Araştırma Makalesi
BibTex RIS Kaynak Göster

İnme Hastalarında Robot Destekli Üst Ekstremite Eğitiminin El Fonksiyonu ve Yaşam Kalitesi Üzerine Etkisi

Yıl 2021, Cilt: 43 Sayı: 3, 224 - 233, 07.05.2021
https://doi.org/10.20515/otd.821607

Öz

Çalışmanın amacı, inmeli hastalarda geleneksel rehabilitasyona ek olarak uygulanan robot destekli üst ekstremite eğitiminin el fonksiyonu ve yaşam kalitesi üzerine etkisini araştırmaktı. Çalışmaya katılmaya gönüllü toplam 49 kronik inmeli hasta dahil edildi. Tüm hastalar geleneksel rehabilitasyon programına ek olarak günde 30 dakika, haftada 5 kez, 6 hafta boyunca ArmeoSpring üst ekstremite robotik cihazı ile eğitime katılan hastaların geçmişe yönelik bilgileri kayıt edildi. Hastaların başlangıçta ve tedavi sonunda el fonksiyonları ABILHAND İnme El Fonksiyonu anketi ve yaşam kaliteleri ise İnme Etki Ölçeği 3.0 (İEÖ) kullanılarak değerlendirildi. Çalışmaya katılan inmeli hastaların %57,2'si kadın ve yaş ortalamaları 51,6±11,1 yıl idi. İnmeden sonra geçen süre ortalamaları ise 3,1±1,7 yıl idi. Eğitimden sonra hastaların ABILHAND İnme El Fonksiyonu skorlarında istatistiksel olarak anlamlı iyileşme olduğu saptandı (p=0,0001). Ayrıca, İEÖ 3.0'ın el fonksiyonu (p=0,0001) ve günlük yaşam aktiviteleri (p=0,0001) alanları başta olmak üzere tüm alanlarda anlamlı düzeyde gelişme olduğu bulundu (p<0,05). Geleneksel rehabilitasyon programı ile kombine edilmiş robot destekli üst ekstremite eğitiminin inmeli hastaların el fonksiyonlarını ve özellikle günlük yaşam aktivitelere katılımlarını artırarak yaşam kalitelerini iyileştirdiği görüldü.

