Derleme
BibTex RIS Kaynak Göster

Anne Sütü Mikrobiyotası

Yıl 2020, Sosyal Pediatri Özel Sayısı, 25 - 29, 23.03.2020
https://doi.org/10.20515/otd.683619

Öz

Anne sütü ile beslenme, yaşamın erken döneminde mikrobiyota kompozisyonunu etkileyen önemli bir faktördür. Emzirmenin, bebeklerde mikrobiyota kompozisyonu üzerindeki etkisi 100 yıl önce tanımlanmıştır ve anne sütü oligosakkaritlerinin bağırsak mikrobiyota kompozisyonu üzerine etkisinin olduğu, özellikle bifidobakterileri arttırdığı gösterilmiştir. Anne sütü ile yapılan yeni nesil dizileme çalışmaları sonucunda, anne sütünün kendine özgü mikrobiyota içeriğine sahip olduğu gösterilmiştir. Anne sütü mikrobiyota içeriği ile ilgili daha önceden yapılan çalışmalarda en sık saptanan bakteriler, Streptococcus, Staphylococcus, Lactobacillus, Bifidobacterium, Enterococcus ve Propionibacterium olarak saptanmıştır. Bu bakterilere ek olarak, kısa zincirli yağ asitleri üretebilen Veillonella, Propionibacterium ve Faecalibacterium'un da anne sütünde mevcut olduğu gösterilmiştir. Anne sütü mikrobiyota içeriğinin doğum şekli ve gebelik haftasına göre değiştiği gösterilmiştir. Elektif sezaryen ile normal spontan doğum arasında anne sütü bakteriyel içeriği arasında fark olduğu gösterilmiştir. Doğum şekli ve gebelik haftanın ek olarak, annede obezite varlığı, annenin hamilelik sırasındaki psikolojik durumu ve intrapartum antibiyotik kullanımı da anne sütü bakteriyel mikrobiyotasını değiştirebilmektedir. Anne sütü mikrobiyota bileşiminin (bakteriyom, virom, mikobiyom) sezaryen doğum, prematürite, gestasyon haftasına göre düşük ya da yüksek doğum ağırlığı olmasına bağlı ya da geçiş/matür anne sütü arasında farklar olduğu gösterilmişti. Ek olarak, anne sütünün el ile ya da pompa ile sağılması durumunda da mikrobiyota içeriğinde değişiklik olduğu gösterilmiştir. Anne sütü mikrobiyotasının kaynağı halen net olarak bilinmemektedir. Anne sütü mikrobiyotası için potansiyel olarak tanımlanan kaynak, annenin bağırsağı ile meme dokusu arasındaki yol, anne cildinden süte transfer ve/ veya bebeğin ağız mikrobiyotasıdır. Kaynak ne olursa olsun, anne sütü içerisindeki mikrobiyota kompozisyonun, emzirme ile bebeğe aktarıldığı ve bebeğin bağırsak mikrobiyotasının gelişmesinde etkili olduğu gösterilmiştir. TEDDY çalışmasının sonuçları, yaşamın ilk 1000 gününde mikrobiyota gelişimi için en önemli faktörün emzirme olduğunu göstermiştir. Prebiyotikler de dahil olmak üzere anne sütü oligosakkarit içeriği de, anne sütü ve bebeğin bağırsak mikrobiyotasını etkileyebilmektedir. Anne sütü ile beslenen bebeklerde doğumdan kısa bir süre sonra, bağırsak mikrobiyota içeriğinde Bifidobakterilerin baskın tür olduğu gösterilmiştir. Anne sütünün bu yararlı etkileri için, annenin mikrobiyota kompozisyonun da sağlıklı olması gerekmektedir. Anne sütünün bebeğin bağırsak mikrobiyotası ve dolayısıyla bağışıklık sistemi üzerinde etkileri olduğu ve enfeksiyon ve hastalıkları ve enfeksiyon ile ilişikisi olmayan hastalıklardan korunma ile sonuçlandığı düşünülmektedir. Emzirme-mikrobiyom ve bağışıklık ontogenisi arasındaki etkileşimleri değerlendiren çalışmalar ile anne sütü mikrobiyotasının etkilerinin anlaşılmasına yardımcı olacaktır.

