Derleme
BibTex RIS Kaynak Göster

Endoplazmik Retikulum Stresi ve İlişkili Hastalıklar

Yıl 2019, Cilt: 41 Sayı: 3, 294 - 303, 01.07.2019
https://doi.org/10.20515/otd.417682

Öz

Endoplazmik retikulum, lipid ve
protein sentezi, protein katlanması, kalsiyum homeostazı gibi çeşitli
fonksiyonları gerçekleştiren bir organeldir. Bu organelde katlanmamış veya
yanlış katlanmış proteinlerin artması ve birikimi sonucu, organel homeostazında
değişiklikler meydana gelmektedir. Bu durum organelin fonksiyonlarını bozarak
endoplazmik retikulum stresine neden olmaktadır. Katlanmamış proteinler,
protein kümelerini oluşturmaya eğilimli olan ve protein içerisinde bulunan
hidrofobik aminoasit kalıntılarını ortaya çıkarmaktadır. Oldukça toksik olan bu
protein kümelerinin birçok hastalıkla ilişkisinin olduğu bilinmektedir.
Endoplazmik retikulum stresi nörodejeneratif hastalıklar, metabolik
hastalıklar, arteriosklerozis, diabetes mellitus ve obezitede ortaya
çıkmaktadır. Endoplazmik retikulum stresi ayrıca kanserle de
ilişkilendirilmiştir. Bu derlemede endoplazmik retikulum stresinin çeşitli
hastalıklar ile ilişkisi irdelenmiştir.