Destekleyen Kurum

Yok

Proje Numarası

Yok

Teşekkür

Yok

Kaynakça

  • 1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. The Lancet. 2011;377:1693-1702.
  • 2. Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 2019;18(5):439-458.
  • 3. Kablan Y. İnme: Epidemiyoloji ve Risk Faktörleri. Türkiye Klinikleri Nöroloji-Özel Konular. 2018;11(2):1-19.
  • 4. Sveen U, Bautz-Holter E, Margrethe Sodring K, et al. Association between impairments, self-care ability and social activities 1 year after stroke. Disabil rehabil. 1999;21(8):372-377.
  • 5. Hendricks HT, Van Limbeek J, Geurts AC,et al. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629-1637.
  • 6. Hakkennes S, Keating JL. Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. Aust J Physiother 2005;51(4):221-31.
  • 7. Van der Lee JH, Wagenaar RC, Lankhorst GJ, et al. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke. 1999;30(11):2369-2375.
  • 8. Özer İŞ, Sorgun MH, Rzayev S, et al. Genç iskemik inme hastalarında inme etiyolojisi, risk faktörleri ve hastaların izlemdeki fonksiyonel durumları. Turk J Neurol. 2015;21:159-64.
  • 9. Park S-W, Butler AJ, Cavalheiro V, et al. Changes in serial optical topography and TMS during task performance after constraint-induced movement therapy in stroke: a case study. Neurorehabil Neural Repair. 2004;18(2):95-105.
  • 10. Kim YH, Park JW, Ko MH, et al. Plastic changes of motor network after constraint-induced movement therapy. Yonsei Med J. 2004;45(2):241-246.
  • 11. Lee YY, Lin KC, Cheng HJ,et al. Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: a double-blinded randomized controlled trial. J Neuroeng Rehabil. 2015;12(1):96.
  • 12. Taveggia G, Borboni A, Salvi L, et al. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Eur J Phys Rehabil Med. 2016;52(6):767-773.
  • 13. Lanningham-Foster L, Foster RC, McCrady SK,et al. Activity-promoting video games and increased energy expenditure. J Pediatr. 2009;154(6):819-823.
  • 14. Francisco GE, Yozbatiran N, Berliner J, et al. Robot-assisted training of arm and hand movement shows functional improvements for incomplete cervical spinal cord injury. Am J Phys Med Rehabil. 2017;96(10):S171-S177.
  • 15. Zariffa J, Kapadia N, Kramer J, et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord. 2012;50(3):220-226.
  • 16. Singh H, Unger J, Zariffa J,et al. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review. Disabil Rehabil Assist Technol. 2018;13(7):704-715.
  • 17. Taveggia G, Borboni A, Salvi L, et al. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Eur J Phys Rehabil Med. 2016;52(6):767-773.
  • 18. Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, et al. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabil Neural Repair. 2017;31(2):107-121.
  • 19. Lee MJ, Lee JH, Lee SM. Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: A single-blinded, randomized, controlled trial. Technol Health Care. 2018;26(4):659-666.
  • 20. Rodgers H, Bosomworth H, Krebs HI, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394:51-62.
  • 21. Penta M, Tesio L, Arnould C, et al. The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke. 2001;32(7):1627-1634.
  • 22. Penta M, Thonnard JL, Tesio L. ABILHAND: a Rasch-built measure of manual ability. Arch Phys Med Rehabil. 1998;79(9):1038-1042.
  • 23. Vellone E, Savini S, Fida R, et al. Psychometric evaluation of the Stroke Impact Scale 3.0. J Cardiovasc Nurs.2015;30(3):229-241.
  • 24. Hantal AO, Dogu B, Buyukavci R, et al. Stroke impact scale version 3.0: study of reliability and validity in stroke patients in the turkish population. Turk J Phys Med Rehabil.2014;60(2):106-117.
  • 25. Duncan PW, Wallace D, Lai SM, et al. The Stroke Impact Scale version 2.0: evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30:2131-2140.
  • 26. Lai SM, Studenski S, Duncan PW, et al. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke. 2002;33(7):1840-1844.
  • 27. You SH, Jang SH, Kim YH, et al. Virtual reality–induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005;36(6):1166-1171.
  • 28. Colomer C, Baldoví A, Torromé S, et al. Efficacy of Armeo® Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurologia. 2013;28(5):261-267.
  • 29. Dixit S, Tedla JS. Effectiveness of robotics in improving upper extremity functions among people with neurological dysfunction: a systematic review. Int J Neurosci. 2019;129(4):369- 383.
  • 30. Bustamante Valles K, Montes S, Madrigal Mde J, et al. Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym. J Neuroeng Rehabil. 2016;13(1):83.
  • 31. Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol. 2016;11(4):263-80.
  • 32. Burgar CG, Lum PS, Shor PC,et al. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J Rehabil Res Dev. 2000;37(6):663-674.
  • 33. Kwakkel G, van Peppen R, Wagenaar RC, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35(11):2529-2539.
  • 34. Prange G, Jannink M, Groothuis-Oudshoorn C, et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2009;43(2):171-184.
  • 35. Liao WW, Wu CY, Hsieh YW, et al.Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clin Rehabil. 2012;26(2):111-20.
  • 36. Chan IH, Fong KN, Chan DY, et al. Effects of arm weight support training to promote recovery of upper limb function for subacute patients after stroke with different levels of arm impairments. Biomed Res Int. 2016;2016:9346374.
  • 37. Reinkensmeyer DJ, Boninger ML. Technologies and combination therapies for enhancing movement training for people with a disability. J Neuroeng Rehabil. 2012;9(1):1-10.
  • 38. Mehrholz J, Hädrich A, Platz T, et al. Electromechanical and robot‐assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2012;13(6):CD006876.
  • 39. Pulman J, Buckley E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: a systematic review. Top Stroke Rehabil. 2013;20(2):171-188.
  • 40. Carod-Artal FJ, Trizotto DS, Coral LF,et al. Determinants of quality of life in Brazilian stroke survivors. J Neurol Sci. 2009;284(1-2):63-68.
  • 41. Pehlivan YS, Armağan O. Elektromiyografik biofeedback ile kombine edilen elektrik stimulasyon ve egzersiz uygulamalarının inme sonrası üst ekstremite rehabilitasyonuna etkisi. Turk J Phys Med Rehabil. 2011;57:66-72.
  • 42. Aström M, Asplund K, Aström T. Psychosocial function and life satisfaction after stroke. Stroke. 1992;23(4):527-531.
  • 43. Wu CY, Yang CL, Chuang LL, et al. Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Phys Ther. 2012;92(8):1006-16.
  • 44. Timmermans AA, Lemmens RJ, Monfrance M, et al. Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial. J Neuroeng Rehabil. 2014;11:45.
  • 45. Zengin-Metli D, Özbudak-Demir S, Eraktaş İ,et al. Effects of robot assistive upper extremity rehabilitation on motor and cognitive recovery, the quality of life, and activities of daily living in stroke patients. J Back Musculoskelet Rehabil. 2018;31(6):1059-1064.