Kaynakça

  • 1. Filyk HA, Osborne LC. The Multibiome: The intestinal ecosystem's influence on immune homeostasis, health, and disease. EBio- Medicine 2016; 13: 46-54.
  • 2. Urushiyama D, Suda W, Ohnishi E, Araki R, Kiyoshima C, Kurakazu M, Sanui A, Yotsumoto F, Murata M, Nabeshima K, Yasunaga S, Saito S, Nomiyama M, Hattori M, Miyamoto S, Hata K. Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci Rep. 2017; 7: 12171.
  • 3. Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA. Systematic review of the human milk microbiota. Nutr Clin Pract. 2017; 32: 354-64.
  • 4. Dinleyici M, Kılıç Ö, Dinleyici EÇ. İlk 1000 Gün: Fetal Hayattan Çocukluğa Mikrobiyota. Karakuş R, editör. Mikrobiyota İmmünolojisi. Ankara: Türkiye Klinikleri; 2018. p.13-8.
  • 5. Stewart CJ, Ajami NJ, O'Brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni H, Metcalf GA, Muzny D, Gibbs RA, Vatanen T, Huttenhower C, Xavier RJ, Rewers M, Hagopian W, Toppari J, Ziegler AG, She JX, Akolkar B, Lernmark A, Hyoty H, Vehik K, Krischer JP, Petrosino JF. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018; 562: 583-88.
  • 6. Martín R, Langa S, Reviriego C, Jimínez E, Marín ML, Xaus J, Fernández L, Rodríguez JM. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003; 143 754-58.
  • 7. Amenyogbe N, Kollmann TR, Ben-Othman R. Early-Life Host-Microbiome Interphase: The Key Frontier for Immune Development. Front Pediatr 2017; 5: 111.
  • 8. Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 2016; 4: 1.
  • 9. Jost T, Lacroix C, Braegger C, Chassard C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev 2015; 73: 426-37.
  • 10. McGuire MK, McGuire MA. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr Opin Biotechnol. 2017; 44: 63-68.
  • 11. Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011; 6: e21313.
  • 12. Murphy K, Curley D, O'Callaghan TF, O'Shea CA, Dempsey EM, O'Toole PW, Ross RP, Ryan CA, Stanton C. The composition of human milk and infant faecal microbiota over the first three months of life: A Pilot Study. Sci Rep. 2017; 7: 40597.
  • 13. Jiménez E, de Andrés J, Manrique M, Pareja-Tobes P, Tobes R, Martínez-Blanch JF, Codoñer FM, Ramón D, Fernández L, Rodríguez JM. Metagenomic Analysis of Milk of Healthy and Mastitis-Suffering Women. J Hum Lact. 2015; 31: 406-15.
  • 14. Ruiz L, García-Carral C, Rodriguez JM. Unfolding the Human Milk Microbiome Landscape in the Omics Era. Front Microbiol. 2019; 10: 1378.
  • 15. Ojo-Okunola A, Nicol M, du Toit E. Human Breast Milk Bacteriome in Health and Disease. Nutrients. 2018; 10. pii: E1643.
  • 16. Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, Sears MR, Mandhane PJ, Turvey SE, Subbarao P, Becker AB, Scott JA, Kozyrskyj AL; CHILD Study Investigators. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016; 123: 983-93.
  • 17. Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, Lix LM, de Souza RJ, Becker AB, Mandhane PJ, Turvey SE, Subbarao P, Moraes TJ, Lefebvre DL, Sears MR, Khafipour E, Azad MB. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe. 2019; 25: 324-35.
  • 18. Cabrera-Rubio R, Kunz C, Rudloff S, García-Mantrana I, Crehuá-Gaudiza E, Martínez-Costa C, Collado MC. Association of Maternal Secretor Status and Human Milk Oligosaccharides With Milk Microbiota: An Observational Pilot Study. J Pediatr Gastroenterol Nutr. 2019; 68: 256-63.
  • 19. Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E, Rautava S. Breast Milk Microbiota Is Shaped by Mode of Delivery and Intrapartum Antibiotic Exposure. Front Nutr. 2019; 6: 4.
  • 20. Klopp A, Vehling L, Becker AB, Subbarao P, Mandhane PJ, Turvey SE, Lefebvre DL, Sears MR; CHILD Study Investigators, Azad MB. Modes of Infant Feeding and the Risk of Childhood Asthma: A Prospective Birth Cohort Study. J Pediatr. 2017; 190: 192-99.
  • 21. Boix-Amorós A, Collado MC, Van't Land B, Calvert A, Le Doare K, Garssen J, Hanna H, Khaleva E, Peroni DG, Geddes DT, Kozyrskyj AL, Warner JO, Munblit D. Reviewing the evidence on breast milk composition and immunological outcomes. Nutr Rev. 2019 May 21. pii: nuz019.
  • 22. Ruiz L, Bacigalupe R, García-Carral C, Boix-Amoros A, Argüello H, Silva CB, de Los Angeles Checa M, Mira A, Rodríguez JM. Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth. Sci Rep. 2019; 9: 8435.
  • 23. Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Ozumut SS, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human milk mycobiota composition: relationship with gestational age, delivery mode, and birth weight. Benef Microbes. 2020;28:1-12.
  • 24. Boix-Amorós A, Martinez-Costa C, Querol A, Collado MC, Mira A. Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers. Sci Rep. 2017; 7: 13016.
  • 25. Boix-Amorós A, Puente-Sánchez F, du Toit E, Linderborg KM, Zhang Y, Yang B, Salminen S, Isolauri E, Tamames J, Mira A, Collado MC. Mycobiome Profiles in Breast Milk from Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction with Bacteria. Appl Environ Microbiol. 2019; 85. pii: e02994-18.
  • 26. Pannaraj PS, Ly M, Cerini C, Saavedra M, Aldrovandi GM, Saboory AA, Johnson KM, Pride DT. Shared and Distinct Features of Human Milk and Infant Stool Viromes. Front Microbiol. 2018;9:1162.
  • 27. Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Ozumut SS, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human milk virome analysis: changing pattern regarding to mode of delivery, birth weight and lactational status. 7th International Conference on Nutiriton and Growth, 26-28 March 2020, London, United Kingdom.
  • 28. Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC. The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med 2016; 21: 400-5.
  • 29. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 2015;77 : 229-35.

