Derleme
BibTex RIS Kaynak Göster

RNA Dünyasından Kliniğe: Madde Kullanım Bozuklukları için RNA Terapötikleri

Yıl 2024, , 493 - 509, 27.05.2024
https://doi.org/10.20515/otd.1379032

Öz

RNA terapötikleri, hastalıkları tedavi etmeyi veya önlemeyi amaçlayan ve hızla genişleyen bir ilaç kategorisidir. Madde bağımlılığının mekanizması tam olarak aydınlatılamadığından, önlenmesi ve tedavisinde halen büyük zorluklar yaşanmaktadır. Bağımlılık yapan maddelerin uzun süreli alımının gen ekspresyon profilini modüle ettiği, ödül mekanizması ve hafıza ile ilgili beyin bölgelerinde patolojik nöroadaptasyona yol açtığı bilinmektedir. Kodlamayan RNA’ların, kompulsif madde kullanımını yönlendiren uyumsuz nöroadaptasyonları düzenlediği gösterilmiş olsa da madde kullanım bozukluğu üzerindeki etkisi henüz klinik olarak test edilmemiştir. Bu gözden geçirme çalışması, madde kullanım bozukluğunun tedavisine yönelik potansiyel bir yaklaşım olan, kodlamayan RNA bazlı terapötiklere odaklanmayı amaçlamaktadır. Bu perspektifte, madde kullanım bozukluğunda yer alan kodlamayan RNA süreçleri gözden geçirilmiştir. Kodlamayan RNA'ları hedeflemeye yönelik son terapötik yaklaşımlar tartışılarak, madde kullanım bozukluğu için kodlamayan RNA'yı hedefleyen terapötiklerin potansiyel fırsatları ve zorlukları vurgulanmıştır. Sonuç olarak, RNA modülasyonunun çeşitli hastalıkların tedavisindeki etki mekanizmalarının umut verici bir strateji haline gelmesi, kodlamayan RNA'ların madde kullanım bozukluğunun tedavisinde de uygulanabilir terapötik hedefler olarak keşfedilmesi gerektiği kanaati oluşturmaktadır.

Destekleyen Kurum

İstanbul Üniversitesi Cerrahpaşa Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

