The Assessment of Effect of Occupational Manganese Exposure on Cognition and Quantitative EEG Variables
Yıl 2022,
, 460 - 469, 19.07.2022
Tülin Aktürk
,
Gülay Çeliker
Mehmet Hamdi Şahan
,
Gülsüm Akdeniz
,
Engin Tutkun
,
Oktay Algın
Öz
Occupational Mn exposure results in extrapyramidal system findings and cognitive impairment. We aimed to evaluate the effect of occupational exposure to Mn on cognition and quantitative EEG (qEEG) data in Mn exposed workers. One hundred seventy-five workers with occupational Mn exposure were included in this study. Pallidal index (PI) values were calculated in T1 weighted sequence of brain magnetic resonance imaging (MRI).The presence of T1 hyperintensity on MRI was evaluated by two independent neurologists. The serum, spot urine, and 24-hour urine samples were measuredMn levels. The total scores of MoCA test and sub-groups were determined. The qEEG measures were analyzed. Right/left PI values in manganese exposed group were statistically higher than in control group (p<0.001).A positive correlation was detected between serum Mn levels and PI values and MRI T1 hyperintensity. There was no correlation between PI values and MoCA total/subgroup scores or qEEG measures. MoCA total score, abstraction and memory scores were found to be low in workers with T1 hyperintensity. No association between PI values, MoCA total or subtotal scores and qEEG data was determined in Mn exposed workers. When T1 hyperintensity was detected by the clinician on MRI, abstraction and memory were found to be the first cognitive functions affected at that time. These parameters could be used by occupational physicians as a screening test to assess cognition in periodic examinations of welders.
Kaynakça
- 1. Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008;108(5), 1517-49.
- 2. Aschner M, Erikson KM. Manganese. Adv Nutr 2017;8, 520-1.
- 3. Hearn AS, Stroupe ME, Cabelli DE, et al. Catalytic and structural effects of amino acid substitution at histidine 30 in human manganese superoxide dismutase: Insertion of valine Cγ into the substrate access channel. Biochemistry 2003;42(10), 2781-9.
- 4. Zwingmann C, Leibfritz D, Hazell AS. Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: an ex vivo nuclear magnetic resonance study using [1-13C] glucose. Neurotoxicology 2004;25(4), 573-87.
- 5. Benedetto A, Au C, Aschner M. Manganese-induced dopaminergic neurodegeneration: insights into mechanisms and genetics shared with Parkinson’s disease. Chem Rev 2009;109(10), 4862-84.
- 6. Ellingsen DG, Konstantinov R, Bast-Pettersen R, et al. A neurobehavioral study of current and former welders exposed to manganese. Neurotoxicology 2008;29(1), 48-59.
- 7. Bowler RM, Roels HA, Nakagawa S, et al. Dose–effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med 2007;64(3), 167-77.
- 8. Jelic V, Kowalski J. Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment. Clin EEG Neurosci 2009;40(2), 129-42.
- 9. Jelic, V. REVIEW OF THE PAST, VIEW INTO THE FUTURE. Depression and Dementia: Progress in Brain Research, Clinical Applications, and Future Trends, 2005;245.
- 10. Primavera A, Novello P, Finocchi C, et al. Correlation between mini-mental state examination and quantitative electroencephalography in senile dementia of Alzheimer type. Neuropsychobiology 1990;23(2), 74-8.
- 11. Passero S, Rocchi R, Vatti G, et al. Quantitative EEG mapping, regional cerebral blood flow, and neuropsychological function in Alzheimer’s disease. Dement Geriatr Cogn Disord 1995;6(3), 148-56.
- 12. Soininen H, Partanen J, Pääkkonen A, et al. Changes in absolute power values of EEG spectra in the follow‐up of Alzheimer's disease. Acta Neurol Scand 1991;83(2), 133-36.
- 13. Dierks T, Perisic I, Frölich L, et al. Topography of the quantitative electroencephalogram in dementia of the Alzheimer type: relation to severity of dementia. Psychiatry Res Neuroimaging 1991;40(3), 181-94.
- 14. Babiloni C, Binetti G, Cassetta E, et al. Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol 2006;117(2), 252-68.
- 15. Stylianou M, Murphy N, Peraza LR, et al. Quantitative electroencephalography as a marker of cognitive fluctuations in dementia with Lewy bodies and an aid to differential diagnosis. Clin Neurophysiol 2018;129(6), 1209-20.
