Araştırma Makalesi
BibTex RIS Kaynak Göster

Therapeutic Potential of Amcasertib in a Xenograft Model of Ovarian Cancer

Yıl 2026, Cilt: 48 Sayı: 2, 175 - 181, 11.02.2026
https://doi.org/10.20515/otd.1738567

Öz

Ovarian cancer is one of the leading causes of mortality among women and is an aggressive disease that is usually diagnosed in advanced stages. Treatment options are usually limited due to late diagnosis. Although chemotherapy plays an important role in the treatment of ovarian cancer, since the chemotherapeutic agents used in clinical treatment do not produce the desired response in all patients, new agents are being sought. Amcasertib (BBI503), the first cancer stemness kinase inhibitor, inhibits NANOG and other cancer stem cell pathways by targeting kinases with anti-cancer activity. In this study, it was aimed to investigate the therapeutic effects of Amcasertib, which we previously thought that it could be used as a new therapeutic agent in ovarian cancer and cancer stem cell models by in vitro methods, in ovarian cancer xenograft model for the first time. Firstly, the highest tolerable MTD dose of Amcasertib was determined for the first time by performing acute cytotoxicity analysis and then a xenograft model was established using ovarian cancer stem cells (OCSC). Amcasertib treatment was administered to mice with complete tumour development and the effects of Amcasertib on tumour growth were evaluated. The MTD dose of Amcasertib was determined to be 10 mg/kg by acute cytotoxicity analysis and it was determined that Amcasertib was ineffective on tumour treatment by comparative analyses performed on tumour tissues sacrificed as a result of Amcasertib treatment in xenograft ovarian cancer models established using OCSC cells. It is predicted that Amcasertib, which is determined to have anti-invasive, anti-metastatic and increased apoptotic effects in line with the findings obtained as a result of in-vitro studies, can be used as a therapeutic agent with some molecular modifications to be made in its chemical structure. Additional studies are needed to determine the molecular mechanisms underlying the failure of Amcasertib to show anti-cancer activity in ovarian cancer treatment in-vivo.