TDK-2020-35144

Kaynakça

  • 1. Hastings ML, Krainer AR. RNA therapeutics. RNA. 2023;29:393-5.
  • 2. Zogg H, Singh R, Ro S. Current advances in RNA therapeutics for human diseases. International Journal of Molecular Sciences. 2022;23:2736.
  • 3. Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell death & disease, 2022;13:644.
  • 4. Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. Advances in drug and alcohol research, 2022;2:10807.
  • 5. Yamada Y. Nucleic acid drugs—current status, issues, and expectations for exosomes. Cancers, 2021;13(19):5002.
  • 6. Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacology & Therapeutics, 2022;236:108215.
  • 7. Sartor GC, St. Laurent III G, Wahlestedt C. The emerging role of non-coding RNAs in drug addiction. Frontiers in genetics, 2012;3:106.
  • 8. Quinn RK, James MH, Hawkins GE, Brown AL, Heathcote A, Smith DW, ... & Dayas, CV. Temporally specific miRNA expression patterns in the dorsal and ventral striatum of addiction‐prone rats. Addiction biology, 2018;23(2):631-642.
  • 9. United Nations Office on Drugs and Crime (UNODC). World Drug Report 2023. ISBN: 9789210028233, Available from: https://www.unodc.org/res/WDR-2023/WDR23_Exsum_fin_SP.pdf. [cited 2023 Sep 19].
  • 10. Hu Y, Salmeron BJ, Krasnova IN, Gu H, Lu H, Bonci A, Cadet JL, Stein EA, Yang Y. Compulsive drug use is associated with imbalance of orbitofrontal-and prelimbic-striatal circuits in punishment-resistant individuals. Proceedings of the National Academy of Sciences, 2019;116(18): 9066-9071.
  • 11. Understanding Drug Use and Addiction DrugFacts. Available from: https://nida.nih.gov/publications/drugfacts/understanding-drug-use-addiction [cited 2023 Sep 19].
  • 12. Sampedro-Piquero P, Santín L, Castilla-Ortega E. Aberrant brain neuroplasticity and function in drug addiction: a focus on learning-related brain regions. Behavioral Neuroscience, 2019;1-24.
  • 13. Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. Wiley Interdisciplinary Reviews: RNA, 2021;12(3):e1637.
  • 14. Sharma V, Misteli T. Non-coding RNAs in DNA damage and repair. FEBS letters, 2013;587(13):1832-1839.
  • 15. Xuan C, Yang E, Zhao S, Xu J, Li P, Zhang Y, Jiang Z, Ding X. Regulation of LncRNAs and microRNAs in neuronal development and disease. PeerJ, 2023;11:e15197.
  • 16. Sridharan K, Gogtay NJ. Therapeutic nucleic acids: current clinical status. British journal of clinical pharmacology, 2016;82(3):659-672.
  • 17. Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Veterinary pathology, 2014;51(4):759-774.
  • 18. Sessa F, Maglietta F, Bertozzi G, Salerno M, Di Mizio G, Messina G, Montana A, Ricci P, Pomara C. Human brain injury and miRNAs: an experimental study. International Journal of Molecular Sciences, 2019;20(7): 1546.
  • 19. Cuesta S, Restrepo‐Lozano JM, Popescu C, He S, Reynolds LM, Israel S, Hernandez G, Rais R, Slucher BS, Flores, C. DCC‐related developmental effects of abused‐versus therapeutic‐like amphetamine doses in adolescence. Addiction biology, 2020;25(4):e12791.
  • 20. Chand S, Gowen A, Savine M, Moore D, Clark A, Huynh W, Wu N, Odegaard K, Weyrich L, Bevins RA, Fox HS, Pendyala G, Yelamanchili, SV. A comprehensive study to delineate the role of an extracellular vesicle‐associated microRNA‐29a in chronic methamphetamine use disorder. Journal of Extracellular Vesicles, 2021;10(14):e12177.
  • 21. Lee S, Woo J, Kim YS, Im HI. Integrated miRNA-mRNA analysis in the habenula nuclei of mice intravenously self-administering nicotine. Scientific reports, 2015;5(1):12909.
  • 22. Shi X, Li Y, Yan P, Shi Y, Lai J. Weighted gene co‐expression network analysis to explore the mechanism of heroin addiction in human nucleus accumbens. Journal of Cellular Biochemistry, 2020;121(2):1870-1879.
  • 23. Asimes A, Kim CK, Rao YS, Bartelt K, Pak TR. microRNA expression profiles in the ventral hippocampus during pubertal development and the impact of peri-pubertal binge alcohol exposure. Non-coding RNA, 2019;5(1):21.
  • 24. Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. Wiley Interdisciplinary Reviews: RNA, 2021;12(3):e1637.
  • 25. Chandrasekar V, Dreyer JL. microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Molecular and Cellular Neuroscience, 2009;42(4):350-362.
  • 26. Xu W, Zhao M, Lin Z, Liu H, Ma H, Hong Q, Gui D, Feng J, ZhouW. Increased expression of plasma hsa‐miR‐181a in male patients with heroin addiction use disorder. Journal of clinical laboratory analysis, 2020;34(11):e23486.
