Araştırma Makalesi
BibTex RIS Kaynak Göster

Duodenum Mukozasında Tim-3 Ekspresyonu: Çölyak Hastalığının Patogenezinde ve Tanısında İmmün Kontrol Noktası Molekülü Olarak Rolü

Yıl 2026, Cilt: 48 Sayı: 2, 166 - 174, 11.02.2026
https://doi.org/10.20515/otd.1782586

Öz

Çölyak hastalığında (ÇH) immün kontrol noktası moleküllerinin (İKM) ekspresyonuna ilişkin sınırlı veri bulunmaktadır. Bu çalışmada, ÇH hastalarına ve bazılarında intraepitelyal lenfosit (İEL) artışı olan ÇH olmayan hastalara ait duodenum biyopsilerinde Tim-3 ekspresyonunun değerlendirilmesi amaçlandı. Yetişkin gastroenteroloji kliniğine başvuran 214 bireyin duodenal dokuları yeniden değerlendirildi. Amerikan Gastroenteroloji Koleji Kılavuzları, ÇH tanısını doğrulamak için kullanıldı. İmmünohistokimyasal analizler için formalinle fikse edilmiş parafine gömülmüş duodenum dokularından kesitler hazırlandı. Lamina propriada en yüksek Tim-3 ekspresyonuna sahip alan 40x (BBA) büyütmede sayıldı. Receiver Operating Characteristic analizi, ÇH tanısını "BBA başına >9" (p<0.001, AUC: 0.744) olarak öngören bir kesme değeri sundu. Yüksek Tim-3 ekspresyonu, daha yüksek İEL ve ÇH tanısı ile ilişkiliydi ve tüm kohortta ÇH'nin endoskopik ve serolojik bulgularıyla korele idi (p<0.001). ÇH grubunda, Tim-3 pozitif hücre sayıları ile ortalama İEL sayıları arasında bir korelasyon bulundu (p=0.007, Spearman'ın rho: 0.279). Diğer taraftan, ÇH hastalarında Tim-3 ekspresyonu ile Marsh tipleri (p=0.291), serum tTG (p=0.482) ve EMA (p=0.765) titreleri arasında bir fark tespit edilmedi. ÇH olmayan grupta, Tim-3 ekspresyonu İEL'deki artıştan ve gastrik Helicobacter pylori enfeksiyonundan etkilenmemiştir. Bu çalışmada, Tim-3'ün bir İKM olarak duodenum mukozasındaki ekspresyon profilini ilk kez gösterdik. Bu bulguların daha ileri analizlerle doğrulanması, duodenum mukozasındaki inflamatuar döngünün daha iyi anlaşılmasına ve ÇH hastalarının tanısında ve patogenezinin anlaşılmasında yeni bakış açılarına olanak sağlayacaktır.