The Effect of Robot-Assisted Upper Extremity Training on Hand Function and Quality of Life in Stroke Patients

Yıl 2021, Cilt: 43 Sayı: 3, 224 - 233, 07.05.2021
https://doi.org/10.20515/otd.821607

Öz

The aim of the study was to investigate the effects of robot-assisted upper extremity training on hand function and quality of life in stroke patients. A total of 49 chronic stroke patients who volunteered to participate in the study were enrolled. In addition to the traditional rehabilitation program, all patients received upper extremity training with the ArmeoSpring robotic device for 30 minutes a day, 5 times a week, for 6 weeks. Hand functions of the patients at the baseline and at the end of the treatment were evaluated using the ABILHAND Stroke Hand Function Questionnaire and their quality of life using the Stroke Impact Scale 3.0 (SIP). A 57.2% of the stroke patients participating in the study were female and the mean age was 51.6±11.1 years. The mean time after stroke was 3.1±1.7 years. A statistically significant improvement was found in the ABILHAND Stroke Hand Function Questionnaire scores of the patients after the training (p=0.0001). In addition, it was found that there was a significant improvement in all areas, especially hand function (p=0.0001) and activities of daily living (p=0.0001) of SIP 3.0. It was observed that robot-assisted upper extremity training combined with the traditional rehabilitation program improved the quality of life of stroke patients by increasing their hand functions and especially their participation in daily life activities.

