Araştırma Makalesi
BibTex RIS Kaynak Göster

Potential Risk Factors in Development of the “Halo Sign” in Patients Performed Transpedicular Screw Fixation Through the Posterior Spinal Approach

Yıl 2020, , 212 - 221, 17.03.2020
https://doi.org/10.20515/otd.551271

Öz

It has been shown in literature that a
fibrous tissue called "halo sign" in the radiological terminology can
develop around the transpedicular screws implanted incompletely and/or incorrectly,
which appears after movement of the screw in the cancellous bone. In this
retrospective clinical study, 141 patients who underwent posterior spinal
instrumentation for thoracic, lumbar or thoracolumbar vertebrae were evaluated
using computed tomography (CT) and direct X-rays images for "halo
sign" formation which refers in probable failure of spinal
instrumentation. Hospital records included in the year 2014-2018 were examined
and adult patients who were performed lumbar, thoracal, and thoracolumbar
spinal instrumentation via posterior approach due to reasons such as
"spine fracture", "spondylosis",
"spondylolisthesis" and "intervertebral disc hernia" were
included and evaluated in this study. The age and sex of the patients were
recorded. Spinal X-ray and spinal CT images obtained during the postoperative
follow-up period were examined. Halo sign was seen in 13 patients. Age
(p=0.013), number of instrumented vertebrae (p=0.001) and number of
transpedicular screws (p<0.001) values were different between the patients
with halo sign and patients without halo sign. As a result, it was observed in
this study that the formation of the halo sign in posterior spinal
instrumentation system could develop in proportion to the number of
transpedicular screw and patients' age. It was thought that the halo sign
formation was not connected with the parameters called performed laminectomy,
gender, inserted intervertebral cage, or vertebral region which were inserted
transpedicular screws.