Kaynakça

  • 1. Özbek H. Klinik Araştırmalar Hakkında Yönetmelik. İyi Klinik Uygulamalar Dergisi. 2009; 21:12-16.
  • 2. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. The Journal of clinical investigation. 2005;115(10): 2656-64.
  • 3. Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends in molecular medicine. 2012;18(1): 59-68.
  • 4. Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. Journal of Biological Chemistry. 2004; 279(25): 25935-38.
  • 5. Kincaid MM, Cooper AA. ERADicate ER stress or die trying. Antioxidants & Redox Signaling. 2007; 9:2373-87.
  • 6. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews Molecular cell biology.2007; 8(7): 519.
  • 7. Nishikawa SI, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). Journal of biochemistry. 2005; 137(5): 551-5.
  • 8. Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology. 2007; 22(3): 193-201.
  • 9. Nakka VP, Prakash-Babu P, Vemuganti R. Crosstalk Between Endoplasmic Reticulum Stress, Oxidative Stress, and Autophagy: Potential Therapeutic Targets for Acute CNS Injuries. Molecular neurobiology. 2016; 53(1): 532-44.
  • 10. Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiological reviews. 2006; 86(4): 1133-49.
  • 11. Naidoo N. ER and aging-protein folding and the ER stress response. Ageing research reviews. 2009; 8(3): 150-59.
  • 12. Sarvani C, Sireesh D, Ramkumar KM. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacological research. 2017; 119: 412-21.
  • 13. Cao SS, Kaufman RJ. Unfolded protein response. Current biology. 2012; 22(16): R622-26.
  • 14. Ariyasu D, Yoshida H, Hasegawa Y. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders. International journal of molecular sciences. 2017; 18(2): 382
  • 15. Yoshida H. ER stress and diseases. The FEBS Journal. 2007; 274(3): 630-58.
  • 16. Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nature genetics. 2005; 37(9): 974-79.
  • 17. Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death & Differentiation. 2006; 13(3): 385-92.
  • 18. Zhang K, Kaufman RJ. The unfolded protein response A stress signaling pathway critical for health and disease. Neurology. 2006; 66(1): 102-9. 19. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biology. 1999; 1(8): 479.
  • 20. Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. Journal of Biological Chemistry. 2001; 276(46): 43446-54.
  • 21. Kahle PJ, Haass C. How does parkin ligate ubiquitin to Parkinson's disease? EMBO reports. 2004; 5(7): 681-85.
  • 22. Shimura H, Hattori N, Kubo SI, Mizuno Y, Asakawa S, Minoshima S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature genetics. 2000; 25(3): 302-05.
  • 23. Holtz WA, O'Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. Journal of Biological Chemistry. 2003; 278(21): 19367-77.
  • 24. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. The Journal of Neuroscience. 2002; 22(24): 10690-98.
  • 25. Conn KJ, Gao W, McKee A, Lan MS, Ullman MD, Eisenhauer PB, et al. Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology. Brain research. 2004; 1022(1): 164-72.
  • 26. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death & Differentiation. 2004; 11: 56-64.
  • 27. de Koning AL, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clinical biochemistry. 2003; 36(6): 431-41.
  • 28. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. The Journal of clinical investigation. 2001; 107(10): 1263-73.
  • 29. Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, et al. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocysteinemia. Journal of Biological Chemistry. 2003; 278(32): 30317-27.
  • 30. Zhou J, Werstuck GH, Lhoták Š, de Koning AL, Sood SK, Hossain GS, et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation. 2004; 110(2): 207-13.
  • 31. Han S, Liang CP, DeVries-Seimon T, Ranalletta M, Welch CL, Collins-Fletcher K, et al. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell metabolism. 2006; 3(4): 257-66.
  • 32. Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic-cells. Apoptosis. 2002; 7(4): 335-45.
  • 33. Araki E, Oyadomari S, Mori M. Endoplasmic reticulum stress and diabetes mellitus. Internal medicine. 2003; 42(1): 7-14
  • 34. Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier, C. EIF2AK3, encoding translation initiation factor 2- kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nature genetics. 2000; 25(4): 406-9.
  • 35. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Özdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004; 306(5695): 457-61.
  • 36. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. Journal of Biological Chemistry. 2005; 280(1): 847-51.
  • 37. Chakrabarti A, Chen AW, Varner JD. A review of the mammalian unfolded protein response. Biotechnology and bioengineering. 2011; 108(12): 2777-93.
  • 38. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk?/? mice reveals a role for translational control in secretory cell survival. Molecular cell. 2001; 7(6): 1153-63.
  • 39. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, et al. Nitric oxide-induced apoptosis in pancreatic ? cells is mediated by the endoplasmic reticulum stress pathway. Proceedings of the National Academy of Sciences. 2001; 98(19): 10845-50.
  • 40. Ji C, Kaplowitz N. ER stress: can the liver cope? Journal of hepatology. 2006; 45(2): 321-33.
  • 41. Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World journal of gastroenterology: WJG. 2004; 10(12): 1699-708.
  • 42. Kaplowitz N, Ji C. Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum. Journal of gastroenterology and hepatology. 2006; 21(3): 7-9.
  • 43. Ji C, Mehrian-Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcoholism: Clinical and Experimental Research. 2005; 29(8): 1496-503.
  • 44. Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual review of medicine. 2012; 63: 317-28.
  • 45. Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. American Journal of Physiology-Endocrinology And Metabolism. 2002; 282(1): 46-51.
  • 46. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike et al. GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. The Journal of clinical investigation. 2009; 119(5): 1201-15.
  • 47. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008; 320(5882): 1492-96.
  • 48. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002; 420(6913): 333-36.
  • 49. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Current molecular medicine. 2006; 6(1): 45-54.
  • 50. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer research. 2007; 67(8): 3496-99.
  • 51. Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L, et al. Functions and pathologies of BiP and its interaction partners. Cellular and molecular life sciences. 2009; 66(9): 1556-69.
  • 52. Giampietri C, Petrungaro S, Conti S, Facchiano A, Filippini A, Ziparo E. Cancer microenvironment and endoplasmic reticulum stress response. Mediators of inflammation. 2015; 2015.
  • 53. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer research. 1998; 58(7): 1408-16.
  • 54. Wang WA, Groenendyk J, Michalak M. Endoplasmic reticulum stress associated responses in cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014; 1843(10): 2143-49.

