa, L. A., Bakouch, H. S., & Chesneau, C. (2013). A transmuted modified power-generated family of distributions with practice on submodels in insurance and reliability. Symmetry, 15(7), 1458. https://doi.org/10.3390/sym15071458
  • Özbilen, Ö., & Genç, A. İ. (2022). A bivariate extension of the omega distribution for two-dimensional proportional data. Mathematica Slovaca, 72(6), 1605-1622. https://doi.org/10.1515/ms-2022-0111
  • Rahman, M. M., Al-Zahrani, B., Shahbaz, S. H., & Shahbaz, M. Q. (2020). Transmuted probability distributions: A review. Pakistan Journal of Statistics and Operation Research, 16(1), 83-94. https://doi.org/10.18187/pjsor.v16i1.3217
  • Rahman, M. M., Gemeay, A. M., Islam Khan, M. A., Meraou, M. A., Bakr, M., Muse, A. H., Balogun, O. S. (2023). A new modified cubic transmuted-G family of distributions: Properties and different methods of estimation with applications to real-life data. AIP Advances, 12(9). https://doi.org/10.1063/5.0170178
  • Rastogi, M. K., & Tripathi, Y. M. (2014). Parameter and reliability estimation for an exponentiated half-logistic distribution under progressive type II censoring. Journal of Statistical Computation and Simulation, 84(8), 1711-1727. https://doi.org/10.1080/00949655.2012.762366
  • Samuel, A. F. (2019). On the performance of transmuted logistic distribution: statistical properties and application. Budapest International Research in Exact Sciences (BirEx) Journal, 1(3), 26-34. https://doi.org/10.33258/birex.v1i3.341
  • Seo, J. I., & Kang, S. B. (2015). Notes on the exponentiated half logistic distribution. Applied Mathematical Modelling, 39(21), 6491-6500. https://doi.org/10.1016/j.apm.2015.01.039
  • Shaw, W. T., & Buckley, I. R. (2007). The Alchemy of Probability Distributions: Beyond Gram Charlier Cornish Fisher Expansions, and Skew-Normal or Kurtotic-Normal Distributions. Technical report, Financial Mathematics Group, King’s College, London, U.K.
  • Tushar, M. T., Rashedi, K. A., Alshammari, T. S., & Rahman, M. M. (2024). Second order transmuted kumaraswamy distribution and its related results. European Journal of Pure and Applied Mathematics, 17(2), 616-637. https://doi.org/10.29020/nybg.ejpam.v17i2.5069
  • Tushar, M. T., Shahbaz, S. H., Rahman, M. M., & Shahbaz, M. Q. (2024). A new cubic transmuted inverse weibull distribution: Theory and applications. Pakistan Journal of Statistics and Operation Research, 85-98. https://doi.org/10.18187/pjsor.v20i1.4448
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İstatistiksel Analiz, İstatistiksel Teori
Bölüm Araştırma Makaleleri
Yazarlar

Murat Genç 0000-0002-6335-3044

Ömer Özbilen 0000-0001-6110-1911

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 7 Temmuz 2024
Kabul Tarihi 6 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Genç, M., & Özbilen, Ö. (2024). Transmuted Unit Exponentiated Half-Logistic Distribution and its Applications. Ordu Üniversitesi Bilim Ve Teknoloji Dergisi, 14(2), 249-260. https://doi.org/10.54370/ordubtd.1512101