Human Milk Microbiota

Yıl 2020, Sosyal Pediatri Özel Sayısı, 25 - 29, 23.03.2020
https://doi.org/10.20515/otd.683619

Öz

Breastfeeding is an important factor affecting early life microbiota composition. The effect of breastfeeding on the microbial composition of infants has been described 100 years ago and it has been shown that human milk oligosaccharides enhances the intestinal microbial composition, especially Bifidobacteria. As a result of recent new generation sequencing studies on human milk, it has been shown that human milk has microbiota content of its own. Previous studies on human milk microbiota composition, Streptococcus, Staphylococcus, Lactobacillus, Bifidobacterium, Enterococcus, and Propionibacterium are most abundant taxa. In addition, Veillonella, Propionibacterium, and Faecalibacterium, which can produce short chain fatty acids, have also been shown to be present in human milk. It was shown that the human milk microbiota content varies according to delivery mode and gestational age. There is a difference for bacterial composition of human milk between elective cesarean section and normal spontaneous birth. In addition to delivery mode and gestational age, maternal obesity, psychological status of mothers during pregnancy, and intrapartum antibiotics use may also alter the composition of human milk bacterial microbiota. We observed some changes that the human milk microbiota composition (bacteriome, virome, mycobiome) varies in caesarean delivery, premature, small for gestational age and large for gestational age groups, comparing the normal spontaneous delivery, as well as differences between transient and mature human milk. In addition, it has been shown that there is a change in microbiota content in case of hand-expression and pump expression of human milk. The source of the human milk microbiota is still unknown. Potential described source for human milk microbiota are the entero-mammary route of the mother, transfer from the mother’s skin, and/or infant’s oral microbiota. Regardless of the source of human milk microbiota, it has been clearly shown that human milk transferred to the infant’s gut and breastfeeding is one of the determinants of the infant’s intestinal microbiota. The results of the TEDDY study showed that the most important factor for microbiota composition was breastfeeding in the first 1000 days. Human milk oligosaccharides content including prebiotics, might affect the human milk microbiota and infant’s intestinal microbiota. Bifidobacteria were found to be predominant strain in the intestinal microbiota content of infants fed with breast milk, in a short period after birth. The microbiota composition of human milk content is thought to play a significant role in the development of the infant's immune system. It is thought that human milk has effects on the intestinal microbiota of the infant and therefore on the immune system, resulting with the protection from infectious and non-communicable diseases. Further studies will help to understand the interactions between breastfeeding-microbiome and immune ontogeny.