Endoplasmic Reticulum Stress and Related Diseases

Yıl 2019, Cilt: 41 Sayı: 3, 294 - 303, 01.07.2019
https://doi.org/10.20515/otd.417682

Öz

Endoplasmic reticulum is an
organelle that performs various functions such as lipid and protein synthesis,
protein folding, calcium homeostasis. In this organelle, an increase and
accumulation in unfolded or misfolded proteins result in changes in homeostasis
of the organelle. This disrupts functions of the organelle and causes
endoplasmic reticulum stress. Unfolded proteins reveal hydrophobic amino acid
residues in the protein that are prone to form protein clusters. It is known
that these protein clusters, which are highly toxic, are related to many
diseases. Endoplasmic reticulum stress is seen in neurodegenerative diseases,
metabolic diseases, arteriosclerosis, diabetes mellitus and obesity.
Endoplasmic reticulum stress is also associated with cancer. In this review,
the relationship between endoplasmic reticulum stress and various diseases has
been examined.

Kaynakça

  • 1. Özbek H. Klinik Araştırmalar Hakkında Yönetmelik. İyi Klinik Uygulamalar Dergisi. 2009; 21:12-16.
  • 2. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. The Journal of clinical investigation. 2005;115(10): 2656-64.
  • 3. Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends in molecular medicine. 2012;18(1): 59-68.
  • 4. Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. Journal of Biological Chemistry. 2004; 279(25): 25935-38.
  • 5. Kincaid MM, Cooper AA. ERADicate ER stress or die trying. Antioxidants & Redox Signaling. 2007; 9:2373-87.
  • 6. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews Molecular cell biology.2007; 8(7): 519.
  • 7. Nishikawa SI, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). Journal of biochemistry. 2005; 137(5): 551-5.
  • 8. Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology. 2007; 22(3): 193-201.
  • 9. Nakka VP, Prakash-Babu P, Vemuganti R. Crosstalk Between Endoplasmic Reticulum Stress, Oxidative Stress, and Autophagy: Potential Therapeutic Targets for Acute CNS Injuries. Molecular neurobiology. 2016; 53(1): 532-44.
  • 10. Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiological reviews. 2006; 86(4): 1133-49.
  • 11. Naidoo N. ER and aging-protein folding and the ER stress response. Ageing research reviews. 2009; 8(3): 150-59.
  • 12. Sarvani C, Sireesh D, Ramkumar KM. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacological research. 2017; 119: 412-21.
  • 13. Cao SS, Kaufman RJ. Unfolded protein response. Current biology. 2012; 22(16): R622-26.
  • 14. Ariyasu D, Yoshida H, Hasegawa Y. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders. International journal of molecular sciences. 2017; 18(2): 382
  • 15. Yoshida H. ER stress and diseases. The FEBS Journal. 2007; 274(3): 630-58.
  • 16. Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nature genetics. 2005; 37(9): 974-79.
  • 17. Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death & Differentiation. 2006; 13(3): 385-92.
  • 18. Zhang K, Kaufman RJ. The unfolded protein response A stress signaling pathway critical for health and disease. Neurology. 2006; 66(1): 102-9. 19. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biology. 1999; 1(8): 479.
  • 20. Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. Journal of Biological Chemistry. 2001; 276(46): 43446-54.
  • 21. Kahle PJ, Haass C. How does parkin ligate ubiquitin to Parkinson's disease? EMBO reports. 2004; 5(7): 681-85.
  • 22. Shimura H, Hattori N, Kubo SI, Mizuno Y, Asakawa S, Minoshima S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature genetics. 2000; 25(3): 302-05.
  • 23. Holtz WA, O'Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. Journal of Biological Chemistry. 2003; 278(21): 19367-77.
  • 24. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. The Journal of Neuroscience. 2002; 22(24): 10690-98.
  • 25. Conn KJ, Gao W, McKee A, Lan MS, Ullman MD, Eisenhauer PB, et al. Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology. Brain research. 2004; 1022(1): 164-72.
  • 26. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death & Differentiation. 2004; 11: 56-64.
  • 27. de Koning AL, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clinical biochemistry. 2003; 36(6): 431-41.