  • 27. Viola TW, Heberle BA, Zaparte A, Sanvicente-Vieira B, Wainer LM, Fries GR, Grassi-Oliveira R. Peripheral blood microRNA levels in females with cocaine use disorder. Journal of psychiatric research, 2019;114:48-54.
  • 28. Gu WJ, Zhang C, Zhong Y, Luo J, Zhang CY, Zhang C, Wang C. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder. Biomedicine&Pharmacotherapy, 2020;125:109918.
  • 29. Bahi A, Dreyer JL. Striatal modulation of BDNF expression using micro RNA 124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption. European Journal of Neuroscience, 2013;38:2328-2337.
  • 30. Chandrasekar V, Dreyer JL. Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology. 2011;36:1149-64.
  • 31. Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ. Striatal microRNA controls cocaine intake through CREB signalling. Nature. 2010;466:197-202.
  • 32. Jia M, Wang X, Zhang H, Ye C, Ma H, Yang M, Li Y, Cui C. MicroRNA-132 in the adult dentate gyrus is involved in opioid addiction via modifying the differentiation of neural stem cells. Neuroscience bulletin. 2019;35:486-96.
  • 33. Mavrikaki M, Anastasiadou E, Ozdemir RA, Potter D, Helmholz C, Slack FJ, Chartoff EH. Overexpression of miR-9 in the nucleus accumbens increases oxycodone self-administration. International Journal of Neuropsychopharmacology. 2019;22:383-93.
  • 34. Jung Y. “Coding” Is Not Enough: The Role of Long “Noncoding” RNA for Cocaine Addiction. Biological Psychiatry, 2020;88:e45-e47.
  • 35. Li Z, Zhao W, Wang M, & Zhou X. The role of long noncoding RNAs in gene expression regulation. Gene Expression Profiling in Cancer, 2019;1-17.
  • 36. Zhou Z, Lin Z, Pang X, Tariq MA, Ao X, Li P, & Wang J. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget, 2018;9:19443.
  • 37. Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen, T. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC neuroscience, 2015;16:1-13.
  • 38. Xu H, Brown AN, Waddell NJ, Liu X, Kaplan GJ, Chitaman JM., Stockman V, Hedinger RL, Adams R, Abreu K, Shen L, Neve R, Wang Z, Nestler EJ, Feng J. Role of long noncoding RNA Gas5 in cocaine action. Biological psychiatry, 2020;88:758-766.
  • 39. Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, Zhang Y, Wang Q, Liu J & Wang K. A comprehensive review of circRNA: from purification and identification to disease marker potential. PeerJ, 2018;6:e5503.
  • 40. Pinson MR, & Miranda RC. Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth defects research, 2019;111:1308-1319.
  • 41. Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, & Janitz M. The emerging role of circular RNAs in transcriptome regulation. Genomics, 2017;109: 401-407.
  • 42. Lin YC, Lee YC, Chang KL & Hsiao KY. Analysis of common targets for circular RNAs. BMC bioinformatics, 2019;20:1-6.
  • 43. Bak RO & Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley interdisciplinary reviews: RNA, 2014;5:317-333.
  • 44. Yu CY & Kuo HC. The emerging roles and functions of circular RNAs and their generation. Journal of biomedical science, 2019;26:1-12.
  • 45. Bu Q, Long H, Shao X, Gu H, Kong J, Luo L, Liu B, Guo W, Wang H, Tian J, Zhao Y, Cen X. Cocaine induces differential circular RNA expression in striatum. Translational Psychiatry, 2019;9:199.
  • 46. Vornholt E, Drake J, Mamdani M, McMichael G, Taylor ZN, Bacanu SA, Miles MF, Vladimirov VI. Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges. Addiction biology, 2021;26:e13071.
  • 47. Paudel P, Pierotti C, Lozano E, Amoah SK, Gardiner AS, Caldwell KK, Allan AM, Mellios N. Prenatal alcohol exposure results in sex-specific alterations in circular RNA expression in the developing mouse brain. Frontiers in Neuroscience, 2020;14:581895.
  • 48. Yu H, Xie B, Zhang J, Luo Y, Galaj E, Zhang X, Shen Q, Liu Y, Cong B, Wen D, Ma C. The role of circTmeff-1 in incubation of context-induced morphine craving. Pharmacological Research, 2021;170:105722.
  • 49. Shen Q, Xie B, Galaj E, Yu H, Li X, Lu Y, Zhang M, Wen D, Ma C. CircTmeff-1 in the nucleus accumbens regulates the reconsolidation of cocaine-associated memory. Brain Research Bulletin, 2022;185:64-73.
  • 50. Bu Q, Long H, Shao X, Gu H, Kong J, Luo L, Liu B, Guo W, Wang H, Tian J, Zhao Y, Cen, X. Cocaine induces differential circular RNA expression in striatum. Translational Psychiatry, 2019;9:199.
  • 51. Chen Y, Li X, Meng S, Huang S, Chang S, Shi J. Identification of Functional CircRNA–miRNA–mRNA Regulatory Network in Dorsolateral Prefrontal Cortex Neurons of Patients With Cocaine Use Disorder. Frontiers in Molecular Neuroscience, 2022;15:839233.