Kaynakça

  • 1. Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res. 1986; 203: 7-17.
  • 2. George DC, Krag MH, Johnson CC, Van Hal ME, Haugh LD, Grobler LJ. Hole preparation techniques for transpedicle screws. Effect on pull-out strength from human cadaveric vertebrae. Spine (Phila Pa 1976) 1991; 16(2): 181-184.
  • 3. Moran JM, Berg WS, Berry JL, Geiger JM, Steffee AD. Transpedicular screw fixation. J Orthop Res. 1989; 7(1): 107-114.
  • 4. Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ. Pedicle screw loosening: a clinically relevant complication? Eur Spine J. 2015; 24(5): 1005-1016.
  • 5. Mohi Eldin MM, Ali AM. Lumbar transpedicular implant failure: a clinical and surgical challenge and its radiological assessment. Asian Spine J. 2014; 8(3): 281-297.
  • 6. Tsuang FY, Chen CH, Wu LC, Kuo YJ, Lin SC, Chiang CJ. Biomechanical arrangement of threaded and unthreaded portions providing holding power of transpedicular screw fixation. Clin Biomech (Bristol, Avon). 2016; 39: 71-76.
  • 7. Güvenç Y, Akyoldaş G, Şentürk S, Erbulut D, Yaman O, Özer AF. How to Reduce Stress on the Pedicle Screws In Thoracic Spine? Importance of Screw Trajectory: A Finite Element Analysis. Turk Neurosurg. 2017 Dec 25. doi: 10.5137/1019-5149.JTN.21895-17.2.
  • 8. Alkaly RN, Bader DL. The Effect of Transpedicular Screw Design on Its Performance in Vertebral Bone Under Tensile Loads: A Parametric Study. Clin Spine Surg. 2016; 29(10): 433-440.
  • 9. Aghayev E, Zullig N, Diel P, Dietrich D, Benneker LM. Development and validation of a quantitative method to assess pedicle screw loosening in posterior spine instrumentation on plain radiographs. Eur Spine J. 2014; 23(3): 689-694.
  • 10. McLain RF, Fry MF, Moseley TA, Sharkey NA. Lumbar pedicle screw salvage: pullout testing of three different pedicle screw designs. J Spinal Disord. 1995; 8(1): 62-68.
  • 11. Learch TJ, Massie JB, Pathria MN, Ahlgren BA, Garfin SR. Assessment of pedicle screw placement utilizing conventional radiography and computed tomography: a proposed systematic approach to improve accuracy of interpretation. Spine (Phila Pa 1976). 2004; 29(7): 767-773.
  • 12. Romero-Muñoz LM, Alfonso M, Villas C, Zubieta JL. Effect of brightness in the evaluation of lumbar pedicular screws position: clinical study. Musculoskelet Surg. 2013; 97(2): 159-164.
  • 13. Abul-Kasim K, Ohlin A. Evaluation of implant loosening following segmental pedicle screw fixation in adolescent idiopathic scoliosis: a 2 year follow-up with low-dose CT. Scoliosis. 2014; 9: 13.
  • 14. Sapkas GS, Papadakis SA, Stathakopoulos DP, Papagelopoulos PJ, Badekas AC, Kaiser JH. Evaluation of pedicle screw position in thoracic and lumbar spine fixation using plain radiographs and computed tomography. A prospective study of 35 patients. Spine (Phila Pa 1976). 1999; 24(18): 1926-1929.
  • 15. Seifen T, Rodrigues M, Rettenbacher L, et al. The value of (18)F-fluoride PET/CT in the assessment of screw loosening in patients after intervertebral fusion stabilization. Eur J Nucl Med Mol Imaging. 2015; 42(2): 272-277.
  • 16. Kuo CH, Chang PY, Tu TH, et al. The Effect of Lumbar Lordosis on Screw Loosening in Dynesys Dynamic Stabilization: Four-Year Follow-Up with Computed Tomography. Biomed Res Int. 2015; 2015: 152435.
  • 17. Lin HH, Chang MC, Wang ST, Liu CL, Chou PH. The fates of pedicle screws and functional outcomes in a geriatric population following polymethylmethacrylate augmentation fixation for the osteoporotic thoracolumbar and lumbar burst fractures with mean ninety five month follow-up. Int Orthop. 2018; 42(6): 1313-1320.
  • 18. Kang SH, Cho YJ, Kim YB, Park SW. Pullout strength after expandable polymethylmethacrylate transpedicular screw augmentation for pedicle screw loosening. J Korean Neurosurg Soc. 2015; 57(4): 229-34.
  • 19. Karami KJ, Buckenmeyer LE, Kiapour AM, et al. Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech. 2015; 28(3): 133-9.
  • 20. Ambati DV, Wright EK Jr, Lehman RA Jr, Kang DG, Wagner SC, Dmitriev AE. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J. 2015; 15(8): 1812-22.
  • 21. Costa F, Villa T, Anasetti F, et al. Primary stability of pedicle screws depends on the screw positioning and alignment. Spine J. 2013; 13(12): 1934-9.
  • 22. Baaj AA, Reyes PM, Yaqoobi AS, et al. Biomechanical advantage of the index-level pedicle screw in unstable thoracolumbar junction fractures. J Neurosurg Spine. 2011; 14(2): 192-7.

Potential Risk Factors in Development of the “Halo Sign” in Patients Performed Transpedicular Screw Fixation Through the Posterior Spinal Approach