Kaynakça

  • 1. Lu B, Chen S, Guan X, Chen X, Du Y, Yuan J, Wang J, Wu Q, Zhou L, Huang X, Zhao Y. Lactate accumulation induces H4K12la to activate super-enhancer-driven RAD23A expression and promote niraparib resistance in ovarian cancer. Molecular Cancer. 2025;24(1):83.
  • 2. Zhang X, Wei X, Shi L, Jiang H, Ma F, Li Y, Li C, Ma Y, Ma Y. The latest research progress: active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. Journal of Ethnopharmacology. 2025;337:118811.
  • 3. Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. InSeminars in oncology nursing. 2019;35(2):151-156. WB Saunders.
  • 4. Menon U, Karpinskyj C, Gentry-Maharaj A. Ovarian cancer prevention and screening. Obstetrics & Gynecology. 2018;131(5):909-27.
  • 5. Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer chemotherapy and pharmacology. 2018;81:17-38.
  • 6. Bisht S, Nigam M, Kunjwal SS, Sergey P, Mishra AP, Sharifi-Rad J. Cancer stem cells: from an insight into the basics to recent advances and therapeutic targeting. Stem Cells International. 2022(1):9653244.
  • 7. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. The Journal of clinical investigation. 2010;120(1):41-50.
  • 8. Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduction and Targeted Therapy. 2024;5;9(1):170.
  • 9. Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE open medicine. 2021;9:20503121211034366
  • 10. Sonbol MB, Ahn DH, Bekaii-Saab T. Therapeutic targeting strategies of cancer stem cells in gastrointestinal malignancies. Biomedicines. 2019;7(1):17.
  • 11. Guler Kara H, Ozates NP, Asik A, Gunduz C. Cancer stemness kinase inhibitor amcasertib: A promising therapeutic agent in ovarian cancer stem and cancer cell models with different genetic profiles. Medical Oncology. 2023; 27;40(12):342.
  • 12. Vassileva V, Grant J, De Souza R, Allen C, Piquette-Miller M. Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer chemotherapy and pharmacology. 2007;60(6):907-14.
  • 13. Shaw TJ, Senterman MK, Dawson K, Crane CA, Vanderhyden BC. Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Molecular therapy. 2004;10(6):1032-42.).
  • 14. Kurman RJ, Shih IM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. The American journal of pathology. 2016;186(4):733-47.
  • 15. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA: a cancer journal for clinicians. 2018;68(4):284-96.
  • 16. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA: a cancer journal for clinicians. 2024;74(1):12-49.
  • 17. Moore RG., et al. Risk of Ovarian Malignancy Algorithm (ROMA) for the Prediction of Epithelial Ovarian Cancer. Clinical Obstetrics and Gynecology, 2019;62(1),:9–37.
  • 18. Matulonis UA., et al. Olaparib maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation: A phase 3 trial. The Lancet Oncology, 2016;17(7): 735–745.
  • 19. Hubbard JM, Grothey A. Napabucasin: an update on the first-in-class cancer stemness inhibitor. Drugs. 2017;77(1WEF0):1091–103.
  • 20. Jin X, Jin X, Kim H. Cancer stem cells and differentiation therapy. Tumor Biol. 2017;39(10):1–11.
  • 21. Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise review: NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells. 2015;33(8):2381–90.
  • 22. Gong S, Li Q, Jeter CR, Fan Q, Tang DG, Liu B. Regulation of NANOG in cancer cells. Molecular carcinogenesis. 2015;54(9):679-87.
  • 23. Cote GM, Chau NG, Spira AI, Edenfield WJ, Laurie SA, Richards DA, Richey SL, Gao Y, Li Y, Li W, Hitron M. A phase 1b/2 study of amcasertib, a first-in-class cancer stemness kinase inhibitor in advanced head and neck cancer. 2017, ASCO Annual Meeting (Clinical trial information: NCT01781455).
  • 24. El-Rayes BF, Richards DA, Cohn AL, Richey SL, Feinstein T, Kundranda MN, El-Khoueiry AB, Melear JM, Braiteh FS, Hitron M, Ortuzar WF. BBI608-503-103HCC: A phase Ib/II clinical study of napabucasin (BBI608) in combination with sorafenib or amcasertib (BBI503) in combination with sorafenib (Sor) in adult patients with hepatocellular carcinoma (HCC).2017, ASCO Annual Meeting (Clinical trial information: NCD02279719).
  • 25. Cote GM, Edenfield WJ, Laurie SA, Chau NG, Becerra C, Spira AI, Li Y, Li W, Hitron M, Li C. A phase 1b/2 study of amcasertib, a first-in-class cancer stemness kinase inhibitor, in advanced adenoid cystic carcinoma. 2017, ASCO Annual Meeting (Clinical trial information: NCT01781455.).
  • 26. Jia Z, Zhang Y, Yan A, Wang M, Han Q, Wang K, Wang J, Qiao C, Pan Z, Chen C, Hu D. 1, 25-dihydroxyvitamin D3 signaling-induced decreases in IRX4 inhibits NANOG-mediated cancer stem-like properties and gefitinib resistance in NSCLC cells. Cell Death & Disease. 2020, 20;11(8):670.
  • 27. Aşık A, Kara HG, Özateş NP, Gündüz C. Amcasertib Increases Apoptosis While Decreasing Invasive and Migrating Abilities in Breast Cancer Stem Cells. Clinical and Experimental Health Sciences. 2024;14(3):800-6.
  • 28. ClinicalTrials.gov, ID: NCT02432690 (https://clinicaltrials.gov/study/NCT02432690?term=amcasertib&rank=1&tab=history&a=13#version-content-panel. Erişim tarihi: 15.06.2025).

Ksenograft Over Kanseri Modelinde Amcasertib’in Terapötik Potansiyeli

Yıl 2026, Cilt: 48 Sayı: 2, 175 - 181, 11.02.2026
https://doi.org/10.20515/otd.1738567