- 16. Kim E, Kim Y, Cheong HK, et al. Pallidal index on MRI as a target organ dose of manganese: structural equation model analysis. Neurotoxicology 2005;26(3), 351-9.
- 17. Chang Y, Woo ST, Kim Y, et al. Pallidal index measured with three‐dimensional T1‐weighted gradient echo sequence is a good predictor of manganese exposure in welders. J Magn Reson Imaging 2010;31(4), 1020-6.
- 18. Selekler K, Cangöz B, Uluc S. Power of discrimination of Montreal Cognitive Assessment (MOCA) Scale in Turkish patients with mild cognitive impairement and Alzheimer's disease. Turk Geriatri Derg 2010;13(3).
- 19. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53(4), 695-9.
- 20. Vollet K, Haynes EN, Dietrich KN. Manganese Exposure and Cognition Across the Lifespan: Contemporary Review and Argument for Biphasic Dose–Response Health Effects. Curr Environ Health Rep 2016;3(4), 392-404.
- 21. Haynes EN, Sucharew H, Kuhnell P, et al. Manganese exposure and neurocognitive outcomes in rural school-age children: the communities actively researching exposure study (Ohio, USA). Environ Health Perspect 2015;123(10), 1066-71.
- 22. Chung SE, et al. Maternal Blood Manganese and Early Neurodevelopment: The Mothers and Children's Environmental Health (MOCEH) Study. Environ Health Perspect 2015;123(7):717–22.
- 23. Bhang SY, Cho SC, Kim JW, et al. Relationship between blood manganese levels and children's attention, cognition, behavior, and academic performance—A nationwide cross-sectional study. Environ Res 2013;126, 9-16.
- 24. Bouchard M, Mergler D, Baldwin M, et al. Neurobehavioral functioning after cessation of manganese exposure: A follow‐up after 14 years. Am J Ind Med 2007;50(11), 831-40.
- 25. Blond M, Netterstrom B, Laursen P. Cognitive function in a cohort of Danish steel workers. Neurotoxicology 2007;28(2), 328-35.
- 26. Chang Y, Lee JJ, Seo JH, et al. Altered working memory process in the manganese-exposed brain. Neuroimage. 2010;53(4), 1279-85.
- 27. Zou Y, Qing L, Zeng X, et al. Cognitive function and plasma BDNF levels among manganese-exposed smelters. Occup Environ Med 2014;71(3), 189-94.
- 28. Chang Y, Kim Y, Woo ST, et al. High signal intensity on magnetic resonance imaging is a better predictor of neurobehavioral performances than blood manganese in asymptomatic welders. Neurotoxicology 2009; 30(4), 555-63.
- 29. Malek N, Baker MR, Mann C, et al. Electroencephalographic markers in dementia. Acta Neurol Scand 2017;135(4), 388-93.
- 30. Babiloni C, Frisoni GB, Pievani M, et al. Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 2009; 44(1), 123-35.
- 31. Geraedts VJ, Boon LI, Marinus J, et al. Clinical correlates of quantitative EEG in Parkinson disease: A systematic review. Neurology 2018;91(19), 871-83.
- 32. Tedrus GM, Negreiros LM, Ballarim RS, et al. Correlations Between Cognitive Aspects and Quantitative EEG in Adults With Epilepsy. Clin EEG Neurosci 2019;50(5), 348-53.
- 33. Keski-Säntti P, Kovala T, Holm A, et al. Quantitative EEG in occupational chronic solvent encephalopathy. Hum Exp Toxicol 2008;27(4), 315-20.
- 34. Gunier RB, Arora M, Jerrett M, et al. Manganese in teeth and neurodevelopment in young Mexican–American children. Environ Res 2015;142, 688-95.