  • 28. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. The Journal of clinical investigation. 2001; 107(10): 1263-73.
  • 29. Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, et al. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocysteinemia. Journal of Biological Chemistry. 2003; 278(32): 30317-27.
  • 30. Zhou J, Werstuck GH, Lhoták Š, de Koning AL, Sood SK, Hossain GS, et al. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice. Circulation. 2004; 110(2): 207-13.
  • 31. Han S, Liang CP, DeVries-Seimon T, Ranalletta M, Welch CL, Collins-Fletcher K, et al. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell metabolism. 2006; 3(4): 257-66.
  • 32. Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic-cells. Apoptosis. 2002; 7(4): 335-45.
  • 33. Araki E, Oyadomari S, Mori M. Endoplasmic reticulum stress and diabetes mellitus. Internal medicine. 2003; 42(1): 7-14
  • 34. Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier, C. EIF2AK3, encoding translation initiation factor 2- kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nature genetics. 2000; 25(4): 406-9.
  • 35. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Özdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004; 306(5695): 457-61.
  • 36. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. Journal of Biological Chemistry. 2005; 280(1): 847-51.
  • 37. Chakrabarti A, Chen AW, Varner JD. A review of the mammalian unfolded protein response. Biotechnology and bioengineering. 2011; 108(12): 2777-93.
  • 38. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk?/? mice reveals a role for translational control in secretory cell survival. Molecular cell. 2001; 7(6): 1153-63.
  • 39. Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, et al. Nitric oxide-induced apoptosis in pancreatic ? cells is mediated by the endoplasmic reticulum stress pathway. Proceedings of the National Academy of Sciences. 2001; 98(19): 10845-50.
  • 40. Ji C, Kaplowitz N. ER stress: can the liver cope? Journal of hepatology. 2006; 45(2): 321-33.
  • 41. Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World journal of gastroenterology: WJG. 2004; 10(12): 1699-708.
  • 42. Kaplowitz N, Ji C. Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum. Journal of gastroenterology and hepatology. 2006; 21(3): 7-9.
  • 43. Ji C, Mehrian-Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcoholism: Clinical and Experimental Research. 2005; 29(8): 1496-503.
  • 44. Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual review of medicine. 2012; 63: 317-28.
  • 45. Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. American Journal of Physiology-Endocrinology And Metabolism. 2002; 282(1): 46-51.
  • 46. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike et al. GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. The Journal of clinical investigation. 2009; 119(5): 1201-15.
  • 47. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008; 320(5882): 1492-96.
  • 48. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002; 420(6913): 333-36.
  • 49. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Current molecular medicine. 2006; 6(1): 45-54.
  • 50. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer research. 2007; 67(8): 3496-99.
  • 51. Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L, et al. Functions and pathologies of BiP and its interaction partners. Cellular and molecular life sciences. 2009; 66(9): 1556-69.
  • 52. Giampietri C, Petrungaro S, Conti S, Facchiano A, Filippini A, Ziparo E. Cancer microenvironment and endoplasmic reticulum stress response. Mediators of inflammation. 2015; 2015.
  • 53. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer research. 1998; 58(7): 1408-16.
  • 54. Wang WA, Groenendyk J, Michalak M. Endoplasmic reticulum stress associated responses in cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014; 1843(10): 2143-49.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm DERLEMELER / REVIEWS
Yazarlar

Musa Tatar 0000-0002-5707-8832

Tuğba Tatar 0000-0002-6030-3033

Yayımlanma Tarihi 1 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 41 Sayı: 3

Kaynak Göster

Vancouver Tatar M, Tatar T. Endoplazmik Retikulum Stresi ve İlişkili Hastalıklar. Osmangazi Tıp Dergisi. 2019;41(3):294-303.


13299        13308       13306       13305    13307  1330126978