  • 52. Li J, Shi Q, Wang Q, Tan X, Pang K, Liu X, Zhu S, Xi K, Zhang J, Gao Q, Hu Y, Sun J. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neuroscience Letters, 2019;701:146-153.
  • 53. Li J, Sun Q, Zhu S, Xi K, Shi Q, Pang K, Liu X, Li M, Zhang Y, Sun J. Knockdown of circHomer1 ameliorates METH-induced neuronal injury through inhibiting Bbc3 expression. Neuroscience Letters, 2020;732:135050.
  • 54. Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharmaceutica Sinica B. 2023;13:916-941.
  • 55. Shen X, & Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic acids research, 2018;46:1584-1600.
  • 56. Dhuri K, Bechtold C, Quijano E, Pham H, Gupta, A, Vikram A, & Bahal R. Antisense oligonucleotides: an emerging area in drug discovery and development. Journal of clinical medicine, 2020;9:2004.
  • 57. Batista-Duharte A, Sendra L, Jos M, Damiana T, Carlos IZ, & Aliño SF. Progress in the use of antisense oligonucleotides for vaccine improvement. Biomolecules 2020;10:316.
  • 58. Lee LK, & Roth CM. Antisense technology in molecular and cellular bioengineering. Current opinion in biotechnology, 2003;14:505-511.
  • 59. Thakur S, Sinhari A, Jain P, & Jadhav HR. A perspective on oligonucleotide therapy: Approaches to patient customization. Frontiers in Pharmacology, 2022;13:1006304.
  • 60. Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, & Rigo,F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature, 2015;518: 409-412.
  • 61. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, & Dimmeler S. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circulation research, 2014;114:1389-1397.
  • 62. Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, Brug M, & Wahlestedt C. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature biotechnology, 2012;30:453-459.
  • 63. Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chemical Society Reviews. 2021;50:2224-43.
  • 64. Nectow AR, Nestler EJ. Viral tools for neuroscience. Nature Reviews Neuroscience. 2020;21:669-81.
  • 65. Lundstrom K. Viral vectors applied for RNAi-based antiviral therapy. Viruses. 2020;12:924.
  • 66. Borel F, Gernoux G, Sun H, Stock R, Blackwood M, Brown Jr RH, Mueller C. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Science Translational Medicine. 2018;10:eaau6414.
  • 67. Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, Su Q, Kramer J, Zhong L, Ahmed SS, Zhang H. Global CNS transduction of adult mice by intravenously delivered rAAVrh. 8 and rAAVrh. 10 and nonhuman primates by rAAVrh. 10. Molecular Therapy. 2014;22:1299-309.
  • 68. Martier R, Sogorb-Gonzalez M, Stricker-Shaver J, Hübener-Schmid J, Keskin S, Klima J, Toonen LJ, Juhas S, Juhasova J, Ellederova Z, Motlik J. Development of an AAV-based microRNA gene therapy to treat Machado-Joseph disease. Molecular Therapy-Methods & Clinical Development. 2019;15:343-58.
  • 69. Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;101:839-62.
  • 70. Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, Salem AK, Bartholomay LC, Bellaire BH, Narasimhan B. Nano-enabled delivery of diverse payloads across complex biological barriers. Journal of controlled release. 2015;219:548-59.
  • 71. Yang J, Luo S, Zhang J, Yu T, Fu Z, Zheng Y, Xu X, Liu C, Fan M, Zhang Z. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson's disease. Neurobiology of Disease. 2021;148:105218.
  • 72. Salarpour S, Barani M, Pardakhty A, Khatami M, Chauhan NP. The application of exosomes and exosome-nanoparticle in treating brain disorders. Journal of Molecular Liquids. 2022;350:118549.
  • 73. Tosi G, Duskey JT, Kreuter J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert opinion on drug delivery. 2020;17:23-32.
  • 74. Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R. Nanoparticle delivered anti-miR-141-3p for stroke therapy. Cells. 2021;10:1011.
  • 75. Chivero ET, Liao K, Niu F, Tripathi A, Tian C, Buch S, Hu G. Engineered extracellular vesicles loaded with miR-124 attenuate cocaine-mediated activation of microglia. Frontiers in Cell and Developmental Biology. 2020;8:573.
  • 76. Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications. Nanoscale. 2014;6(4):2146-52.
  • 77. Zhou Y, Zhu F, Liu Y, Zheng M, Wang Y, Zhang D, Anraku Y, Zou Y, Li J, Wu H, Pang X. Blood-brain barrier–penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Science advances. 2020;6:eabc7031.
  • 78. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology. 2011;29:341-5.
  • 79. Chen L, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, Yerbury JJ, Vine KL. Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Frontiers in neuroscience. 2017;11:476.