Yıl 2020, , 212 - 221, 17.03.2020
https://doi.org/10.20515/otd.551271

Öz

Omurgaya doğru şekilde yerleştirilmeyen transpediküler vidaların kemik
yapı içerisinde hareketine ikincil olarak vidaların etrafında ortaya çıkabilen
fibröz dokuya radyolojik terminolojide "halo işareti" adı
verilmektedir. Bu retrospektif klinik çalışmada, torasik, lomber veya
torakolomber vertebra için posterior spinal enstrümantasyon yapılan 141 hasta
incelendi ve bu hastalardaki spinal enstrümantasyonun muhtemel başarısızlığını
ortaya koyan "halo işareti" oluşumu bilgisayarlı tomografi (BT) ve
direkt grafi görüntüleri kullanılarak değerlendirildi. Bu klinik çalışmada
2014-2018 yıllarına ait hastane kayıtları incelenerek 
"omurga kırığı",
"spondiloz", "spondilolistez" ve “intervertebral disk
hernisi”
  gibi nedenlerle posterior
yaklaşımla lomber, torakal ve torakolomber spinal enstrümantasyon uygulanan
yetişkin hastalar çalışmaya dahil edildi. Hastaların omurgaları, ameliyat
sonrası takip döneminde elde edilen direkt grafi görüntüleri ve BT görüntüleri
kullanılarak değerlendirildi.
 Bulgular:
13 hastada halo belirtisi görüldü. Halo işareti olan ve halo işareti olmayan
hastalar arasında yaş (p = 0.013), vida kullanılan omurga sayısı (p = 0.001) ve
transpediküler vida sayısı (p <0.001) değerleri farklıydı. Bu çalışmanın
sonucunda, posterior spinal enstrümantasyon sisteminde halo işaretinin
oluşumunun transpediküler vida sayısı ve hasta yaşı ile orantılı olarak
gelişebileceği gözlendi. Halo işareti oluşumunda “laminektomi” uygulanmasının,
“intervertebral kafes” uygulanmasının, cinsiyetin veya “transpediküler vidanın
uygulandığı omurga seviyesi”nin etkili olmadığı düşünüldü.