- 35. Mora AM, Arora M, Harley KG, et al. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 10.5 years in the CHAMACOS cohort. Environ
Mesleki Mangan Maruziyetinin Kognisyon ve Kantitatif EEG Verileri Üzerine Etkisinin Değerlendirilmesi
Yıl 2022,
, 460 - 469, 19.07.2022
Tülin Aktürk
,
Gülay Çeliker
Mehmet Hamdi Şahan
,
Gülsüm Akdeniz
,
Engin Tutkun
,
Oktay Algın
Öz
Mesleki Manganez (Mn) maruziyeti ekstrapiramidal sistem bulgularına ve bilişsel etkilenmeye neden olur. Mesleki Mn maruziyetinin kognisyon ve kantitatif EEG (qEEG) verileri üzerindeki etkisini değerlendirmeyi amaçladık. Bu çalışmaya mesleki Mn maruziyeti olan 175 erkek işçi dahil edildi. Beyin manyetik rezonans görüntüleme (MRI) T1 sekansında pallidal indeks (PI) değeri hesaplandı. Beyin MRI’da T1 hiperintensitesinin varlığı çift kör iki nörolog tarafından değerlendirildi. Kan, spot idrar ve 24 saatlik idrar manganez seviyeleri kaydedildi. MoCA testi toplam puanları ile yürütücü işlevler, dikkat, bellek gibi alt grupların puanları belirlendi. Kantitatif EEG (qEEG) verileri analiz edildi. Manganez maruziyeti olanların sağ ve sol PI değeri, kontrol grubuna göre istatistiksel olarak anlamlı derecede yüksek saptandı (p<0.001). Serum Mn düzeyi ile PI değeri ve MRI’ da T1 hiperintensitesi arasında pozitif korelasyon tespit edildi. PI değerleri ile MOCA toplam puanı, subgrup puanları veya kantitatif EEG verileri arasında herhangi bir korelasyon saptanmadı (p>0.05). T1 hiperintensitesi saptananlarda MoCA toplam puanı, soyut düşünme ve tekrarlama puanının düşük olduğu saptandı. Mn maruziyeti olanlarda MRG’ de T1 hiperintesitesinin klinisyen tarafından farkedilmesi ile bilişsel fonksiyonların etkilendiği ve bu etkilenmenin öncelikle tekrarlama ve soyut düşünmede olduğu saptanmıştır. Bu parametreler, iş yeri hekimlerince, kaynakçıların periyodik muayenelerinde kognisyonun değerlendirilmesi için tarama testi olarak kullanılabilir.
Kaynakça
- 1. Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008;108(5), 1517-49.
- 2. Aschner M, Erikson KM. Manganese. Adv Nutr 2017;8, 520-1.
- 3. Hearn AS, Stroupe ME, Cabelli DE, et al. Catalytic and structural effects of amino acid substitution at histidine 30 in human manganese superoxide dismutase: Insertion of valine Cγ into the substrate access channel. Biochemistry 2003;42(10), 2781-9.
- 4. Zwingmann C, Leibfritz D, Hazell AS. Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: an ex vivo nuclear magnetic resonance study using [1-13C] glucose. Neurotoxicology 2004;25(4), 573-87.
- 5. Benedetto A, Au C, Aschner M. Manganese-induced dopaminergic neurodegeneration: insights into mechanisms and genetics shared with Parkinson’s disease. Chem Rev 2009;109(10), 4862-84.
- 6. Ellingsen DG, Konstantinov R, Bast-Pettersen R, et al. A neurobehavioral study of current and former welders exposed to manganese. Neurotoxicology 2008;29(1), 48-59.
- 7. Bowler RM, Roels HA, Nakagawa S, et al. Dose–effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup Environ Med 2007;64(3), 167-77.
- 8. Jelic V, Kowalski J. Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment. Clin EEG Neurosci 2009;40(2), 129-42.
- 9. Jelic, V. REVIEW OF THE PAST, VIEW INTO THE FUTURE. Depression and Dementia: Progress in Brain Research, Clinical Applications, and Future Trends, 2005;245.
- 10. Primavera A, Novello P, Finocchi C, et al. Correlation between mini-mental state examination and quantitative electroencephalography in senile dementia of Alzheimer type. Neuropsychobiology 1990;23(2), 74-8.
- 11. Passero S, Rocchi R, Vatti G, et al. Quantitative EEG mapping, regional cerebral blood flow, and neuropsychological function in Alzheimer’s disease. Dement Geriatr Cogn Disord 1995;6(3), 148-56.
- 12. Soininen H, Partanen J, Pääkkonen A, et al. Changes in absolute power values of EEG spectra in the follow‐up of Alzheimer's disease. Acta Neurol Scand 1991;83(2), 133-36.