Öz

Over kanseri; kadınlar arasında önde gelen mortalite nedenlerinden biri olup çoğunlukla ileri evrelerde tanı konulan agresif bir hastalıktır. Geç teşhisten dolayı tedavi seçenekleri genellikle sınırlı kalmaktadır. Over kanseri tedavisinde kemoterapi önemli bir yer tutmakta ancak klinik tedavide kullanılan kemoterapötiklerin her hastada istenilen yanıtı verememesi nedeniyle, kemoterapide yeni ajan arayışlarına gidilmektedir. Amcasertib (BBI503), kanser köklülük kinaz inhibitörlerinin ilki olup antikanser aktivitesiyle kinazları hedefleyerek NANOG ve diğer kanser kök hücre yolaklarını inhibe etmektedir. Bu çalışmada daha önce over kanser ve kanser kök hücre modellerinde in vitro yöntemlerle yeni terapötik ajan olarak kullanılabileceğini düşündüğümüz Amcasertib’in ilk kez over kanseri ksenograft modelindeki terapötik etkilerinin araştırılması amaçlanmıştır. Öncelikle akut sitotoksisite analizi yapılarak Amcasertib’in tolere edilebilir en yüksek MTD dozu ilk kez belirlenmiş ve ardından over kanser kök hücreleri (OCSC) kullanılarak ksenograft model oluşturulmuştur. Tümör gelişimi tamamlanan farelerde Amcasertib tedavisi uygulanmış ve Amcasertib’in tümör büyümesi üzerine etkileri değerlendirilmiştir. Akut sitotoksisite analizi ile Amcasertib’in MTD dozunun 10 mg/kg olduğu belirlenmiş ve OCSC hücreleri kullanılarak oluşturulmuş ksenograft over kanseri modellerinde Amcasertib tedavisi sonucunda sakriye edilen tümör dokularında yapılan karşılaştırmalı analizler ile Amcasertib’in tümör tedavisi üzerine etkisiz kaldığı belirlenmiştir. İn-vitro çalışmalar sonucunda elde ettiğimiz bulgular doğrultusunda anti-invaziv, anti-metastatik ve artmış apoptotik etkilere sahip olduğu belirlenen Amcasertib’in kimyasal yapısında yapılacak bazı moleküler modifikasyonlarla tedavide kullanılabilir bir ajan olarak yer alabileceği öngörülmektedir. Amcasertib’in in-vivo over kanseri tedavisinde anti-kanser aktivite gösterememesinin altında yatan moleküler mekanizmaların belirlenebilmesi için ek çalışmalara ihtiyaç duyulmaktadır.

Etik Beyan

Bu çalışma Dokuz Eylül Üniversitesi İzmir Biyotıp ve Genom Merkezi Hayvan Deneyleri Yerel Etik Kurulu tarafından onaylanmıştır. Tarih: 12.09.2024, Onay No: 2022-019.

Destekleyen Kurum

Bu çalışma, Türkiye Sağlık Enstitüleri Başkanlığı (TÜSEB) tarafından 18036 numaralı proje ile desteklenmiştir.

Teşekkür

Projeye verdiği destekten ötürü TUSEB’e teşekkürlerimizi sunarız.