From the RNA World to the Clinic: RNA Therapeutics for Substance Use Disorders

Yıl 2024, , 493 - 509, 27.05.2024
https://doi.org/10.20515/otd.1379032

Öz

RNA therapeutics are a rapidly expanding category of drugs that aim to treat or prevent diseases. Since the mechanism of substance addiction is not fully elucidated, there are still great difficulties in its prevention and treatment. It is known that long-term intake of addictive substances modulates the gene expression profile and causes pathological neuroadaptation in brain regions related to reward mechanisms and memory. Although non-coding RNAs have been shown to regulate maladaptive neuroadaptations that drive compulsive substance use, their effect on substance use disorder has not yet been clinically tested. This study aims to focus on non-coding RNA-based therapeutics as a potential approach to the treatment of substance use disorder. In this perspective, non-coding RNA processes involved in substance use disorder are reviewed. Recent therapeutic approaches for targeting non-coding RNAs are discussed, highlighting the potential opportunities and challenges of noncoding RNA-targeting therapeutics for substance use disorder. In conclusion, the mechanisms of action of RNA modulation in the treatment of various diseases have become a promising strategy, leading to the conclusion that noncoding RNAs should be explored as applicable therapeutic targets in the treatment of substance use disorder.

Proje Numarası

TDK-2020-35144

Kaynakça

  • 1. Hastings ML, Krainer AR. RNA therapeutics. RNA. 2023;29:393-5.
  • 2. Zogg H, Singh R, Ro S. Current advances in RNA therapeutics for human diseases. International Journal of Molecular Sciences. 2022;23:2736.
  • 3. Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell death & disease, 2022;13:644.
  • 4. Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. Advances in drug and alcohol research, 2022;2:10807.
  • 5. Yamada Y. Nucleic acid drugs—current status, issues, and expectations for exosomes. Cancers, 2021;13(19):5002.
  • 6. Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacology & Therapeutics, 2022;236:108215.
  • 7. Sartor GC, St. Laurent III G, Wahlestedt C. The emerging role of non-coding RNAs in drug addiction. Frontiers in genetics, 2012;3:106.
  • 8. Quinn RK, James MH, Hawkins GE, Brown AL, Heathcote A, Smith DW, ... & Dayas, CV. Temporally specific miRNA expression patterns in the dorsal and ventral striatum of addiction‐prone rats. Addiction biology, 2018;23(2):631-642.
  • 9. United Nations Office on Drugs and Crime (UNODC). World Drug Report 2023. ISBN: 9789210028233, Available from: https://www.unodc.org/res/WDR-2023/WDR23_Exsum_fin_SP.pdf. [cited 2023 Sep 19].
  • 10. Hu Y, Salmeron BJ, Krasnova IN, Gu H, Lu H, Bonci A, Cadet JL, Stein EA, Yang Y. Compulsive drug use is associated with imbalance of orbitofrontal-and prelimbic-striatal circuits in punishment-resistant individuals. Proceedings of the National Academy of Sciences, 2019;116(18): 9066-9071.
  • 11. Understanding Drug Use and Addiction DrugFacts. Available from: https://nida.nih.gov/publications/drugfacts/understanding-drug-use-addiction [cited 2023 Sep 19].
  • 12. Sampedro-Piquero P, Santín L, Castilla-Ortega E. Aberrant brain neuroplasticity and function in drug addiction: a focus on learning-related brain regions. Behavioral Neuroscience, 2019;1-24.
  • 13. Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. Wiley Interdisciplinary Reviews: RNA, 2021;12(3):e1637.
  • 14. Sharma V, Misteli T. Non-coding RNAs in DNA damage and repair. FEBS letters, 2013;587(13):1832-1839.
  • 15. Xuan C, Yang E, Zhao S, Xu J, Li P, Zhang Y, Jiang Z, Ding X. Regulation of LncRNAs and microRNAs in neuronal development and disease. PeerJ, 2023;11:e15197.
  • 16. Sridharan K, Gogtay NJ. Therapeutic nucleic acids: current clinical status. British journal of clinical pharmacology, 2016;82(3):659-672.