Kaynakça

  • Chulkina M, Beswick EJ, Pinchuk IV. Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. International journal of molecular sciences. 2020;21(23).
  • 2. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annual review of immunology. 2008;26:677-704.
  • 3. Lerner A, Benzvi C. Checkpoint Inhibitors and Induction of Celiac Disease-like Condition. Biomedicines. 2022;10(3).
  • 4. Song GG, Kim JH, Kim YH, et al. Association between CTLA-4 polymorphisms and susceptibility to Celiac disease: a meta-analysis. Human immunology. 2013;74(9):1214-8.
  • 5. Ponce de León C, Angel López-Casado M, Lorite P, et al. Dysregulation of the PD-1/PD-L1 pathway contributes to the pathogenesis of celiac disease. Cellular & molecular immunology. 2019;16(9):777-9.
  • 6. Ponce de León C, Lorite P, López-Casado MÁ, et al. Significance of PD1 Alternative Splicing in Celiac Disease as a Novel Source for Diagnostic and Therapeutic Target. 2021;12.
  • 7. Isabel T, Miguel Ángel López C, Teresa P, et al. Immune Checkpoints as a Novel Source for Diagnostic and Therapeutic Target in Celiac Disease. In: Jianyuan C, editor. Celiac Disease. Rijeka: IntechOpen; 2021. p. Ch. 3.
  • 8. Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nature reviews Immunology. 2020;20(3):173-85.
  • 9. Zhao L, Cheng S, Fan L, et al. TIM-3: An update on immunotherapy. International immunopharmacology. 2021;99:107933.
  • 10. Liu R, Wang X, Chen X, et al. TIM-3 rs1036199 polymorphism increases susceptibility to autoimmune diseases: evidence based on 4200 subjects. Bioscience reports. 2018;38(6).
  • 11. Shi F, Guo X, Jiang X, et al. Dysregulated Tim-3 expression and its correlation with imbalanced CD4 helper T cell function in ulcerative colitis. Clinical Immunology. 2012;145(3):230-40.
  • 12. Li X, Chen G, Li Y, et al. Involvement of T cell Ig Mucin-3 (Tim-3) in the negative regulation of inflammatory bowel disease. Clinical immunology (Orlando, Fla). 2010;134(2):169-77.
  • 13. Rubio-Tapia A, Hill ID, Semrad C, et al. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. The American journal of gastroenterology. 2023;118(1):59-76.
  • 14. Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. European journal of gastroenterology & hepatology. 1999;11(10):1185-94.
  • 15. Zhang B, Chikuma S, Hori S, et al. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(30):8490-5.
  • 16. Gianchecchi E, Fierabracci A. Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Frontiers in immunology. 2018;9:2374.
  • 17. Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of experimental medicine. 2009;206(13):3015-29.
  • 18. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity. 2016;44(5):989-1004.
  • 19. Colamatteo A, Carbone F, Bruzzaniti S, et al. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. 2020;10.
  • 20. Zanzi D, Stefanile R, Santagata S, et al. IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in Celiac disease. The American journal of gastroenterology. 2011;106(7):1308-17.
  • 21. Granzotto M, dal Bo S, Quaglia S, et al. Regulatory T-cell function is impaired in celiac disease. Digestive diseases and sciences. 2009;54(7):1513-9.
  • 22. Ben Ahmed M, Belhadj Hmida N, Moes N, et al. IL-15 renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. Journal of immunology (Baltimore, Md : 1950). 2009;182(11):6763-70.
  • 23. Benahmed M, Meresse B, Arnulf B, et al. Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology. 2007;132(3):994-1008.
  • 24. Levescot A, Malamut G, Cerf-Bensussan N. Immunopathogenesis and environmental triggers in coeliac disease. Gut. 2022;71(11):2337-49.
  • 25. Abadie V, Jabri B. IL-15: a central regulator of celiac disease immunopathology. Immunological reviews. 2014;260(1):221-34.
  • 26. Chang F, Mahadeva U, Deere H. Pathological and clinical significance of increased intraepithelial lymphocytes (IELs) in small bowel mucosa. 2005;113(6):385-99.
  • 27. Guz-Mark A, Zevit N, Morgenstern S, et al. Duodenal intraepithelial lymphocytosis is common in children without coeliac disease, and is not meaningfully influenced by Helicobacter pylori infection. 2014;39(11):1314-20.
  • 28. Agin M, Batun I, Ozdemir S, et al. Prevalence of Helicobacter pylori in Turkish children with celiac disease and its effect on clinical, histopathological, and laboratory parameters. 2019;15(6):1475-81.
  • 29. Lasa J, Zubiaurre I, Dima G, et al. HELICOBACTER PYLORI PREVALENCE IN PATIENTS WITH CELIAC DISEASE: results from a cross-sectional study. Arquivos de gastroenterologia. 2015;52(2):139-42.
  • 30. Diamanti A, Maino C, Niveloni S, et al. Characterization of gastric mucosal lesions in patients with celiac disease: a prospective controlled study. The American journal of gastroenterology. 1999;94(5):1313-9.
  • 31. Simondi D, Ribaldone DG, Bonagura GA, et al. Helicobacter pylori in celiac disease and in duodenal intraepithelial lymphocytosis: Active protagonist or innocent bystander? Clinics and research in hepatology and gastroenterology. 2015;39(6):740-5.
  • 32. Amlashi FI, Norouzi Z, Sohrabi A, et al. A systematic review and meta-analysis for association of Helicobacter pylori colonization and celiac disease. PloS one. 2021;16(3):e0241156.
  • 33. Yilmaz F, Atay K, Çirkin G, et al. The impact of gastric Helicobacter pylori infection on duodenal mucosa: New evidence on the alteration of intraepithelial lymphocytes. American Journal of Clinical Pathology. 2025;164(3):443-54.
  • 34. Go D-M, Lee SH, Lee S-H, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells Mitigate Helicobacter-Induced Gastritis. Cellular and Molecular Gastroenterology and Hepatology. 2021;12(2):715-39.
  • 35. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature genetics. 2001;27(1):20-1.
  • 36. van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clinical & developmental immunology. 2007;2007:89017.
  • 37. Mercer F, Unutmaz D. The biology of FoxP3: a key player in immune suppression during infections, autoimmune diseases and cancer. Advances in experimental medicine and biology. 2009;665:47-59.
  • 38. Granzotto M, dal Bo S, Quaglia S, et al. Regulatory T-Cell Function Is Impaired in Celiac Disease. Digestive diseases and sciences. 2009;54(7):1513-9.
  • 39. WANG Y, LIU XP, ZHAO ZB, et al. Expression of CD4+ forkhead box P3 (FOXP3)+ regulatory T cells in inflammatory bowel disease. 2011;12(4):286-94.
  • 40. Ban H, Andoh A, Shioya M, et al. Increased number of FoxP3+CD4+ regulatory T cells in inflammatory bowel disease. Molecular medicine reports. 2008;1(5):647-50.
  • 41. Yu QT, Saruta M, Avanesyan A, et al. Expression and functional characterization of FOXP3+CD4+ regulatory T cells in ulcerative colitis. Inflammatory Bowel Diseases. 2007;13(2):191-9.
  • 42. Wang F, Zhou F, Peng J, et al. Macrophage Tim-3 maintains intestinal homeostasis in DSS-induced colitis by suppressing neutrophil necroptosis. Redox Biology. 2024;70:103072.
  • 43. Yilmaz F, Atay K. FOXP3 expression in duodenal mucosa: Unique role in pathogenesis and differential diagnosis of celiac disease. Annals of Diagnostic Pathology. 2024:152393.
  • 44. Camarca A, Rotondi Aufiero V, Mazzarella G. Role of Regulatory T Cells and Their Potential Therapeutic Applications in Celiac Disease. International journal of molecular sciences. 2023;24(19).