Kaynakça

  • 1. Filyk HA, Osborne LC. The Multibiome: The intestinal ecosystem's influence on immune homeostasis, health, and disease. EBio- Medicine 2016; 13: 46-54.
  • 2. Urushiyama D, Suda W, Ohnishi E, Araki R, Kiyoshima C, Kurakazu M, Sanui A, Yotsumoto F, Murata M, Nabeshima K, Yasunaga S, Saito S, Nomiyama M, Hattori M, Miyamoto S, Hata K. Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci Rep. 2017; 7: 12171.
  • 3. Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA. Systematic review of the human milk microbiota. Nutr Clin Pract. 2017; 32: 354-64.
  • 4. Dinleyici M, Kılıç Ö, Dinleyici EÇ. İlk 1000 Gün: Fetal Hayattan Çocukluğa Mikrobiyota. Karakuş R, editör. Mikrobiyota İmmünolojisi. Ankara: Türkiye Klinikleri; 2018. p.13-8.
  • 5. Stewart CJ, Ajami NJ, O'Brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni H, Metcalf GA, Muzny D, Gibbs RA, Vatanen T, Huttenhower C, Xavier RJ, Rewers M, Hagopian W, Toppari J, Ziegler AG, She JX, Akolkar B, Lernmark A, Hyoty H, Vehik K, Krischer JP, Petrosino JF. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018; 562: 583-88.
  • 6. Martín R, Langa S, Reviriego C, Jimínez E, Marín ML, Xaus J, Fernández L, Rodríguez JM. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003; 143 754-58.
  • 7. Amenyogbe N, Kollmann TR, Ben-Othman R. Early-Life Host-Microbiome Interphase: The Key Frontier for Immune Development. Front Pediatr 2017; 5: 111.
  • 8. Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 2016; 4: 1.
  • 9. Jost T, Lacroix C, Braegger C, Chassard C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev 2015; 73: 426-37.
  • 10. McGuire MK, McGuire MA. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr Opin Biotechnol. 2017; 44: 63-68.
  • 11. Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011; 6: e21313.
  • 12. Murphy K, Curley D, O'Callaghan TF, O'Shea CA, Dempsey EM, O'Toole PW, Ross RP, Ryan CA, Stanton C. The composition of human milk and infant faecal microbiota over the first three months of life: A Pilot Study. Sci Rep. 2017; 7: 40597.
  • 13. Jiménez E, de Andrés J, Manrique M, Pareja-Tobes P, Tobes R, Martínez-Blanch JF, Codoñer FM, Ramón D, Fernández L, Rodríguez JM. Metagenomic Analysis of Milk of Healthy and Mastitis-Suffering Women. J Hum Lact. 2015; 31: 406-15.
  • 14. Ruiz L, García-Carral C, Rodriguez JM. Unfolding the Human Milk Microbiome Landscape in the Omics Era. Front Microbiol. 2019; 10: 1378.
  • 15. Ojo-Okunola A, Nicol M, du Toit E. Human Breast Milk Bacteriome in Health and Disease. Nutrients. 2018; 10. pii: E1643.
  • 16. Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, Sears MR, Mandhane PJ, Turvey SE, Subbarao P, Becker AB, Scott JA, Kozyrskyj AL; CHILD Study Investigators. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016; 123: 983-93.
  • 17. Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, Lix LM, de Souza RJ, Becker AB, Mandhane PJ, Turvey SE, Subbarao P, Moraes TJ, Lefebvre DL, Sears MR, Khafipour E, Azad MB. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe. 2019; 25: 324-35.