  • 17. Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Veterinary pathology, 2014;51(4):759-774.
  • 18. Sessa F, Maglietta F, Bertozzi G, Salerno M, Di Mizio G, Messina G, Montana A, Ricci P, Pomara C. Human brain injury and miRNAs: an experimental study. International Journal of Molecular Sciences, 2019;20(7): 1546.
  • 19. Cuesta S, Restrepo‐Lozano JM, Popescu C, He S, Reynolds LM, Israel S, Hernandez G, Rais R, Slucher BS, Flores, C. DCC‐related developmental effects of abused‐versus therapeutic‐like amphetamine doses in adolescence. Addiction biology, 2020;25(4):e12791.
  • 20. Chand S, Gowen A, Savine M, Moore D, Clark A, Huynh W, Wu N, Odegaard K, Weyrich L, Bevins RA, Fox HS, Pendyala G, Yelamanchili, SV. A comprehensive study to delineate the role of an extracellular vesicle‐associated microRNA‐29a in chronic methamphetamine use disorder. Journal of Extracellular Vesicles, 2021;10(14):e12177.
  • 21. Lee S, Woo J, Kim YS, Im HI. Integrated miRNA-mRNA analysis in the habenula nuclei of mice intravenously self-administering nicotine. Scientific reports, 2015;5(1):12909.
  • 22. Shi X, Li Y, Yan P, Shi Y, Lai J. Weighted gene co‐expression network analysis to explore the mechanism of heroin addiction in human nucleus accumbens. Journal of Cellular Biochemistry, 2020;121(2):1870-1879.
  • 23. Asimes A, Kim CK, Rao YS, Bartelt K, Pak TR. microRNA expression profiles in the ventral hippocampus during pubertal development and the impact of peri-pubertal binge alcohol exposure. Non-coding RNA, 2019;5(1):21.
  • 24. Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. Wiley Interdisciplinary Reviews: RNA, 2021;12(3):e1637.
  • 25. Chandrasekar V, Dreyer JL. microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Molecular and Cellular Neuroscience, 2009;42(4):350-362.
  • 26. Xu W, Zhao M, Lin Z, Liu H, Ma H, Hong Q, Gui D, Feng J, ZhouW. Increased expression of plasma hsa‐miR‐181a in male patients with heroin addiction use disorder. Journal of clinical laboratory analysis, 2020;34(11):e23486.
  • 27. Viola TW, Heberle BA, Zaparte A, Sanvicente-Vieira B, Wainer LM, Fries GR, Grassi-Oliveira R. Peripheral blood microRNA levels in females with cocaine use disorder. Journal of psychiatric research, 2019;114:48-54.
  • 28. Gu WJ, Zhang C, Zhong Y, Luo J, Zhang CY, Zhang C, Wang C. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder. Biomedicine&Pharmacotherapy, 2020;125:109918.
  • 29. Bahi A, Dreyer JL. Striatal modulation of BDNF expression using micro RNA 124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption. European Journal of Neuroscience, 2013;38:2328-2337.
  • 30. Chandrasekar V, Dreyer JL. Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology. 2011;36:1149-64.
  • 31. Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ. Striatal microRNA controls cocaine intake through CREB signalling. Nature. 2010;466:197-202.
  • 32. Jia M, Wang X, Zhang H, Ye C, Ma H, Yang M, Li Y, Cui C. MicroRNA-132 in the adult dentate gyrus is involved in opioid addiction via modifying the differentiation of neural stem cells. Neuroscience bulletin. 2019;35:486-96.
  • 33. Mavrikaki M, Anastasiadou E, Ozdemir RA, Potter D, Helmholz C, Slack FJ, Chartoff EH. Overexpression of miR-9 in the nucleus accumbens increases oxycodone self-administration. International Journal of Neuropsychopharmacology. 2019;22:383-93.
  • 34. Jung Y. “Coding” Is Not Enough: The Role of Long “Noncoding” RNA for Cocaine Addiction. Biological Psychiatry, 2020;88:e45-e47.
  • 35. Li Z, Zhao W, Wang M, & Zhou X. The role of long noncoding RNAs in gene expression regulation. Gene Expression Profiling in Cancer, 2019;1-17.
  • 36. Zhou Z, Lin Z, Pang X, Tariq MA, Ao X, Li P, & Wang J. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget, 2018;9:19443.
  • 37. Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen, T. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC neuroscience, 2015;16:1-13.