Tim-3 Expression in Duodenal Mucosa: The Role in the Pathogenesis and Diagnosis of Celiac Disease As An İmmune Checkpoint Molecule

Yıl 2026, Cilt: 48 Sayı: 2, 166 - 174, 11.02.2026
https://doi.org/10.20515/otd.1782586

Öz

Limited data exist on the expression of immune checkpoint molecules (ICMs) in celiac disease (CD). This study aims to evaluate Tim-3 expression in duodenal biopsies from CD patients and those of non-CD patients, some of whom have increased intraepithelial lymphocytes (IELs). Duodenal tissues from 214 individuals who applied to the adult gastroenterology clinic were re-evaluated. The American College of Gastroenterology Guidelines were used to confirm the diagnosis of CD. Sections were prepared from formalin-fixed paraffin-embedded duodenal tissues for immunohistochemical analyses. The area with the highest Tim-3 expression in the lamina propria was counted at 40x (HPF) magnification. Receiver operating characteristic analysis offered a cut-off value predicting CD diagnosis as “>9 per HPF” (p<0.001, AUC: 0.744). High Tim-3 expression was associated with higher IEL numbers and a diagnosis of CD and correlated with endoscopic and serological findings of CD (p<0.001) in the whole cohort. In the CD group, a correlation was found between Tim-3 positive cell numbers and mean IEL counts (p=0.007, Spearman’s rho: 0.279). On the other hand, no difference was detected between Tim-3 expression and Marsh types (p=0.291), serum tTG (p=0.482), and EMA (p=0.765) titers in CD patients. In the non-CD group, Tim-3 expression was unaffected by either the increase in IEL or gastric Helicobacter pylori infection. In this study, we first demonstrated the expression profile of Tim-3 in the duodenal mucosa as an ICM. Confirmation of these findings with further analyses will provide a better understanding of the inflammatory cycle in the duodenal mucosa and new insights into diagnosing and understanding CD pathogenesis.