Proje Numarası

Yok

Kaynakça

  • 1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. The Lancet. 2011;377:1693-1702.
  • 2. Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 2019;18(5):439-458.
  • 3. Kablan Y. İnme: Epidemiyoloji ve Risk Faktörleri. Türkiye Klinikleri Nöroloji-Özel Konular. 2018;11(2):1-19.
  • 4. Sveen U, Bautz-Holter E, Margrethe Sodring K, et al. Association between impairments, self-care ability and social activities 1 year after stroke. Disabil rehabil. 1999;21(8):372-377.
  • 5. Hendricks HT, Van Limbeek J, Geurts AC,et al. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629-1637.
  • 6. Hakkennes S, Keating JL. Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. Aust J Physiother 2005;51(4):221-31.
  • 7. Van der Lee JH, Wagenaar RC, Lankhorst GJ, et al. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke. 1999;30(11):2369-2375.
  • 8. Özer İŞ, Sorgun MH, Rzayev S, et al. Genç iskemik inme hastalarında inme etiyolojisi, risk faktörleri ve hastaların izlemdeki fonksiyonel durumları. Turk J Neurol. 2015;21:159-64.
  • 9. Park S-W, Butler AJ, Cavalheiro V, et al. Changes in serial optical topography and TMS during task performance after constraint-induced movement therapy in stroke: a case study. Neurorehabil Neural Repair. 2004;18(2):95-105.
  • 10. Kim YH, Park JW, Ko MH, et al. Plastic changes of motor network after constraint-induced movement therapy. Yonsei Med J. 2004;45(2):241-246.
  • 11. Lee YY, Lin KC, Cheng HJ,et al. Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: a double-blinded randomized controlled trial. J Neuroeng Rehabil. 2015;12(1):96.
  • 12. Taveggia G, Borboni A, Salvi L, et al. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Eur J Phys Rehabil Med. 2016;52(6):767-773.
  • 13. Lanningham-Foster L, Foster RC, McCrady SK,et al. Activity-promoting video games and increased energy expenditure. J Pediatr. 2009;154(6):819-823.
  • 14. Francisco GE, Yozbatiran N, Berliner J, et al. Robot-assisted training of arm and hand movement shows functional improvements for incomplete cervical spinal cord injury. Am J Phys Med Rehabil. 2017;96(10):S171-S177.
  • 15. Zariffa J, Kapadia N, Kramer J, et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord. 2012;50(3):220-226.
  • 16. Singh H, Unger J, Zariffa J,et al. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review. Disabil Rehabil Assist Technol. 2018;13(7):704-715.
  • 17. Taveggia G, Borboni A, Salvi L, et al. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Eur J Phys Rehabil Med. 2016;52(6):767-773.
  • 18. Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, et al. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabil Neural Repair. 2017;31(2):107-121.
  • 19. Lee MJ, Lee JH, Lee SM. Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: A single-blinded, randomized, controlled trial. Technol Health Care. 2018;26(4):659-666.
  • 20. Rodgers H, Bosomworth H, Krebs HI, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394:51-62.
  • 21. Penta M, Tesio L, Arnould C, et al. The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke. 2001;32(7):1627-1634.
  • 22. Penta M, Thonnard JL, Tesio L. ABILHAND: a Rasch-built measure of manual ability. Arch Phys Med Rehabil. 1998;79(9):1038-1042.
  • 23. Vellone E, Savini S, Fida R, et al. Psychometric evaluation of the Stroke Impact Scale 3.0. J Cardiovasc Nurs.2015;30(3):229-241.
  • 24. Hantal AO, Dogu B, Buyukavci R, et al. Stroke impact scale version 3.0: study of reliability and validity in stroke patients in the turkish population. Turk J Phys Med Rehabil.2014;60(2):106-117.
  • 25. Duncan PW, Wallace D, Lai SM, et al. The Stroke Impact Scale version 2.0: evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30:2131-2140.
  • 26. Lai SM, Studenski S, Duncan PW, et al. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke. 2002;33(7):1840-1844.
  • 27. You SH, Jang SH, Kim YH, et al. Virtual reality–induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005;36(6):1166-1171.
  • 28. Colomer C, Baldoví A, Torromé S, et al. Efficacy of Armeo® Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurologia. 2013;28(5):261-267.
  • 29. Dixit S, Tedla JS. Effectiveness of robotics in improving upper extremity functions among people with neurological dysfunction: a systematic review. Int J Neurosci. 2019;129(4):369- 383.
  • 30. Bustamante Valles K, Montes S, Madrigal Mde J, et al. Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym. J Neuroeng Rehabil. 2016;13(1):83.
  • 31. Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol. 2016;11(4):263-80.
  • 32. Burgar CG, Lum PS, Shor PC,et al. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J Rehabil Res Dev. 2000;37(6):663-674.
  • 33. Kwakkel G, van Peppen R, Wagenaar RC, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35(11):2529-2539.
  • 34. Prange G, Jannink M, Groothuis-Oudshoorn C, et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2009;43(2):171-184.
  • 35. Liao WW, Wu CY, Hsieh YW, et al.Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clin Rehabil. 2012;26(2):111-20.
  • 36. Chan IH, Fong KN, Chan DY, et al. Effects of arm weight support training to promote recovery of upper limb function for subacute patients after stroke with different levels of arm impairments. Biomed Res Int. 2016;2016:9346374.
  • 37. Reinkensmeyer DJ, Boninger ML. Technologies and combination therapies for enhancing movement training for people with a disability. J Neuroeng Rehabil. 2012;9(1):1-10.
  • 38. Mehrholz J, Hädrich A, Platz T, et al. Electromechanical and robot‐assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2012;13(6):CD006876.
  • 39. Pulman J, Buckley E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: a systematic review. Top Stroke Rehabil. 2013;20(2):171-188.
  • 40. Carod-Artal FJ, Trizotto DS, Coral LF,et al. Determinants of quality of life in Brazilian stroke survivors. J Neurol Sci. 2009;284(1-2):63-68.
  • 41. Pehlivan YS, Armağan O. Elektromiyografik biofeedback ile kombine edilen elektrik stimulasyon ve egzersiz uygulamalarının inme sonrası üst ekstremite rehabilitasyonuna etkisi. Turk J Phys Med Rehabil. 2011;57:66-72.
  • 42. Aström M, Asplund K, Aström T. Psychosocial function and life satisfaction after stroke. Stroke. 1992;23(4):527-531.
  • 43. Wu CY, Yang CL, Chuang LL, et al. Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Phys Ther. 2012;92(8):1006-16.
  • 44. Timmermans AA, Lemmens RJ, Monfrance M, et al. Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial. J Neuroeng Rehabil. 2014;11:45.
  • 45. Zengin-Metli D, Özbudak-Demir S, Eraktaş İ,et al. Effects of robot assistive upper extremity rehabilitation on motor and cognitive recovery, the quality of life, and activities of daily living in stroke patients. J Back Musculoskelet Rehabil. 2018;31(6):1059-1064.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm ORİJİNAL MAKALELER / ORIGINAL ARTICLES
Yazarlar

Rüstem Mustafaoğlu 0000-0001-7030-0787

Abdurrahim Yıldız 0000-0002-6049-0705

Nur Kesiktaş 0000-0002-3937-9973

Proje Numarası Yok
Yayımlanma Tarihi 7 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 43 Sayı: 3

Kaynak Göster

Vancouver Mustafaoğlu R, Yıldız A, Kesiktaş N. İnme Hastalarında Robot Destekli Üst Ekstremite Eğitiminin El Fonksiyonu ve Yaşam Kalitesi Üzerine Etkisi. Osmangazi Tıp Dergisi. 2021;43(3):224-33.


13299        13308       13306       13305    13307  1330126978