  • 38. Xu H, Brown AN, Waddell NJ, Liu X, Kaplan GJ, Chitaman JM., Stockman V, Hedinger RL, Adams R, Abreu K, Shen L, Neve R, Wang Z, Nestler EJ, Feng J. Role of long noncoding RNA Gas5 in cocaine action. Biological psychiatry, 2020;88:758-766.
  • 39. Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, Zhang Y, Wang Q, Liu J & Wang K. A comprehensive review of circRNA: from purification and identification to disease marker potential. PeerJ, 2018;6:e5503.
  • 40. Pinson MR, & Miranda RC. Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth defects research, 2019;111:1308-1319.
  • 41. Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, & Janitz M. The emerging role of circular RNAs in transcriptome regulation. Genomics, 2017;109: 401-407.
  • 42. Lin YC, Lee YC, Chang KL & Hsiao KY. Analysis of common targets for circular RNAs. BMC bioinformatics, 2019;20:1-6.
  • 43. Bak RO & Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley interdisciplinary reviews: RNA, 2014;5:317-333.
  • 44. Yu CY & Kuo HC. The emerging roles and functions of circular RNAs and their generation. Journal of biomedical science, 2019;26:1-12.
  • 45. Bu Q, Long H, Shao X, Gu H, Kong J, Luo L, Liu B, Guo W, Wang H, Tian J, Zhao Y, Cen X. Cocaine induces differential circular RNA expression in striatum. Translational Psychiatry, 2019;9:199.
  • 46. Vornholt E, Drake J, Mamdani M, McMichael G, Taylor ZN, Bacanu SA, Miles MF, Vladimirov VI. Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges. Addiction biology, 2021;26:e13071.
  • 47. Paudel P, Pierotti C, Lozano E, Amoah SK, Gardiner AS, Caldwell KK, Allan AM, Mellios N. Prenatal alcohol exposure results in sex-specific alterations in circular RNA expression in the developing mouse brain. Frontiers in Neuroscience, 2020;14:581895.
  • 48. Yu H, Xie B, Zhang J, Luo Y, Galaj E, Zhang X, Shen Q, Liu Y, Cong B, Wen D, Ma C. The role of circTmeff-1 in incubation of context-induced morphine craving. Pharmacological Research, 2021;170:105722.
  • 49. Shen Q, Xie B, Galaj E, Yu H, Li X, Lu Y, Zhang M, Wen D, Ma C. CircTmeff-1 in the nucleus accumbens regulates the reconsolidation of cocaine-associated memory. Brain Research Bulletin, 2022;185:64-73.
  • 50. Bu Q, Long H, Shao X, Gu H, Kong J, Luo L, Liu B, Guo W, Wang H, Tian J, Zhao Y, Cen, X. Cocaine induces differential circular RNA expression in striatum. Translational Psychiatry, 2019;9:199.
  • 51. Chen Y, Li X, Meng S, Huang S, Chang S, Shi J. Identification of Functional CircRNA–miRNA–mRNA Regulatory Network in Dorsolateral Prefrontal Cortex Neurons of Patients With Cocaine Use Disorder. Frontiers in Molecular Neuroscience, 2022;15:839233.
  • 52. Li J, Shi Q, Wang Q, Tan X, Pang K, Liu X, Zhu S, Xi K, Zhang J, Gao Q, Hu Y, Sun J. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neuroscience Letters, 2019;701:146-153.
  • 53. Li J, Sun Q, Zhu S, Xi K, Shi Q, Pang K, Liu X, Li M, Zhang Y, Sun J. Knockdown of circHomer1 ameliorates METH-induced neuronal injury through inhibiting Bbc3 expression. Neuroscience Letters, 2020;732:135050.
  • 54. Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharmaceutica Sinica B. 2023;13:916-941.
  • 55. Shen X, & Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic acids research, 2018;46:1584-1600.
  • 56. Dhuri K, Bechtold C, Quijano E, Pham H, Gupta, A, Vikram A, & Bahal R. Antisense oligonucleotides: an emerging area in drug discovery and development. Journal of clinical medicine, 2020;9:2004.
  • 57. Batista-Duharte A, Sendra L, Jos M, Damiana T, Carlos IZ, & Aliño SF. Progress in the use of antisense oligonucleotides for vaccine improvement. Biomolecules 2020;10:316.
  • 58. Lee LK, & Roth CM. Antisense technology in molecular and cellular bioengineering. Current opinion in biotechnology, 2003;14:505-511.
  • 59. Thakur S, Sinhari A, Jain P, & Jadhav HR. A perspective on oligonucleotide therapy: Approaches to patient customization. Frontiers in Pharmacology, 2022;13:1006304.