Kaynakça

  • Chulkina M, Beswick EJ, Pinchuk IV. Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. International journal of molecular sciences. 2020;21(23).
  • 2. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annual review of immunology. 2008;26:677-704.
  • 3. Lerner A, Benzvi C. Checkpoint Inhibitors and Induction of Celiac Disease-like Condition. Biomedicines. 2022;10(3).
  • 4. Song GG, Kim JH, Kim YH, et al. Association between CTLA-4 polymorphisms and susceptibility to Celiac disease: a meta-analysis. Human immunology. 2013;74(9):1214-8.
  • 5. Ponce de León C, Angel López-Casado M, Lorite P, et al. Dysregulation of the PD-1/PD-L1 pathway contributes to the pathogenesis of celiac disease. Cellular & molecular immunology. 2019;16(9):777-9.
  • 6. Ponce de León C, Lorite P, López-Casado MÁ, et al. Significance of PD1 Alternative Splicing in Celiac Disease as a Novel Source for Diagnostic and Therapeutic Target. 2021;12.
  • 7. Isabel T, Miguel Ángel López C, Teresa P, et al. Immune Checkpoints as a Novel Source for Diagnostic and Therapeutic Target in Celiac Disease. In: Jianyuan C, editor. Celiac Disease. Rijeka: IntechOpen; 2021. p. Ch. 3.
  • 8. Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nature reviews Immunology. 2020;20(3):173-85.
  • 9. Zhao L, Cheng S, Fan L, et al. TIM-3: An update on immunotherapy. International immunopharmacology. 2021;99:107933.
  • 10. Liu R, Wang X, Chen X, et al. TIM-3 rs1036199 polymorphism increases susceptibility to autoimmune diseases: evidence based on 4200 subjects. Bioscience reports. 2018;38(6).
  • 11. Shi F, Guo X, Jiang X, et al. Dysregulated Tim-3 expression and its correlation with imbalanced CD4 helper T cell function in ulcerative colitis. Clinical Immunology. 2012;145(3):230-40.
  • 12. Li X, Chen G, Li Y, et al. Involvement of T cell Ig Mucin-3 (Tim-3) in the negative regulation of inflammatory bowel disease. Clinical immunology (Orlando, Fla). 2010;134(2):169-77.
  • 13. Rubio-Tapia A, Hill ID, Semrad C, et al. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. The American journal of gastroenterology. 2023;118(1):59-76.
  • 14. Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. European journal of gastroenterology & hepatology. 1999;11(10):1185-94.
  • 15. Zhang B, Chikuma S, Hori S, et al. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(30):8490-5.
  • 16. Gianchecchi E, Fierabracci A. Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Frontiers in immunology. 2018;9:2374.
  • 17. Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of experimental medicine. 2009;206(13):3015-29.
  • 18. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity. 2016;44(5):989-1004.
  • 19. Colamatteo A, Carbone F, Bruzzaniti S, et al. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. 2020;10.
  • 20. Zanzi D, Stefanile R, Santagata S, et al. IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in Celiac disease. The American journal of gastroenterology. 2011;106(7):1308-17.
  • 21. Granzotto M, dal Bo S, Quaglia S, et al. Regulatory T-cell function is impaired in celiac disease. Digestive diseases and sciences. 2009;54(7):1513-9.
  • 22. Ben Ahmed M, Belhadj Hmida N, Moes N, et al. IL-15 renders conventional lymphocytes resistant to suppressive functions of regulatory T cells through activation of the phosphatidylinositol 3-kinase pathway. Journal of immunology (Baltimore, Md : 1950). 2009;182(11):6763-70.
  • 23. Benahmed M, Meresse B, Arnulf B, et al. Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology. 2007;132(3):994-1008.
  • 24. Levescot A, Malamut G, Cerf-Bensussan N. Immunopathogenesis and environmental triggers in coeliac disease. Gut. 2022;71(11):2337-49.
  • 25. Abadie V, Jabri B. IL-15: a central regulator of celiac disease immunopathology. Immunological reviews. 2014;260(1):221-34.
  • 26. Chang F, Mahadeva U, Deere H. Pathological and clinical significance of increased intraepithelial lymphocytes (IELs) in small bowel mucosa. 2005;113(6):385-99.