  • 18. Cabrera-Rubio R, Kunz C, Rudloff S, García-Mantrana I, Crehuá-Gaudiza E, Martínez-Costa C, Collado MC. Association of Maternal Secretor Status and Human Milk Oligosaccharides With Milk Microbiota: An Observational Pilot Study. J Pediatr Gastroenterol Nutr. 2019; 68: 256-63.
  • 19. Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E, Rautava S. Breast Milk Microbiota Is Shaped by Mode of Delivery and Intrapartum Antibiotic Exposure. Front Nutr. 2019; 6: 4.
  • 20. Klopp A, Vehling L, Becker AB, Subbarao P, Mandhane PJ, Turvey SE, Lefebvre DL, Sears MR; CHILD Study Investigators, Azad MB. Modes of Infant Feeding and the Risk of Childhood Asthma: A Prospective Birth Cohort Study. J Pediatr. 2017; 190: 192-99.
  • 21. Boix-Amorós A, Collado MC, Van't Land B, Calvert A, Le Doare K, Garssen J, Hanna H, Khaleva E, Peroni DG, Geddes DT, Kozyrskyj AL, Warner JO, Munblit D. Reviewing the evidence on breast milk composition and immunological outcomes. Nutr Rev. 2019 May 21. pii: nuz019.
  • 22. Ruiz L, Bacigalupe R, García-Carral C, Boix-Amoros A, Argüello H, Silva CB, de Los Angeles Checa M, Mira A, Rodríguez JM. Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth. Sci Rep. 2019; 9: 8435.
  • 23. Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Ozumut SS, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human milk mycobiota composition: relationship with gestational age, delivery mode, and birth weight. Benef Microbes. 2020;28:1-12.
  • 24. Boix-Amorós A, Martinez-Costa C, Querol A, Collado MC, Mira A. Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers. Sci Rep. 2017; 7: 13016.
  • 25. Boix-Amorós A, Puente-Sánchez F, du Toit E, Linderborg KM, Zhang Y, Yang B, Salminen S, Isolauri E, Tamames J, Mira A, Collado MC. Mycobiome Profiles in Breast Milk from Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction with Bacteria. Appl Environ Microbiol. 2019; 85. pii: e02994-18.
  • 26. Pannaraj PS, Ly M, Cerini C, Saavedra M, Aldrovandi GM, Saboory AA, Johnson KM, Pride DT. Shared and Distinct Features of Human Milk and Infant Stool Viromes. Front Microbiol. 2018;9:1162.
  • 27. Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Ozumut SS, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human milk virome analysis: changing pattern regarding to mode of delivery, birth weight and lactational status. 7th International Conference on Nutiriton and Growth, 26-28 March 2020, London, United Kingdom.
  • 28. Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC. The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med 2016; 21: 400-5.
  • 29. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 2015;77 : 229-35.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm DERLEMELER / REVIEWS
Yazarlar

Meltem Dinleyici Bu kişi benim 0000-0002-8353-6796

Yayımlanma Tarihi 23 Mart 2020
Yayımlandığı Sayı Yıl 2020 Sosyal Pediatri Özel Sayısı

Kaynak Göster

Vancouver Dinleyici M. Anne Sütü Mikrobiyotası. Osmangazi Tıp Dergisi. 2020:25-9.


13299        13308       13306       13305    13307  1330126978