Kaynakça

  • 1. Lu B, Chen S, Guan X, Chen X, Du Y, Yuan J, Wang J, Wu Q, Zhou L, Huang X, Zhao Y. Lactate accumulation induces H4K12la to activate super-enhancer-driven RAD23A expression and promote niraparib resistance in ovarian cancer. Molecular Cancer. 2025;24(1):83.
  • 2. Zhang X, Wei X, Shi L, Jiang H, Ma F, Li Y, Li C, Ma Y, Ma Y. The latest research progress: active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. Journal of Ethnopharmacology. 2025;337:118811.
  • 3. Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. InSeminars in oncology nursing. 2019;35(2):151-156. WB Saunders.
  • 4. Menon U, Karpinskyj C, Gentry-Maharaj A. Ovarian cancer prevention and screening. Obstetrics & Gynecology. 2018;131(5):909-27.
  • 5. Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer chemotherapy and pharmacology. 2018;81:17-38.
  • 6. Bisht S, Nigam M, Kunjwal SS, Sergey P, Mishra AP, Sharifi-Rad J. Cancer stem cells: from an insight into the basics to recent advances and therapeutic targeting. Stem Cells International. 2022(1):9653244.
  • 7. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. The Journal of clinical investigation. 2010;120(1):41-50.
  • 8. Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduction and Targeted Therapy. 2024;5;9(1):170.
  • 9. Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE open medicine. 2021;9:20503121211034366
  • 10. Sonbol MB, Ahn DH, Bekaii-Saab T. Therapeutic targeting strategies of cancer stem cells in gastrointestinal malignancies. Biomedicines. 2019;7(1):17.
  • 11. Guler Kara H, Ozates NP, Asik A, Gunduz C. Cancer stemness kinase inhibitor amcasertib: A promising therapeutic agent in ovarian cancer stem and cancer cell models with different genetic profiles. Medical Oncology. 2023; 27;40(12):342.
  • 12. Vassileva V, Grant J, De Souza R, Allen C, Piquette-Miller M. Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer chemotherapy and pharmacology. 2007;60(6):907-14.
  • 13. Shaw TJ, Senterman MK, Dawson K, Crane CA, Vanderhyden BC. Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Molecular therapy. 2004;10(6):1032-42.).
  • 14. Kurman RJ, Shih IM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. The American journal of pathology. 2016;186(4):733-47.
  • 15. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA: a cancer journal for clinicians. 2018;68(4):284-96.
  • 16. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA: a cancer journal for clinicians. 2024;74(1):12-49.
  • 17. Moore RG., et al. Risk of Ovarian Malignancy Algorithm (ROMA) for the Prediction of Epithelial Ovarian Cancer. Clinical Obstetrics and Gynecology, 2019;62(1),:9–37.
  • 18. Matulonis UA., et al. Olaparib maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation: A phase 3 trial. The Lancet Oncology, 2016;17(7): 735–745.
  • 19. Hubbard JM, Grothey A. Napabucasin: an update on the first-in-class cancer stemness inhibitor. Drugs. 2017;77(1WEF0):1091–103.
  • 20. Jin X, Jin X, Kim H. Cancer stem cells and differentiation therapy. Tumor Biol. 2017;39(10):1–11.
  • 21. Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise review: NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells. 2015;33(8):2381–90.
  • 22. Gong S, Li Q, Jeter CR, Fan Q, Tang DG, Liu B. Regulation of NANOG in cancer cells. Molecular carcinogenesis. 2015;54(9):679-87.
  • 23. Cote GM, Chau NG, Spira AI, Edenfield WJ, Laurie SA, Richards DA, Richey SL, Gao Y, Li Y, Li W, Hitron M. A phase 1b/2 study of amcasertib, a first-in-class cancer stemness kinase inhibitor in advanced head and neck cancer. 2017, ASCO Annual Meeting (Clinical trial information: NCT01781455).
  • 24. El-Rayes BF, Richards DA, Cohn AL, Richey SL, Feinstein T, Kundranda MN, El-Khoueiry AB, Melear JM, Braiteh FS, Hitron M, Ortuzar WF. BBI608-503-103HCC: A phase Ib/II clinical study of napabucasin (BBI608) in combination with sorafenib or amcasertib (BBI503) in combination with sorafenib (Sor) in adult patients with hepatocellular carcinoma (HCC).2017, ASCO Annual Meeting (Clinical trial information: NCD02279719).
  • 25. Cote GM, Edenfield WJ, Laurie SA, Chau NG, Becerra C, Spira AI, Li Y, Li W, Hitron M, Li C. A phase 1b/2 study of amcasertib, a first-in-class cancer stemness kinase inhibitor, in advanced adenoid cystic carcinoma. 2017, ASCO Annual Meeting (Clinical trial information: NCT01781455.).
  • 26. Jia Z, Zhang Y, Yan A, Wang M, Han Q, Wang K, Wang J, Qiao C, Pan Z, Chen C, Hu D. 1, 25-dihydroxyvitamin D3 signaling-induced decreases in IRX4 inhibits NANOG-mediated cancer stem-like properties and gefitinib resistance in NSCLC cells. Cell Death & Disease. 2020, 20;11(8):670.
  • 27. Aşık A, Kara HG, Özateş NP, Gündüz C. Amcasertib Increases Apoptosis While Decreasing Invasive and Migrating Abilities in Breast Cancer Stem Cells. Clinical and Experimental Health Sciences. 2024;14(3):800-6.
  • 28. ClinicalTrials.gov, ID: NCT02432690 (https://clinicaltrials.gov/study/NCT02432690?term=amcasertib&rank=1&tab=history&a=13#version-content-panel. Erişim tarihi: 15.06.2025).
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Halk Sağlığı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hale Guler Kara 0000-0002-4304-3727

Neslihan Pınar Özateş 0000-0001-6856-4644

Aycan Aşık 0000-0002-4123-4175

Buşra Bara Özcan 0000-0002-3938-3171

Çevik Gürel 0000-0003-0266-2115

Buket Kosova 0000-0003-3636-6082

Vildan Bozok 0000-0003-3915-6363

Halit Akbaş 0000-0002-3359-5181

Feridun Akkafa 0000-0002-9292-2410

Fuat Dilmeç 0000-0001-9725-9315

Cumhur Gündüz 0000-0002-6593-3237

Gönderilme Tarihi 10 Temmuz 2025
Kabul Tarihi 1 Aralık 2025
Yayımlanma Tarihi 11 Şubat 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 48 Sayı: 2

Kaynak Göster

Vancouver 1.Guler Kara H, Özateş NP, Aşık A, Bara Özcan B, Gürel Ç, Kosova B, vd. Ksenograft Over Kanseri Modelinde Amcasertib’in Terapötik Potansiyeli. Osmangazi Tıp Dergisi [Internet]. 01 Şubat 2026;48(2):175-81. Erişim adresi: https://izlik.org/JA47UL69NA


13299        13308       13306       13305    13307  1330126978