  • 27. Guz-Mark A, Zevit N, Morgenstern S, et al. Duodenal intraepithelial lymphocytosis is common in children without coeliac disease, and is not meaningfully influenced by Helicobacter pylori infection. 2014;39(11):1314-20.
  • 28. Agin M, Batun I, Ozdemir S, et al. Prevalence of Helicobacter pylori in Turkish children with celiac disease and its effect on clinical, histopathological, and laboratory parameters. 2019;15(6):1475-81.
  • 29. Lasa J, Zubiaurre I, Dima G, et al. HELICOBACTER PYLORI PREVALENCE IN PATIENTS WITH CELIAC DISEASE: results from a cross-sectional study. Arquivos de gastroenterologia. 2015;52(2):139-42.
  • 30. Diamanti A, Maino C, Niveloni S, et al. Characterization of gastric mucosal lesions in patients with celiac disease: a prospective controlled study. The American journal of gastroenterology. 1999;94(5):1313-9.
  • 31. Simondi D, Ribaldone DG, Bonagura GA, et al. Helicobacter pylori in celiac disease and in duodenal intraepithelial lymphocytosis: Active protagonist or innocent bystander? Clinics and research in hepatology and gastroenterology. 2015;39(6):740-5.
  • 32. Amlashi FI, Norouzi Z, Sohrabi A, et al. A systematic review and meta-analysis for association of Helicobacter pylori colonization and celiac disease. PloS one. 2021;16(3):e0241156.
  • 33. Yilmaz F, Atay K, Çirkin G, et al. The impact of gastric Helicobacter pylori infection on duodenal mucosa: New evidence on the alteration of intraepithelial lymphocytes. American Journal of Clinical Pathology. 2025;164(3):443-54.
  • 34. Go D-M, Lee SH, Lee S-H, et al. Programmed Death Ligand 1-Expressing Classical Dendritic Cells Mitigate Helicobacter-Induced Gastritis. Cellular and Molecular Gastroenterology and Hepatology. 2021;12(2):715-39.
  • 35. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature genetics. 2001;27(1):20-1.
  • 36. van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clinical & developmental immunology. 2007;2007:89017.
  • 37. Mercer F, Unutmaz D. The biology of FoxP3: a key player in immune suppression during infections, autoimmune diseases and cancer. Advances in experimental medicine and biology. 2009;665:47-59.
  • 38. Granzotto M, dal Bo S, Quaglia S, et al. Regulatory T-Cell Function Is Impaired in Celiac Disease. Digestive diseases and sciences. 2009;54(7):1513-9.
  • 39. WANG Y, LIU XP, ZHAO ZB, et al. Expression of CD4+ forkhead box P3 (FOXP3)+ regulatory T cells in inflammatory bowel disease. 2011;12(4):286-94.
  • 40. Ban H, Andoh A, Shioya M, et al. Increased number of FoxP3+CD4+ regulatory T cells in inflammatory bowel disease. Molecular medicine reports. 2008;1(5):647-50.
  • 41. Yu QT, Saruta M, Avanesyan A, et al. Expression and functional characterization of FOXP3+CD4+ regulatory T cells in ulcerative colitis. Inflammatory Bowel Diseases. 2007;13(2):191-9.
  • 42. Wang F, Zhou F, Peng J, et al. Macrophage Tim-3 maintains intestinal homeostasis in DSS-induced colitis by suppressing neutrophil necroptosis. Redox Biology. 2024;70:103072.
  • 43. Yilmaz F, Atay K. FOXP3 expression in duodenal mucosa: Unique role in pathogenesis and differential diagnosis of celiac disease. Annals of Diagnostic Pathology. 2024:152393.
  • 44. Camarca A, Rotondi Aufiero V, Mazzarella G. Role of Regulatory T Cells and Their Potential Therapeutic Applications in Celiac Disease. International journal of molecular sciences. 2023;24(19).
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Patoloji
Bölüm Araştırma Makalesi
Yazarlar

Fatih Yılmaz 0000-0001-8216-1753

Kadri Atay 0000-0002-7570-3638

Gönderilme Tarihi 12 Eylül 2025
Kabul Tarihi 1 Aralık 2025
Yayımlanma Tarihi 11 Şubat 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 48 Sayı: 2

Kaynak Göster

Vancouver 1.Yılmaz F, Atay K. Tim-3 Expression in Duodenal Mucosa: The Role in the Pathogenesis and Diagnosis of Celiac Disease As An İmmune Checkpoint Molecule. Osmangazi Tıp Dergisi [Internet]. 01 Şubat 2026;48(2):166-74. Erişim adresi: https://izlik.org/JA79YH45AZ


13299        13308       13306       13305    13307  1330126978