Kaynakça

  • 1. Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res. 1986; 203: 7-17.
  • 2. George DC, Krag MH, Johnson CC, Van Hal ME, Haugh LD, Grobler LJ. Hole preparation techniques for transpedicle screws. Effect on pull-out strength from human cadaveric vertebrae. Spine (Phila Pa 1976) 1991; 16(2): 181-184.
  • 3. Moran JM, Berg WS, Berry JL, Geiger JM, Steffee AD. Transpedicular screw fixation. J Orthop Res. 1989; 7(1): 107-114.
  • 4. Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ. Pedicle screw loosening: a clinically relevant complication? Eur Spine J. 2015; 24(5): 1005-1016.
  • 5. Mohi Eldin MM, Ali AM. Lumbar transpedicular implant failure: a clinical and surgical challenge and its radiological assessment. Asian Spine J. 2014; 8(3): 281-297.
  • 6. Tsuang FY, Chen CH, Wu LC, Kuo YJ, Lin SC, Chiang CJ. Biomechanical arrangement of threaded and unthreaded portions providing holding power of transpedicular screw fixation. Clin Biomech (Bristol, Avon). 2016; 39: 71-76.
  • 7. Güvenç Y, Akyoldaş G, Şentürk S, Erbulut D, Yaman O, Özer AF. How to Reduce Stress on the Pedicle Screws In Thoracic Spine? Importance of Screw Trajectory: A Finite Element Analysis. Turk Neurosurg. 2017 Dec 25. doi: 10.5137/1019-5149.JTN.21895-17.2.
  • 8. Alkaly RN, Bader DL. The Effect of Transpedicular Screw Design on Its Performance in Vertebral Bone Under Tensile Loads: A Parametric Study. Clin Spine Surg. 2016; 29(10): 433-440.
  • 9. Aghayev E, Zullig N, Diel P, Dietrich D, Benneker LM. Development and validation of a quantitative method to assess pedicle screw loosening in posterior spine instrumentation on plain radiographs. Eur Spine J. 2014; 23(3): 689-694.
  • 10. McLain RF, Fry MF, Moseley TA, Sharkey NA. Lumbar pedicle screw salvage: pullout testing of three different pedicle screw designs. J Spinal Disord. 1995; 8(1): 62-68.
  • 11. Learch TJ, Massie JB, Pathria MN, Ahlgren BA, Garfin SR. Assessment of pedicle screw placement utilizing conventional radiography and computed tomography: a proposed systematic approach to improve accuracy of interpretation. Spine (Phila Pa 1976). 2004; 29(7): 767-773.
  • 12. Romero-Muñoz LM, Alfonso M, Villas C, Zubieta JL. Effect of brightness in the evaluation of lumbar pedicular screws position: clinical study. Musculoskelet Surg. 2013; 97(2): 159-164.
  • 13. Abul-Kasim K, Ohlin A. Evaluation of implant loosening following segmental pedicle screw fixation in adolescent idiopathic scoliosis: a 2 year follow-up with low-dose CT. Scoliosis. 2014; 9: 13.
  • 14. Sapkas GS, Papadakis SA, Stathakopoulos DP, Papagelopoulos PJ, Badekas AC, Kaiser JH. Evaluation of pedicle screw position in thoracic and lumbar spine fixation using plain radiographs and computed tomography. A prospective study of 35 patients. Spine (Phila Pa 1976). 1999; 24(18): 1926-1929.
  • 15. Seifen T, Rodrigues M, Rettenbacher L, et al. The value of (18)F-fluoride PET/CT in the assessment of screw loosening in patients after intervertebral fusion stabilization. Eur J Nucl Med Mol Imaging. 2015; 42(2): 272-277.
  • 16. Kuo CH, Chang PY, Tu TH, et al. The Effect of Lumbar Lordosis on Screw Loosening in Dynesys Dynamic Stabilization: Four-Year Follow-Up with Computed Tomography. Biomed Res Int. 2015; 2015: 152435.
  • 17. Lin HH, Chang MC, Wang ST, Liu CL, Chou PH. The fates of pedicle screws and functional outcomes in a geriatric population following polymethylmethacrylate augmentation fixation for the osteoporotic thoracolumbar and lumbar burst fractures with mean ninety five month follow-up. Int Orthop. 2018; 42(6): 1313-1320.
  • 18. Kang SH, Cho YJ, Kim YB, Park SW. Pullout strength after expandable polymethylmethacrylate transpedicular screw augmentation for pedicle screw loosening. J Korean Neurosurg Soc. 2015; 57(4): 229-34.
  • 19. Karami KJ, Buckenmeyer LE, Kiapour AM, et al. Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech. 2015; 28(3): 133-9.
  • 20. Ambati DV, Wright EK Jr, Lehman RA Jr, Kang DG, Wagner SC, Dmitriev AE. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J. 2015; 15(8): 1812-22.
  • 21. Costa F, Villa T, Anasetti F, et al. Primary stability of pedicle screws depends on the screw positioning and alignment. Spine J. 2013; 13(12): 1934-9.
  • 22. Baaj AA, Reyes PM, Yaqoobi AS, et al. Biomechanical advantage of the index-level pedicle screw in unstable thoracolumbar junction fractures. J Neurosurg Spine. 2011; 14(2): 192-7.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm ORİJİNAL MAKALELER / ORIGINAL ARTICLES
Yazarlar

Mustafa Öğden 0000-0002-7129-0936

Ulaş Yüksel 0000-0002-6398-4110

İbrahim Akkurt Bu kişi benim 0000-0002-3693-7976

Ahmet Turan Dağlı 0000-0002-9214-8138

Bülent Bakar 0000-0002-6236-7647

Mehmet Faik Özveren 0000-0001-7768-1519

Yayımlanma Tarihi 17 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

Vancouver Öğden M, Yüksel U, Akkurt İ, Dağlı AT, Bakar B, Özveren MF. Potential Risk Factors in Development of the “Halo Sign” in Patients Performed Transpedicular Screw Fixation Through the Posterior Spinal Approach. Osmangazi Tıp Dergisi. 2020;42(2):212-21.


13299        13308       13306       13305    13307  1330126978