- 13. Dierks T, Perisic I, Frölich L, et al. Topography of the quantitative electroencephalogram in dementia of the Alzheimer type: relation to severity of dementia. Psychiatry Res Neuroimaging 1991;40(3), 181-94.
- 14. Babiloni C, Binetti G, Cassetta E, et al. Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol 2006;117(2), 252-68.
- 15. Stylianou M, Murphy N, Peraza LR, et al. Quantitative electroencephalography as a marker of cognitive fluctuations in dementia with Lewy bodies and an aid to differential diagnosis. Clin Neurophysiol 2018;129(6), 1209-20.
- 16. Kim E, Kim Y, Cheong HK, et al. Pallidal index on MRI as a target organ dose of manganese: structural equation model analysis. Neurotoxicology 2005;26(3), 351-9.
- 17. Chang Y, Woo ST, Kim Y, et al. Pallidal index measured with three‐dimensional T1‐weighted gradient echo sequence is a good predictor of manganese exposure in welders. J Magn Reson Imaging 2010;31(4), 1020-6.
- 18. Selekler K, Cangöz B, Uluc S. Power of discrimination of Montreal Cognitive Assessment (MOCA) Scale in Turkish patients with mild cognitive impairement and Alzheimer's disease. Turk Geriatri Derg 2010;13(3).
- 19. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53(4), 695-9.
- 20. Vollet K, Haynes EN, Dietrich KN. Manganese Exposure and Cognition Across the Lifespan: Contemporary Review and Argument for Biphasic Dose–Response Health Effects. Curr Environ Health Rep 2016;3(4), 392-404.
- 21. Haynes EN, Sucharew H, Kuhnell P, et al. Manganese exposure and neurocognitive outcomes in rural school-age children: the communities actively researching exposure study (Ohio, USA). Environ Health Perspect 2015;123(10), 1066-71.
- 22. Chung SE, et al. Maternal Blood Manganese and Early Neurodevelopment: The Mothers and Children's Environmental Health (MOCEH) Study. Environ Health Perspect 2015;123(7):717–22.
- 23. Bhang SY, Cho SC, Kim JW, et al. Relationship between blood manganese levels and children's attention, cognition, behavior, and academic performance—A nationwide cross-sectional study. Environ Res 2013;126, 9-16.
- 24. Bouchard M, Mergler D, Baldwin M, et al. Neurobehavioral functioning after cessation of manganese exposure: A follow‐up after 14 years. Am J Ind Med 2007;50(11), 831-40.
- 25. Blond M, Netterstrom B, Laursen P. Cognitive function in a cohort of Danish steel workers. Neurotoxicology 2007;28(2), 328-35.
- 26. Chang Y, Lee JJ, Seo JH, et al. Altered working memory process in the manganese-exposed brain. Neuroimage. 2010;53(4), 1279-85.
- 27. Zou Y, Qing L, Zeng X, et al. Cognitive function and plasma BDNF levels among manganese-exposed smelters. Occup Environ Med 2014;71(3), 189-94.
- 28. Chang Y, Kim Y, Woo ST, et al. High signal intensity on magnetic resonance imaging is a better predictor of neurobehavioral performances than blood manganese in asymptomatic welders. Neurotoxicology 2009; 30(4), 555-63.
- 29. Malek N, Baker MR, Mann C, et al. Electroencephalographic markers in dementia. Acta Neurol Scand 2017;135(4), 388-93.
- 30. Babiloni C, Frisoni GB, Pievani M, et al. Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 2009; 44(1), 123-35.
- 31. Geraedts VJ, Boon LI, Marinus J, et al. Clinical correlates of quantitative EEG in Parkinson disease: A systematic review. Neurology 2018;91(19), 871-83.
- 32. Tedrus GM, Negreiros LM, Ballarim RS, et al. Correlations Between Cognitive Aspects and Quantitative EEG in Adults With Epilepsy. Clin EEG Neurosci 2019;50(5), 348-53.
- 33. Keski-Säntti P, Kovala T, Holm A, et al. Quantitative EEG in occupational chronic solvent encephalopathy. Hum Exp Toxicol 2008;27(4), 315-20.
- 34. Gunier RB, Arora M, Jerrett M, et al. Manganese in teeth and neurodevelopment in young Mexican–American children. Environ Res 2015;142, 688-95.
- 35. Mora AM, Arora M, Harley KG, et al. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 10.5 years in the CHAMACOS cohort. Environ