  • 60. Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, & Rigo,F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature, 2015;518: 409-412.
  • 61. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, & Dimmeler S. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circulation research, 2014;114:1389-1397.
  • 62. Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, Brug M, & Wahlestedt C. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature biotechnology, 2012;30:453-459.
  • 63. Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chemical Society Reviews. 2021;50:2224-43.
  • 64. Nectow AR, Nestler EJ. Viral tools for neuroscience. Nature Reviews Neuroscience. 2020;21:669-81.
  • 65. Lundstrom K. Viral vectors applied for RNAi-based antiviral therapy. Viruses. 2020;12:924.
  • 66. Borel F, Gernoux G, Sun H, Stock R, Blackwood M, Brown Jr RH, Mueller C. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Science Translational Medicine. 2018;10:eaau6414.
  • 67. Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, Su Q, Kramer J, Zhong L, Ahmed SS, Zhang H. Global CNS transduction of adult mice by intravenously delivered rAAVrh. 8 and rAAVrh. 10 and nonhuman primates by rAAVrh. 10. Molecular Therapy. 2014;22:1299-309.
  • 68. Martier R, Sogorb-Gonzalez M, Stricker-Shaver J, Hübener-Schmid J, Keskin S, Klima J, Toonen LJ, Juhas S, Juhasova J, Ellederova Z, Motlik J. Development of an AAV-based microRNA gene therapy to treat Machado-Joseph disease. Molecular Therapy-Methods & Clinical Development. 2019;15:343-58.
  • 69. Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;101:839-62.
  • 70. Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, Salem AK, Bartholomay LC, Bellaire BH, Narasimhan B. Nano-enabled delivery of diverse payloads across complex biological barriers. Journal of controlled release. 2015;219:548-59.
  • 71. Yang J, Luo S, Zhang J, Yu T, Fu Z, Zheng Y, Xu X, Liu C, Fan M, Zhang Z. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson's disease. Neurobiology of Disease. 2021;148:105218.
  • 72. Salarpour S, Barani M, Pardakhty A, Khatami M, Chauhan NP. The application of exosomes and exosome-nanoparticle in treating brain disorders. Journal of Molecular Liquids. 2022;350:118549.
  • 73. Tosi G, Duskey JT, Kreuter J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert opinion on drug delivery. 2020;17:23-32.
  • 74. Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R. Nanoparticle delivered anti-miR-141-3p for stroke therapy. Cells. 2021;10:1011.
  • 75. Chivero ET, Liao K, Niu F, Tripathi A, Tian C, Buch S, Hu G. Engineered extracellular vesicles loaded with miR-124 attenuate cocaine-mediated activation of microglia. Frontiers in Cell and Developmental Biology. 2020;8:573.
  • 76. Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications. Nanoscale. 2014;6(4):2146-52.
  • 77. Zhou Y, Zhu F, Liu Y, Zheng M, Wang Y, Zhang D, Anraku Y, Zou Y, Li J, Wu H, Pang X. Blood-brain barrier–penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Science advances. 2020;6:eabc7031.
  • 78. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology. 2011;29:341-5.
  • 79. Chen L, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, Yerbury JJ, Vine KL. Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Frontiers in neuroscience. 2017;11:476.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Farmakoloji ve Terapötikler, Tıbbi Genetik (Kanser Genetiği hariç), Adli Tıp
Bölüm DERLEMELER / REVIEWS
Yazarlar

Süheyla Ayfer Alkaç 0000-0002-9093-854X

Selda Mercan 0000-0002-0431-6972

Proje Numarası TDK-2020-35144
Yayımlanma Tarihi 27 Mayıs 2024
Gönderilme Tarihi 20 Ekim 2023
Kabul Tarihi 27 Kasım 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Alkaç SA, Mercan S. RNA Dünyasından Kliniğe: Madde Kullanım Bozuklukları için RNA Terapötikleri. Osmangazi Tıp Dergisi. 2024;46(3):493-509.


13299        13308       13306       13305    13307  1330126978